Audio Steganography Using High Frequency Noise
Introduction

David Wheeler, Daryl Johnson, Bo Yuan, Peter Lutz
B. Thomas Golisano College of Computing & Information Sciences
Rochester Institute of Technology, Rochester NY
{dbw3113,daryl.johnson,bo.yuan,peter.lutz} @rit.edu

Abstract—This paper presents a new method of audio
steganography that allows character data to be encoded into
audio in a way that is indiscernible to prying third-parties. Unlike
typical methods of audio steganography that propose storage by
modifying the least significant bits or the phase of the audio
data, this approach makes use of frequency ranges that are
undetectable to the human ear. The method proposed in this
paper provides for a reasonably high-bandwidth and is resistant
to common detection and prevention techniques.

I. INTRODUCTION

The act of being able to hide imperceptible information
within digital media has become an area of increasing interest
in the computing world. Data hiding techniques have many
potential applications such as covert communication, hiding
executable data, watermarking and digital rights management
[2]. The method used to conceal data for all of the above
situations is called steganography. Steganography, which lit-
erally means “concealed writing”, is a method of covert
communication that has existed for thousands of years. Today
steganography has been adapted to the digital era and can be
implemented in pictures, audio, text and even other forms of
digital multimedia as well [3].

Digital steganography involves the use of two entities that
make up the transfer file. The first entity is the cover object,
which is the overt data being sent, and the second entity is the
stego object, which is the secret or covert message embedded
in the cover object. In addition, digital steganography has
two rudimentary requirements that must be fulfilled. The first
requirement is that the stego object is virtually imperceptible
to any third-parties who may obtain the file or files, whereas
the second requirement is that there must be a reasonably high
bandwidth for the stego-data.

In this internet era, digital media is commonly transferred
over the internet both through individual file transfer and
streaming of raw data. Given these new developments there
has been an increasing focus on embedding hidden information
into audio. There are several classic ways that are used to hide
information in audio. Least Significant bit (LSB) encoding,
echo hiding, phase coding, and spread spectrum coding are
among the most common techniques used [3]. This paper
proposes a novel concept of audio steganography that encodes
binary information into high-frequency signals. The proposed
steganography implementation is a sort of hybrid mix of
several of the more common methods, and combines a known

technique with a new one. The maximum range that a human
ear can hear is between the frequencies of 20 Hz and 20KHz.
However, natural high-frequency hearing loss over time and
the lack of speaker fidelity makes this perceptible frequency
much lower [9]. This means that while audio files carry digital
information all the way up to 20 KHz, some of the highest
frequencies will be completely imperceptible to the human ear.
The method illustrated in this paper will be both imperceptible
to humans and reasonably resistant to preventative software
techniques.

II. RELATED WORK

As mentioned above there are four main categories of audio
steganography that are commonly used to hide information
into auditory data: least significant bit coding, echo coding,
phase coding and spread spectrum coding. Each method varies
in implementation, bandwidth, and covertness. They all have
advantages and disadvantages and are typically used for dif-
fering applications.

A. Least Significant Bit Encoding

As the name implies least significant bit coding (LSB
encoding) deals with modifying the least significant bit of
each audio frame in order to encode binary information.
This is an inherently simple task and has the advantage of
high bandwidth but is unfortunately easy to prevent. Small
format changes that occur during file conversion, compression,
or through preventative techniques, can easily contaminate
the hidden data [3]. There have been proposed LSB coding
methods, however, that utilize higher level bits in same fashion
as the LSB method that are robust against some issues that are
present in this category of audio steganography [2].

B. Echo Hiding

The process of echo hiding involves inserting echoes with
varying characteristics into discrete audio signals. Three echo
parameters, amplitude, decay rate and offset (essentially the
delay time of the echo) are applied in varying ways in order
to successfully encode binary information. This method is
very covert as each echo occurs below the audible limit of
the human ear. The disadvantage of this technique is that the
process can sometimes yield a noticeable mix of echoes which
increases the risk for detection [3].

