
Apriori-Map/Reduce Algorithm 
 

 

Jongwook Woo 

Computer Information Systems Department 

California State University 

Los Angeles, CA 

 

Abstract –Map/Reduce algorithm has received highlights 

as cloud computing services with Hadoop frameworks 

were provided. Thus, there have been many approaches to 

convert many sequential algorithms to the corresponding 

Map/Reduce algorithms. The paper presents Map/Reduce 

algorithm of the legacy Apriori algorithm that has been 

popular to collect the item sets frequently occurred in 

order to compose Association Rule in Data Mining. 

Theoretically, it shows that the proposed algorithm 

provides high performance computing depending on the 

number of Map and Reduce nodes. 

Keywords: Map/Reduce, apriori algorithm, Data Mining, 

Association Rule, Hadoop, Cloud Computing 

1 Introduction 

People started looking at and implementing Map/Reduce 

algorithm for most of applications, especially for computing 

Big Data that are greater than peta-bytes as cloud 

computing services are provided, for example, by Amazon 

AWS. 

Big Data has been generated in the areas of business 

application such as smart phone and social networking 

applications. Especially these days, the better computing 

power is more necessary in the area of Data Mining, which 

analyzes tera- or peta-bytes of data. Thus, the paper 

presents Apriori-Map/Reduce Algorithm that implements 

and executes Apriori algorithm on Map/Reduce framework. 

In this paper, section 2 is related work. Section 3 

describes the legacy apriori algorithm. Section 4 introduces 

Map/Reduce and Hadoop and presents the proposed 

Apriori-Map/Reduce algorithm. Section 5 is conclusion. 

 

2 Related Work 

Association Rule or Affinity Analysis is the fundamental 

data mining analysis to find the co-occurrence relationships 

like purchase behavior of customers. The analysis is legacy 

in sequential computation so that many data mining books 

never resist illustrating it.  

Aster Data has SQL MapReduce framework as a 

product [9]. Aster provides nPath SQL to process big data 

stored in the DB. Market Basket Analysis is executed on 

the framework but it is based on its SQL API with 

MapReduce Database. 

Woo et al [11-13] presents Market Basket Analysis 

algorithms with Map/Reduce, which proposes the algorithm 

with (key, value) pair and execute the code on Map/Reduce 

platform. However, it does not use the apriori property but 

instead adopts joining function to produce paired items, 

which possibly computes unnecessary data. 

 

3 Apriori Algorithm 

Apriori algorithm shown in Figure 3.1 has been used to 

generate the frequent item sets in the amount of data 

transactions in order to produce an association rule.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The association rule has been used efficiently to 

manage stock items and products etc analyzing the 

customer’s behavior. It is based on Apriority Property 

where all subsets of a frequent item set must also be 

frequent.  

For example, minimum support is 2 and there are size 

2 item sets generated: <[coffee, cracker], 3> and <[coke, 

Map transaction t in data source to all Map nodes; 

//(1)  

C1 = {size 1 frequent items};  

// (2) min_support = num / total items; for example: 33% 

L1 = {size 1 frequent items  min_support}; 

for (k = 1; Lk !=∅; k++) do begin 

 // (3) sort to remove duplicated items 

 Ck+1 = Lk join_sort Lk;      

 

 for each transaction t in data source with  Ck+1 do 

 // (4)  

increment the count of all candidates in Ck+1 that 

are contained in t 

 // (5) find Lk+1 with Ck+1 and min_support 

 Lk+1 = {size k+1 frequent items  

min_support}; 

end 

end 

return ∪k Lk; 

Figure 3.1. Apriori Algorithm 



cracker], 1> as <[item pairs], frequency>. And, when 

there are size 3 item sets produced as <[coffee, cracker, 

milk]> and <[coke, cracker, milk]>, as Apriority Property, 

<[coke, cracker, milk]> is eliminated before counting the 

frequencies of the item sets in the transaction data, which 

reduce unnecessary computing time. 

The time complexity of the algorithm is O(k x (k
2
 + t x 

n)) when k: size of frequent items, t: transaction data, n: 

number of item elements in each transaction t. It is 

simplified to O(k
3
 + k x t x n) and then O(k x t x n) where t 

>> k, n>>k. 

 

4 Apriori-Map/Reduce Algorithm 

4.1 Map/Reduce in Hadoop 

Map/Reduce is an algorithm used in Artificial Intelligence 

as functional programming. It has been received the 

highlight since re-introduced by Google to solve the 

problems to analyze Big Data, defined as more than peta-

bytes of data in distributed computing environment. It is 

composed of two functions to specify, “Map” and 

“Reduce”. They are both defined to process data structured 

in (key, value) pairs.  

