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Abstract 

 

Using a simple Bayesian network model of  the electrical power backup for the Fukushima Daiichi reactor 

control systems as an example, I show that systems with multiple independent backup modes (MIBMs) can 

be disastrously sensitive to seemingly low-probability external events, even when  the intrinsic joint failure 

rate of the backup subsystems is practically zero. This counterintuitive behavior frames a design  rubric 

which I call the "External Correlator Test" (ECT): a determination of the acceptability of the  cumulative 

probability of system failure in the presence of an external correlating distribution.   
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1.0  Introduction 

 
 On 11 March 2011, a magnitude 9 

earthquake generated tsunami waves that 

struck the Fukushima-Daiichi nuclear 

facility on the east coast of Japan.  At least 

one of these waves was estimated to be 14 

meters high and overwhelmed the 

Fukushima defenses, which were only 

designed to withstand waves of a maximum 

5.7 meters high.  Electrical power to the 

reactor controls, including electricity from 

all emergency electrical backup systems at 

the site, ceased.  The resulting facility 

blackout caused the loss of all 

instrumentation and control systems in 

Reactors 1-4.  Loss of coolant was followed 

the release of radiation into the surrounding 

area.  A region with a radius of 

approximately 30 miles, centered on the 

complex, is now uninhabitable ([5]). 

 

 Fukushima reactor control was 

largely autonomous.  By convention, 

autonomous systems are expected to 

respond in desirable ways to all external 

stimuli; they often manage pathological 

events through multiple independent backup 

modes (MIBMs).  Catastrophic failures in  

systems that contain MIBMs would seem to 

have very low probabilities, yet occur with 

unexpectedly high frequency. How can we 

understand this sensitivity of such system 

failures to low-probability disaster 

scenarios, and what can be done during 

system development to help mitigate their 

occurrence?  

 Significant aspects of risk 

management can be modeled as a "betting" 

regime ([7]).  Any rational betting regime 

must at least be consistent with probability 

theory ([7]).  Any probabilistic system can 

be modeled as a Bayesian network (BN; 

[2],[8]).  A BN is a system of conditional 

probabilities ([3], p. 23) mapped onto a 



directed graph ([4]) of system entities. BNs 

are widely used in decision-assistance 

systems, including 

 

 health-allied diagnosis  

 automotive Built-In-Test 

 spam filters 

 intelligence analysis 

 

 

2.0  Method 
 
 I first model the Fukushima-Daiichi 

electrical power backup systems with BNs, 

then abstract a criterion of design adequacy 

from that example. 

 

 

3.0  Results 

 
3.1  A closer look at Fukushima 

Daiichi 

 
 The Fukushima Daiichi nuclear 

power complex contained six General 

Electric (GE) Mark I boiling water reactors 

(BWRs).   The Mark I has been extensively 

tested and  ~30 are in use around the world 

([16]).   

 Power to the reactor controls is 

normally generated within the site. The site 

has three independent electrical power 

backup sources:  an external commercial 

electrical supply, diesel-powered generators, 

and batteries.  The reactor controls fail if all 

three electrical sources fail. 

 None of these three backup systems 

depends on any other.  Each of the  backup 

systems has a nominal intrinsic probability 

of failure of ~510
-4

 per year, given 

preventive maintenance.  Thus, by the law 

of independent events, the probability of all 

three failing from intrinsic events is (510
-4

)
3
 

=  ~10
-10

 per year -- for all practical 

purposes, "zero". 

 Figures 1 and 2 depict  BNs 

showing the essentials of the backup 

electrical power system for reactor controls 

in the Fukushima Daiichi complex.  The 

models include representations of 

 

 some failure modes of the system 

 sources which could supply 

electrical power to the reactor 

controls 

 reactor control 

 probabilistic (“quasi-causal”, [6]) 

relations among the above 

 

 

 Figure 1 is a “naïve”, and Figure 2, 

a “tsunami-augmented”, model of that 

system. The models are implemented in the 

Netica ([1]) BN development and runtime 

framework.   