C. Phase Coding

Phase Coding addresses the issue of covertness and de-
tectability as components of sound (modified phase) are much
more difficult for the human ear to perceive than the addition
or subtraction of noise. To implement this method the audio
file is broken down into discrete chunks, separated into phase
groups and then shifted according to the binary data being
encoded. The main problem with this process is that modi-
fications of audio phase allows for a relatively low quantity
of stego-data. Thus this technique is relatively low bandwidth
and is typically used for applications such as watermarking or
copyrighting of audio files [3].

D. Spread Spectrum Coding

The final type of audio steganography worth mentioning is
Spectrum Coding. Spectrum Coding takes bits of information
and randomly spreads them over the entire frequency spectrum
[5]. It is similar to LSB but is more robust against steganalysis
techniques. This procedure, however, is still somewhat vulner-
able to detection as it can introduce noise into the audio file

[3].
III. METHOD

Unlike some of the common steganography techniques
listed above that try to mask the audio signals this approach
uses more of a hidden-in-plain-sight kind of approach. While
all wave files hold information between the ranges of 20 Hz
and 20 KHz, not only are frequencies at the uppermost range
rarely used, but they are also nearly impossible to perceive by
the human ear. Given these characteristics of wave files, high
frequencies can be injected into the cover audio file in order to
produce a concealed binary stego signal. The basic approach
to the process of embedding and reading binary information
is presented below.

Source Audio Message

Encoding

Stego-Audio File

Message

The method of encoding binary information in this manner
is relatively simple. First, an audio file must be broken into
discrete chunks known as frames. The character data to be
hidden in the audio is then converted into binary information
and mixed into the audio frames. The pseudo code algorithm
used for mixing binary into audio is given below:

frame_buffer = frames.get(bufferSize)
for each binary_bit
if binary_bit == 1
then addHighPowerHFT into frame_buffer
if binary_bit == Or
then noHFTInjection into frame_buffer

Essentially a group of frames is obtained from the
audio file and then a HFT (high-frequency tone) is added
to that buffer of frames depending on whether the next bit
to be encoded is a 0 or a 1. One important point to note is
that the size of the buffer must stay constant throughout the
encoding process for the purposes of decoding. The buffer
size can range anywhere from fifty to thousands of frames,
which equates to between one and a hundred milliseconds.
The disadvantage to increasing the buffer size is that the
audio data will have a lower potential bandwidth.

The process used to encode audio is given below:

frames = Read_WaveFile(fileName)

characters = Read_Character_Data()

binary_bits = Convert(Characters)

foreach bit in binary_bits
add_HFT(bit)

output_file = Write_WaveFile

In Figl a short one hundred and sixty millisecond
clip of the cover audio file is shown. The graph measures
the power levels at various frequencies over a span of time
(160 MS). In Fig2 the same audio clip is shown once it has
undergone the proposed HFT encoding. In Fig2 the levels
of the HFTs would appear to be significant enough to be
detected by human perception but are not, due to the fact
they are located just past the peak of a humans auditory
perception.

Figl: 160 ms of cover audio

Fig2: 160 ms of audio with encoded HFTs

Decoding the stego object from the encoded wave file
simply requires reversing the encoding process and applying
a Fourier transform to the encoded frames. The decoding
algorithm is given below:

frames = Read_WaveFile(stegoFileName)
fitData = FFT(frames)
data = HighPass(fftData
foreach buffer in data
bits += get_Bit(buffer)
characters = Convert(bits)

In these steps the wave file with the hidden stego
object is initially read into frames. In order to get the
frequency breakdown of the frames a fast Fourier transform
algorithm is applied to the data. A high-pass filter is applied
to the frequency data which will only allow the HFT stego
data to be read into the data array. Depending on the buffer
size the data is read and each buffer is interpreted either as a
0 or 1 value. The binary information is then converted back
into its character information and the hidden message is then
fully decoded.

