
Combining Cache Aware Scheduling with Lazy Threads

Yosi Ben-Asher1 and Gil Kulish1

1CS Department, University of Haifa, Haifa, Israel

Abstract— We consider two factors that can dominate per-
formances of fine grain parallel programming on multicore
machines:

• Cache coherency protocols, which preserve cache co-
herency and by this, add large overhead.

• The number of real kernel threads that are used to
execute the possibly large number of program threads
explicitly generated by the parallel constructs of the
program.

As for the first factor we designed a cache aware scheduling
scheme which, based on memory profile, schedules threads
such that cache misses are minimized. As for the second
factor, we implemented a lazy thread system, which replaces
threads with loop iterations and function calls- minimiz-
ing the number of real threads spawned throughout the
execution. These two techniques may be conflicting each
other since by reducing the number of real threads that
are generated we reduce the freedom degree of the cache
aware scheduler to minimize cache misses. We consider
ParC a programming language that is similar to OpenMP
but supports a more generalized scoping rules than OpenMP,
and designed a lazy thread system for it, enhanced with
cache aware scheduling. Our results prove that cache aware
scheduling can be effective even with very aggressive lazy
thread optimizations. The implementation of the scheduling
system is optimized for the MESI cache coherency protocol.

Keywords: Multicore, Cache, Lazy threads

1. Introduction
We consider parallel programming over a multicore ma-

chine wherein shared memory is simulated by maintaining
a cache coherency protocol, such as MESI [14]. For parallel
programming, we consider two parallel constructs that can
be freely nested: parfor(i = 0; i < N ; i + +){body}- A
parallel version of C for-statement generating a separate
thread for each iteration i. parblock{body1} : . . . :
{bodyk }- A parallel version of C block-statement generating
a separate thread for each bodyi The threads generated by the
execution of such programs should be executed in parallel by
different cores of the machine so that parallelism is obtained.
Accessing variables by such a code might imply use of
shared memory since the same variable can be accessed by
different threads executed on different cores.

One factor that can easily reduce the speedups of parallel
programs executed on a multicore machine is the overhead

involved with simulating the shared memory. Typically,
shared memory over a set of cores is simulated via a
cache coherency protocol, e.g., MESI [14]. MESI is a
distributed protocol that ensures values of shared variables
in the different cores’ caches and in the main memory are
consistent. In particular, MESI ensures that all the different
copies of a shared variable stored in the different caches and
the main memory have the same value when accessed. This
is done by invalidating copies at remote caches every time a
core updates a shared variable in its cache and updating the
memory. Consequently, a cache miss (accessing an invalid
copy of a shared variable) results in a bus transaction needed
to fetch a value from the main memory. A cache line is
always in one of the following states: Invalid, Shared (other
caches contain a copy), Exclusive (only this core contains
a copy), and Modified (local copy differs from the copy in
the main memory). Consequently read/write operations on
shared variables can lead to a bus-transaction that may slow
down the computation significantly (we measured a factor of
40 times slower for accesses that are not cache-hit). Thus it is
important to reduce the number of shared memory references
that are cache misses and incur bus transactions to the main
memory. Note that accessing two shared variables separately
by two threads that are executed in different cores typically
results in cache misses and bus transactions

In this respect it is natural to consider the possibility
of scheduling the threads that are generated during the
execution of a parallel program, such that the overhead of ac-
cessing shared variables is minimized. Consider for example
the following parfor executed on a multicore machine with
p = 2 cores:

parfor(int i=0;i<=n;i++)
if(i < n/2)

for(int j=0;j<i;j++) A[j]+=f(j);
else for(int j=0;j<i;j++) B[j]+=g(j);

Let Ti be the thread generated by the i’th iteration of the
above parfor and consider two possible schedules (where
Ti || Tj indicates that Ti executed by the first core and Tj

by the second core:

T0||T1;
T2||T3;
T4||T5;
.
Tn−1||Tn;

and

T0||Tn/2;
T1||Tn/2+1;
T2||Tn/2+2;
.
Tn/2−1||Tn;

Clearly, the leftmost scheduling will result in many cache

misses and MESI bus transactions as the first half of threads
are executed in parallel repeatedly updating the shared array
A[] and similarly for the second half of the threads all
accessing B[]. The rightmost scheduling is significantly
better since when two threads are executed in parallel then
most of their shared memory references point to different
arrays. In this work, we consider ways to compute this
cache aware scheduling and execute it for a parallel
program. We propose a specific technique that is based on
memory profile analysis combined with simulation of the
MESI protocol.