In Figures 1 and 2   

 

 boxes represent system entities of 

interest 

 upper portion of a box indicates the 

name of the entity 

 lower portion of a box identifies the 

probability, expressed as a 

percentage, that the entity is in the 

named state  

 an arrow from Box A to Box B 

means the probability of the states 

of entity B depends on the states of 

entity A 

 prior probabilities ([9], Section 1.3) 

of the system entities are defined in 

tables (not shown) 

 



 
 

Figure 1.  “Naïve" model. In this model, there is no correlation of the failures of the 

electrical sources; each source has an intrinsic failure probability of 0.054%. The 

probability of catastrophic loss of control is therefore (5.4 x 10
-4

)
3
 =  ~10

-10
  per year

 
, which 

may be acceptable. 

______________________________________________________________________________ 

 
 Figure 2, the "tsunami-elaborated" 

model, is Figure 1, plus a tsunami 

probability explicitly modeled as a Pareto 

(power-law; [3], p. 193) probability density 

function (pdf)  

 

          P(h) = (a/b)(b/h)
a+1

   

                      Eq. 1 

 

where 

 P(h) is the probability of a tsunami 

of height h (in meters), per year 

 a is a distribution "shape" 

parameter, here set to 1.0 

 b is a distribution "location" 

parameter, here set to 0.01 

 

 Eq. 1, with parameters set as noted,  

is a reasonable fit to tsunami occurrences on 

the Japanese east coast ([10]).   

 The probability of reactor control 

failure, given a tsunami with height > 6 

meters, can be determined by evaluating the 

joint cumulative distribution function (cdf) 

corresponding to Eq. 1 and the MIBMs,  for 

h > 6 meters.   

 



 
 

Figure 2.  “Tsunami-augmented” model.  The“naïve” model, extended with a (Pareto) 

tsunami-height distribution, forces correlation of the failure of all three electrical sources.  

The prior probabilities of the “okay/fail” distribution of the electrical source nodes are 

defined to be the same in the naïve and tsunami-elaborated models.  The resulting system 

probability of catastrophic failure is ~10-
4
 per year, a 6-order-of-magnitude increase over 

that probability in the naive model, which may be unacceptable.  The bottom of the 

"tsunami box" shows the mean  one standard deviation of the tsunami distribution. 

 

________________________________________________________________________ 

 
 Once the seawall has been topped, 

the probability that the electrical backup 

power sources will fail rises sharply. In the 

model shown in Figure 2, the backup 

systems were assumed to have a relatively 

high probability of surviving a 6-meter 

tsunami, but a very low probability of 

surviving a 15-meter tsunami (see Figure 3). 

 

______________________________________________________________________________ 

 
Prob(individual backup system 

failure)                        Tsunami_Height 

-----------------------------   -------------- 

1.1e-5          0 to 2          

1e-5            2 to 4          

1e-5            4 to 6          

0.1             6 to 8          

0.5             8 to 10         



0.9             10 to 12        

0.99            12 to 14        

0.99999         14 to 16 

 

Figure 3.  Probability of individual backup system failure as a function of tsunami height 

assumed in the model shown in Figure 2. 

______________________________________________________________________________ 

 

 The probability of system failure of 

the system shown is  ~0.0001 per year, 

sometimes interpreted as "a 1000-year event 

" (i.e., a 10% chance of failing in 1000 

years).  A backup system that would fail 

only once per 1000 years would seem robust 

enough.  The reactor control failure 

probability in the presence of this tsunami 

distribution is 10
6
 times greater, however, 

than the probability of reactor control failure 

in the absence of the tsunami distribution.  

The cdf of what seem to be extremely rare 

events, therefore, can hugely amplify the 

probability of system failure, even though 

the probability of individual scenarios in the 

associated pdf is acceptably small. 