IV. EXPERIMENTAL RESULTS

The proposed method described above was implemented in
a java program called AudioStego which allowed for encoding
of character data into wav-forFmat audio files. The program
made use of a WavFile java class for basic input and output
operations of wave files [1] and was otherwise implemented
with standard java libraries. A multitude of different songs
and audio information were tested. Each audio clip featured
different dynamic and spectral ranges. All audio was sampled
at 44.1 KHz with 16 bits of depth and the length of various
audio files ranged from ten seconds up to five minutes in
length.

Subjective tests were done on each of the tested audio files
by several individuals in order to determine how discernable
the introduction of HFTs were in the cover audio. The tests
compared an original cover audio file with an audio-stego
version that implemented varying buffer sizes and power levels
for the encoded HFTs. Table 1 illustrates the different charac-
teristics of HFTs used and their corresponding inaudibility as
reported by the listeners.

TABLE I
SUBJECTIVE LISTENING RESULTS

Buffer Size Power Level inaudibility
100 High Sometimes
1000 High Sometimes
100 Mid Yes
1000 Mid Yes
100 Low Yes
1000 Low Yes

In all low power and mid-power cases it was reported that
the additional HFTs in the audio signal were indiscernible.
In both high-power cases some subtle white noise and crack-
ling was discernable in the audio-stego file to some of the
listeners. When inserting very low-power HFTs, data could be
occasionally be decoded incorrectly due to noise in the audio
signal. It also appeared that size of frame buffers played no
noticeable role in detection. Given this data, the best apparent
characteristics for indiscernible HFT injection would occur
at the mid-power level and with buffers of 100 frames (this
maximizes the bandwidth of the file).

V. DETECTION AND PREVENTION

There is a somewhat limited amount of research in the
field of audio steganalysis (the analysis and detection of
steganography). This has to do with the fact that many audio
steganography schemes are quite advanced and the nature of
high-bandwidth audio streams makes it difficult to produce
consistent analyzing tools [4].

There are two main categories to talk about when refer-
ring to steganalysis. The first is detection and the second
is prevention. Detection is particularly difficult in this case
as HFT insertion is essentially in a category of its own for
audio steganography methods. Prevention is much easier as
any attack against the stego file that offsets the HFTs length,
frequency, or power level could possibly disrupt the hidden
data.

Along the lines of steganalysis, there are several major
detection methods used that are worth mentioning. The first is
the use of statistical distance measurements for steganalysis.
This idea essentially measures the difference between cover
audio and their stego-audio signal equivalents with the use
of common techniques such as echo and phase coding. The
statistical data that is generated is then compared against
the stego-audio in question [7]. Another similar technique
called audio steganalysis based on Hausdorff Distance finds
the Hausdorff distance measure between a cover audio signal
and its stego-audio equivalent. It decomposes the audio into
wavelet coefficients and the Hausdorff distances between the
wavelets are used to train a classifier about the difference
between cover audio and stego-audio signals [3]. This type
of steganalysis would prove to be ineffective against HFT
addition since the algorithms would be gathering statistics
from unrelated steganography algorithms.

While HFT addition is seemingly resistant to detective
methods, it is much less robust against preventative meth-

ods. Since it is computationally difficult to analyze a high-
bandwidth audio stream, recent research has been conducted
to attack steganography by slightly distorting audio data. Some
of the techniques that are being implemented are frequency
shifting, white noise addition, and variable time delay [6].
All three of these techniques can potentially put the HFT
method at risk. The main issue with attacking a stego-audio
signal is that the attacker wishes to maintain the integrity
of the audio as much as possible. This works out in favor
of HFT as smaller changes to power levels, sample time
adjustments, and frequency domains are less likely to distort
the encoded binary information. In the case of variable time
delay a common delay is no more than 10 milliseconds per
second of audio data [6]. That level of change is unlikely to
distort the stego-audio enough to distort the encoding. These
preventative techniques pose a potential threat to the HFT
method but do not completely invalidate it in many cases.