Inspired by Google's MapReduce and GFS (Google 

File Systems) [1], Map/Reduce platform is implemented as 

Apache Hadoop project that develops open-source software 

for reliable, scalable, and distributed computing. Hadoop 

can compose hundreds of nodes that process and compute 

Big Data. Hadoop has been used by a global community of 

contributors such as Yahoo, Facebook, Cloudera, and 

Twitters etc. Hadoop provides many subprojects including 

Hadoop Common, HDFS, MapReduce, Avro, Chukwa, 

HBase, Hive, Mahout, Pig, and ZooKeeper etc [2]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The map and reduce functions run on distributed 

nodes in parallel. Each map and reduce operation can be 

processed independently on each node and all the 

operations can be performed in parallel. Map/Reduce can 

handle Big Data sets as data are distributed on HDFS 

(Hadoop Distributed File Systems) and operations move 

close to data for better performance [5]. 

Hadoop is restricted or partial parallel programming 

platform because it needs to collect data of (key, value) 

pairs as input and parallely computes and generates the list 

of (key, value) as output. In map function, the master node 

divides the input into smaller sub-problems, and distributes 

those to worker nodes.  

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 illustrates Map/Reduce control flow where, 

as m is map node id, each valuemn is simply 1 and gets 

accumulated for the occurrence of items together, which is 

clearly illustrated in Market Basket Analysis Algorithm of 

Woo et al [11-13]. Map function takes inputs (k1, v1) and 

generates <k2, v2> where < > represents list or set. 

Combiner function that resides on map node takes inputs 

(k2, <v2>) and generates <k2, v2>. Reduce function takes 

inputs (k2, <v2>) and generates <k3, v3>.  

� 

� Map1() Map2() Mapm() 

Reduce1 () Reducel() 

Data Aggregation/Combine 

(key1, value11) 
(key2, value12) 
� 

(keyn, value1n) 

(key1, value21) 
(key2, value22) 
� 

(keyn, value2n) 

(key1, valuem1) 
(key2, valuem2) 
� 

(keyn, valuemn) 

(key1, <value11, value21, �, valuem1>) 

(key2, <value12, value22, �, valuem2>) 

(key1, final value1) 
(key2, final value2) 

(keyn, final valuen) 

Figure 4.1. Map/Reduce Flows 

Input Data 

(keyn, <value1n, value2n, �, valuemn>) 

Reduce2() 

Map transaction t in data source to all Map nodes; 

//(1) In each Map node m 

Cm1 = {size 1 frequent items at the node m}; 

// (2) In Reduce, compute C1 and L1 with all Cm1 ; 

C1 = {size 1 frequent items};  

// (3) min_support = num / total items; for example: 33% 

L1 = {size 1 frequent items  min_support}; 

for (k = 1; Lk !=∅; k++) do begin 

 // (4) In each Map node m 

 // Lmk: Lk  mapped to each node m;  

 // sort to remove duplicated items 

 Cm(k+1) = Lk join_sort Lmk;      

  

 // (5) In Reduce, use Apriori Property 

 compute Ck+1 with all sorted Cm(k+1) ; 

 if (k>=3) prune(Ck+1 ); 

 

 for each transaction t in data source with  Ck+1 do 

 // (6) In each Map node m 

increment the count of all candidates in Lm(k+1) 

that are contained in t 

end 

// (7) In Reduce,  find Lk+1 with Lm(k+1) and  

// min_support 

Lk+1 = {size k+1 frequent items  min_support}; 

end 

return ∪k Lk; 

Figure 4.2. Apriori-Map/Reduce Algorithm 



Map/Reduce approach, especially for big data set, 

gives us the opportunity to develop new systems and evolve 

IT in parallel computing environment. The approach started 

a few years ago but many IT companies in the world 

already have adapted to Map/Reduce approach. 

4.2 Apriori-Map/Reduce Algorithm 

Figure 4.2 is the proposed Apriori-Map/Reduce Algorithm 

that runs on parallel Map/Reduce framework such as 

Apache Hadoop. prune(Ck+1) function is to remove the non-

frequent item set Ck+1 by eliminating non-frequent item sets 

Ck as non-frequent item sets cannot be a subset of frequent 

item sets. 

The algorithm starts with (1) that calculates frequent 

item set for each map node as the time complexity O(t/m x 

n) when t: number of transactions, n: number of items in the 

transactions, m: num of map nodes. Then, (2) are to collect 

the frequent item set and (3) is to remove items that does 

not meet the minimum support in reduce nodes as O(t/r x n) 

when r: number of reduce nodes. The time complexity of 

(1-3) can be simplified initially to O((t/m + t/r) x n) and 

then O(t x n / x) when m = r = p.  