 Worse is true.  Given the model 

described above, in 50 years of reactor 

operation -- the nominal design lifetime -- 

the probability of system failure at 

Fukushima Daiichi due to a 6+ meter 

tsunami is ~0.05.   It is likely that most 

people would regard that probability as 

unacceptably high. 

 For comparison, as of August 2011, 

there had been ~10
-3

 radiation-releasing 

accidents per reactor-year in the nuclear 

power industry worldwide ([19]).  The 

observed incidence of radiation-releasing 

accidents at sites with GE Mark I BWRs, 

excluding Fukushima Daiichi, is ~10
-5

 per 

reactor-year ([19]).  The probability of 

system failure at Fukushima Daiichi  due to 

tsunamis is therefore ~100 times the 

empirically expected system failure rate for 

sites with GE Mark I BWRs, excluding 

Fukushima Daiichi,. 

 

 

 

 

 

3.2  A criterion of design adequacy 

 
 The models illustrated in Figures 1 

and 2 are easily adapted to other systems 

that have MIBMs subject to external 

correlating distributions.  Bayesian analyses 

similar to those of Section 3.1 have been 

applied to other systems with similar backup 

systems (e.g., the Space Shuttle ([12]), 

unmanned aerial vehicles (UAVs)  operated 

in the absence of routine preventive 

maintenance ([13]), the Three Mile Island 

Accident ([18]), global threats to amphibians 

([20]), and the proposed Keystone Pipeline 

([11],[17])), with similar results.  

 What lessons can be learned from 

such examples? 

 First, an event, E, external to a 

system, S that has MIBMs can force a 

correlation of the failures of S's MIBMs.  

Second, the probability of system failure is 

determined by the joint cdf for E and the 

MIBMs.  This cdf can induce a system 

failure probability that is several orders of 

magnitude larger than the probability of 

individual events in E's pdf.  These 

considerations frame a criterion of design 

adequacy, which I call the External 

Correlator Test (ECT): 

 (ECT)  Let S be a system with 

MIBMs and E be an external correlating 

                        distribution for S.    The 

design of S is robust only if the system 

failure probability for S is acceptable, given 

the joint cdf of E and the MIBMs. 

              

 

4.0  Discussion and conclusions 
 
 The considerations of the preceding 

sections motivate several observations: 

 



 1.  In general, enumerating all 

possible, or even the most likely, candidate 

external correlating distributions for a given 

system S is not a mechanical task, and 

which candidates should be considered will 

depend on the nature of S and on 

cost/benefit trades.  However, there are 

several commonly occurring categories of 

external correlating events worth 

considering by default, including 

  

 a.  natural disasters (e.g., hurricanes, 

tornados, floods, earthquakes, fire, solar 

                  flares, and  tsunamis) 

 b.  vibration 

 c.  strong electromagnetic fields 

 d.  temperature and humidity 

extremes 

 e.  dust 

 f.  accidental vehicle crashes 

 g.  sabotage 

 h.  control (e.g., of utilities, 

especially of electrical power) delivered 

through the Internet 

 i.  whether robust systems 

engineering processes ([15]), including 

human factors considerations, were used 

during development and operation 

 2.  The effects on system failure 

probability of power-law external 

correlating distributions are particularly 

susceptible to underestimation because the 

values of the pdf for individual backup-

failure events often seem too small to matter 

-- the probability of a 15-meter tsunami, for 

example, is miniscule.  But value of the cdf -

- the integral (or in the case of a discrete 

distribution, the sum) of the pdf --  over the 

entire range of backup-failure scenarios can 

amplify system failure probability by several 

orders of magnitude, compared to the effect 

on system probability failure of individual 

events in the pdf of the external correlating 

distribution.  Many natural disasters are 

power-law distributed ([14]), and thus their 

effects on system failure are easily 

underestimated.  

 

 3.  As part of system design review 

(SDR, [15]), system safety design should be 

analyzed for system-failure-amplifying 

correlations of low-probability 

states/scenarios, in accordance with the 

ECT.  BNs can cost-effectively support this 

kind of analysis.  
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