VI. CONCLUSION

There are a number a number of proven methods for
applying steganography to hide information within audio data.
In this paper a new and simple approach was investigated that
made use of rarely used and difficult to detect frequency ranges
in raw audio files. It was shown through implementation
and subjective experimentation that this novel method can
effectively transmit binary information, by way of frequency
injection, unnoticed to an end user. While the proposed method
suffers from several drawbacks as far as robustness, however,
it also serves the user with a channel for high bandwidth data
transmission.

VII. FUTURE WORK

There are several areas in which this proposed method
could potentially be expanded on in the future. One particular
addition that could be made to obfuscate binary data would
be to apply an encryption algorithm on top of the binary data
before encoding it in the audio file. A potential technique that
could be applied would be to use a common encryption scheme
such as AES and to apply it across the data before encoding
and after decoding [8]. This would place a level of security
on top of the hidden information so that any third-party that
discovers the encoded bits would be unable to discern any
kind of meaning from them.

Currently the proof of concept program, AudioStego, only
encodes binary data to the raw wave file format. Due to
the unwieldlieness of uncompressed audio data most auditory
information is transmitted in compressed formats. Formats
such as MPEG Audio Layer III(mp3), Windows Media Audio
formats(wma) and Vorbis(ogg) are prime examples. As with
many lossy formats MPEG Audio Layer III ignores potentially
repetetive or unimportant frames and frequency bands [10].
Encoding data using HFTs would be harderto implement since
the signal would have to be prominent enough so that it is not
lost when the raw file undergoes lossy compression. There
would either be a higher level of detectability or a higher
error rate when decoding bits. To further complicate the issue

of lossy-file conversion, formats such as MP3 significantly
reduce signals present at very high frequency ranges. A
quick experiment was conducted where a stego-audio file was
converted into its lossy MP3 equivalent, converted back to a
wav format and then was decoded. The HFTs were diminished
to the point where the binary data was unable to be read. In
order to avoid this conversion issue the AudioStego program
would need to directly modify the converted format in order
to inject HFT’s in a manner in which they could be decoded.

REFERENCES

[1] Dr. Andrew Greensted,
http://www.labbookpages.co.uk/audio/wavFiles.html

[2] Cvejic, N., and T. Seppanen.lncreasing Robustness of LSB Audio
Steganography Using a Novel Embedding Method. In Information
Technology: Coding and Computing, 2004. Proceedings. ITCC 2004.
International Conference On, 2:533 -537 Vol.2, 2004.

[3] Ishaque, M. Qudus Khan, F. Abdul Sattar, S. Investigation of Steganal-
ysis Algorithms for Multiple Cover Media. Ubiquitous Computing and
Communication Journal. Vol 6, no 5, October 2011.

[4] C. Kraetzer and J. Dittmann, Pros and Cons of Mel-cepstrum based
Audio Steganalysis using SVM Classification. Lecture Notes in Computer
Science, vol. 4567, pp. 359 — 377, January 2008.

[5] H. Matsuoka, Spread Spectrum Audio Steganography Using Sub-band
Phase Shifting. in Intelligent Information Hiding and Multimedia Signal
Processing, 2006. IIH-MSP 06. International Conference on, 2006, pp.
3-6.

[6] M. Nutzinger, Real-time Attacks on Audio Steganograhy. Journal of
Information Hiding and Multimedia Signal Processing. Vol. 3, no. 1,
January 2012.

[7]1 H. Ogzer, 1. Avcibas, B. Sankur and N. D. Memon, Steganalysis of Audio
based on Audio Quality Metrics. Proceedings of the Conference on
Security, Steganography and Watermarking of Multimedia, Contents V,
vol. 5020, SPIE, pp. 55 — 66, January 2003

[8] Sridevi, R. Damodaram, A. Narasimham, S. Efficient Method of Audio
Steganography by Modified LSB Algorithm and Strong Encryption Key
with Enhanced Security.Journal of Theoretical and Applied Information
Technology. vol. 5, no. 6, pp. 768 — 771, June 2009.

[9] hypertextbook.com/facts/2003/ChrisDAmbrose.shtml

[10] MP3 Audio Format: http://wiki.hydrogenaudio.org/index.php?title=MP3