(4) is to calculate frequent item set with an additional 

item by joining, sorting, and eliminating the duplicated 

items in each map node where join_sort is O(k x k / m) 

when k: size of frequent items and prune is O((k-1) x k / r) 

that is simplified to O(k
2
/r). Similarly, (5) is to collect the 

frequent item set at the reduce nodes. (6) is to count item 

frequencies that do not meet the minimum support at the 

map nodes as O(t/m x n). (7) is to remove items that does 

not meet the minimum support in reduce nodes as O(t/r x n) 

that is initially simplified to O((t/m + t/r) x n)  and then O(t 

x n / p) when m = r = p. 

4.2.1 Time Complexity 

The overall time complexity of Apriori-Map/Reduce 

Algorithm is calculated as O(k x (k2 + t x n)/p) where k: 

size of frequent items, t: number of transactions, n: number 

of items in the transactions, p: number of map and reduce 

nodes assuming the node sizes are the same. And, it 

becomes O((k3 + k x t x n)/p) and then O(k x t x n/p) where 

t >> k, n >> k. It theoretically shows that the time 

complexity is p times less than the sequential apriori 

algorithm. 

4.2.2 Example of the Algorithm 

Figure 4.3 is the example transaction data at a store to 

explain how the proposed algorithm works. 

 

 

 

 

 

 

 

 

 

Suppose that minimum support is 2/6 that represents 

two items out of 6 transactions as 33%.  

 

(a) The first step 

Assuming there are three Map nodes, two transaction data 

are distributed to three map nodes, that is, map node 1 has 

transaction data 1 and 2. Node 2 has transaction data 3 and 

4. Node 3 has transaction data 5 and 6. Therefore, we can 

generate size 1 frequent items Cm1 with an item pair set 

<item, frequency> at the map node m. 

 

C11 = {<cracker, 1>, <beer, 1>, <chicken, 1>, <pizza, 1>}  

C21 = {<coke, 2>, <cracker, 2>, <beer, 1>}  

C31 = {<beer, 1>, <chicken, 2>, <coke, 2>} 

 

From all Cm1, reduce nodes collect and compute C1 

that is size 1 frequent item pairs and L1 that is size 1 

frequent item pairs that meet minimum support. Thus, 

[pizza, 1] of C1 is eliminated in L1. 

 

C1 = {[cracker, 3], [beer, 3], [chicken, 3], [pizza, 1], 

[coke, 4]};  

L1 = {[cracker, 3], [beer, 3], [chicken, 3], [coke, 4]} 

 

(b) The second step 

In the loop, L1 is mapped to each map node m for Lm1. 

 

L11 = {cracker, beer}  

L21 = {chicken}  

L31 = {coke} 

 

Then, size 2 frequent item pair sets can be generated 

by joining and sorting L1 to each item sets of the map node 

m as Cm2 = L1 join_sort Lm1 where the duplicated item sets 

are eliminated: 

 

C12 = {<beer, cracker>, <chicken, cracker>, <beer, 

chicken>, <coke, cracker>, <beer, coke>}  

C22 = {<chicken, cracker>, <beer, chicken>, <chicken, 

coke>} 

C32 = {<coke, cracker>, <beer, coke>, <chicken, coke>} 

 

From all Cm2, reduce nodes collect C2 that is size 2 

frequent item pairs. 

 

C2 = {<beer, cracker>, <chicken, cracker >, <beer, 

chicken>, <coke, cracker>, <beer, coke>, <chicken, 

coke>};  

 

C2 is mapped to each map node as Cm2 as follows: 

 

C12 = {<beer, cracker>, <chicken, cracker >}  

C22 = {<beer, chicken>, <coke, cracker>} 

C32 = {<beer, coke>, <chicken, coke>} 

 

Transaction 1: cracker, beer 
Transaction 2: chicken, pizza,  
Transaction 3: coke, cracker, beer 
Transaction 4: coke, cracker 
Transaction 5: beer, chicken, coke 
Transaction 6: chicken, coke 

Figure 4.3 Transaction data at a store 



Now, we can generate size 2 frequent items with an 

item pair set [item, frequency] at the node m that contains 

all transaction data as presented in Figure 4.2. 

 

C12 = {[<beer, cracker>, 2], [<chicken, cracker>, 0]}  

C22 = {[<beer, chicken>, 1], [<coke, cracker >, 2]} 

C32 = {[<beer, coke>, 2], [<chicken, coke>, 2]} 

 

From all Cm2, the reduce nodes collect and compute C2 

that is size 2 frequent item pairs and L2 that is size 2 

frequent item pairs that meet minimum support. Thus, 

[<chicken, cracker >, 0] and [<beer, chicken >, 1] are 

eliminated from C2 for L2: 

 

C2 = {[<beer, cracker>, 2], [<chicken, cracker >, 0], 

[<beer, chicken >, 1], [<coke, cracker>, 2], [<beer, 

coke>, 2], [<chicken, coke>, 2]};  

L2 = {[<beer, cracker>, 2], [<coke, cracker>, 2], [<beer, 

coke>, 2], [<chicken, coke>, 2]}; 

 

(c) The third step 

In the loop, L2 is mapped to each map node m. 

 

L12 = {<beer, cracker>, <coke, cracker>} 

L22 = {<beer, coke>} 

L32 = {<chicken, coke>} 

 

Then, size 3 frequent item pair sets can be generated 

by joining and sorting L2 to each item sets of the map node 

m as Cm3 = L2 join_sort Lm2 where the duplicated item sets 

are eliminated: 

 

C13 = {<beer, coke, cracker>, <beer, chicken, coke>, 

<chicken, coke, cracker>}  

C23 = {<beer, coke, cracker>, <beer, chicken, coke>} 

C33 = {<beer, chicken, coke>, <chicken, coke, cracker>} 

 

As the item size k is or greater than 3, prune(Cmk) 

deletes non frequent item sets that violates apriori property 

that all subsets of a frequent item set must also be frequent: 

 

C13 = {<beer, coke, cracker>} 

C23 = {<beer, coke, cracker>} 

C33 = {} 

 

C13, C23, C33 eliminate <beer, chicken, coke> and C13, 

C33 removes <chicken, coke, cracker> as <beer, chicken> 

and <chicken, cracker> respectively are not a member of 

L2, that is, non-frequent items. 

From all Cm3, reduce nodes collect C3 that is size 3 

frequent item pairs and L3 that is size 3 frequent item pairs 

that meet minimum support: 

 

C3 = {<beer, coke, cracker>} 

L3 = {} 

 

Since L3 does not have any element, the algorithm 

ends. Therefore, we have frequent item sets L1 and L2 with 

size 1 and 2 respectively: 

 

L1 = {[cracker, 3], [beer, 3], [chicken, 3], [coke, 4]} 

L2 = {[<beer, cracker>, 2], [<coke, cracker>, 2], [<beer, 

coke>, 2], [<chicken, coke>, 2]}; 

 

The item sets L1 and L2 can be used to produce 

association rule of the transaction. 

 

5 Conclusion 

The paper proposes Apriori-Map/Reduce Algorithm and 

illustrates its time complexity, which theoretically shows 

that the algorithm gains much higher performance than the 

sequential algorithm as the map and reduce nodes get 

added. The item sets produced by the algorithm can be 

adopted to compute and produce Association Rule for 

market analysis. 

The future work is to build the code following the 

algorithm on Hadoop frame and generate experimental data 

by executing the code with the sample transaction data, 

which practically proves that the proposed algorithm works. 

Besides, the algorithm should be extended to produce 

association rule. 

 

6 Reference 

[1] “MapReduce: Simplified Data Processing on Large 

Clusters", Jeffrey Dean and Sanjay Ghemawa, Google 

Labs, pp. 137–150, OSDI 2004 

[2] Apache Hadoop Project, http://hadoop.apache.org/, 

[3]  “Building a business on an open source distributed 

computing”, Bradford Stephens , Oreilly Open Source 

Convention (OSCON) 2009, July 20-24, 2009, San Jose, 

CA 

[4]  “MapReduce Debates and Schema-Free”, Woohyun 

Kim,  Coord, March 3 2010 

[5]  “Data-Intensive Text Processing with MapReduce”, 

Jimmy Lin and Chris Dyer, Tutorial at the 11th Annual 

Conference of the North American Chapter of the 

Association for Computational Linguistics (NAACL HLT 

2010), June 2010, Los Angeles, California 

[6]  “SQL MapReduce framework ”, Aster Data, 

http://www.asterdata.com/product/advanced-analytics.php 

[7] Apache HBase, “http://hbase.apache.org/” 

[8] “Data-Intensive Text Processing with MapReduce”, 

Jimmy Lin and Chris Dyer, Morgan & Claypool 

Publishers, 2010. 



[9] GNU Coord, http://www.coordguru.com/ 

[10] “The Technical Demand of Cloud Computing”,  
Jongwook Woo, Korean Technical Report of KISTI (Korea 

Institute of Science and Technical Information), Feb 2011  

[11] “Market Basket Analysis Example in Hadoop, 
http://dal-cloudcomputing.blogspot.com/2011/03/market-

basket-analysis-example-in.html”, Jongwook Woo, March 

2011 

[12] Jongwook Woo, Siddharth Basopia, Yuhang Xu, Seon 
Ho Kim, “Market Basket Analysis Algorithm with NoSQL 

DB HBase and Hadoop”, The Third International 

Conference on Emerging Databases (EDB 2011), Korea, 

Aug. 25-27, 2011 

[13] Jongwook Woo and Yuhang Xu, “Market Basket 
Analysis Algorithm with Map/Reduce of Cloud 

Computing”, The 2011 international Conference on Parallel 

and Distributed Processing Techniques and Applications 

(PDPTA 2011), Las Vegas, July 18-21, 2011 

 