Our cache aware scheduling is part of the thread system
that executes the parfor iterations and the parblock bod-
ies of the parallel program since it affects the scheduling
decisions made by the underlying thread system. Thus,
cache aware scheduling should be evaluated in the context
of the underlying thread system and not as a separate
optimization. For example, scheduling strategies in thread
systems are used to balance the execution time of the threads
between the different cores. Thus, cache aware scheduling
may potentially affect the ability of the underlying thread
system to obtain good load balancing between the core.
In this work we consider another aspect of thread systems
called ”Lazy Threading”, which can potentially conflict with
the ability to effectively execute cache aware scheduling.
Basically, lazy threading maximizes the number of program
threads (parfor iterations and parblock bodies) that are
executed sequentially as loop iterations (for parfor iterations)
or as local function calls (for parblock bodies), as opposed
to kernel threads. This is an important feature of thread
systems proposed by Goldstein et al. [10] implying that
the possibly large set of program threads can be statically
packed into a smaller set of threads which are actually
executed by the underlying thread system. A common simple
case of lazy threading is known as ”chucking” where the
n iterations of a parfor(i = 0; i < n; i + +){. . .} are
executed in parallel using p real threads each executing a
chunk of n

p iterations sequentially. For example, the thread
system of OpenMP automatically chunks all the iterations
of every parfor ignoring possible dependencies that might
exists between the different iterations of this parfor (though
OpenMP allows the user to specify the number of threads
a given parfor should use). In this way the large overhead
involved with thread creation, termination and preemption is
reduced. However, lazy threading can potentially reduce the
effectiveness of cache aware scheduling since it eliminates
most of the program threads reducing the number of possible
scheduling available for the cache aware scheduling. Figure
1 illustrates this problem showing a program that spawns
eight threads T3 . . . T10 via two parfor statements to be
executed on a multicore with p = 2 cores. Applying lazy
threading to the program of figure 1 will result in clustering
the threads T3 . . . T6 and T7 . . . T10 as two real threads,
which, as depicted in figure 1, will prevent efficient cache

aware scheduling. As depicted in figure 1 right bottom side,
the scheduler can potentially schedule T3 . . . T10 such that
no cache misses occurs if it avoides lazy threading. Thus,
in this work we would like to see if the reduced set of
threads that remains after lazy threading and even a highly
aggressive form of lazy threading still allow efficient cache
aware scheduling.

T3

T4

T5

T6

T7

T8

T9

T10

miss

miss

miss

miss

core
1

core
2

parblock {

} : {

}

/* cacheline = 8 */
long A[4][8];

T3

T8

T10

core
1

core
2

T7

T4

T8

T4

T6

no−miss

no−miss

no−miss

no−miss

chunking chunking

 for(int j=0;j<8;i++)A[i][j]=...;

 parfor(int i=0;i<4;i++)

 parfor(int i=0;i<4;i++)

 for(int j=0;j<8;i++)A[i][j]=...;

scheduling after scheduling without

T7T3 T4 T5 T6 T8 T9 T10

Fig. 1: Lazy threads prevent cache aware scheduling

We have implemented the cache aware scheduling and
the aggressive lazy threading for ParC [3]- a parallel pro-
gramming variant of C/C++ which is similar to OpenMP
commonly used for programming multicore machines. Thus,
the technique proposed here is general and can be used for
OpenMP and other thread-systems running parallel programs
over multicore machines.

The contributions of this work are as follows:
1) Developing a cache aware scheduling scheme for

MESI protocol, which to the best of our knowledge,
has not been proposed elsewhere.

2) Creating an aggressive lazy threading scheme that
maximizes the number of program threads that are exe-
cuted sequentially as function calls and loop iterations.
Previously suggested schemes for lazy threading did
not handle parfor constructs and while-loops whose
termination depends on shared variables modified by
other threads.

3) Showing that the combination of lazy threads and
cache aware scheduling is beneficial.

2. Thread systems and lazy execution of
threads

In order to execute a parallel program by a multicore
machine it is necessary to use a thread system that can exe-
cute the multiple program threads generated by the parallel
program on the small fixed number of available cores (typ-
ically 4-8). Basically such a thread system consists of two

queues of threads: ready-queue containing thread’s control
blocks that can be executed and a suspend-queue containing
control blocks of threads that are suspended waiting for some
event to occur. Threads are pulled from the ready-queue,
executed for a while, stopped, and then their execution state
is stored in the ready-queue again. Threads that spawn new
threads due to nesting of parallel constructs are placed in the
suspend-queue until all its descendants threads terminate.
This general notion of ready-queues is basically valid for
any thread system. We use the term scheduler to describe
the module that is responsible for selecting the next set of
threads from the ready queue and assigns the thread to an
available core. Clearly, for a given state of the ready-queue
there can be many possible scheduling strategies: Round-
robin- selecting the oldest thread in the ready queue and
assigning it to the next available core. Random- selecting
k threads at random where k is the current number of
free cores. Random selection can improve load balancing
between the cores as described in [2]. Multiple-queues-
maintaining p (number of cores) ready/suspend-queues one
for each core and exporting newly spawned threads between
the different queues. In this case the scheduling strategy
includes rules for selecting the next thread for each core
from its ready-queue. It also includes rules for exporting
newly spawned threads between the different cores. For
example, we may decide to partition new threads spawned
by a parfor evenly between the cores’ ready-queues or send
them to a core whose ready-queue contains the least number
of threads out of all cores. There are several alternatives
to switching between a running thread and a suspended
thread waiting inside the ready-queue. One option is to use
time interrupts and switch threads after some fixed time
quantum, another alternative is that the compiler will insert
explicit instructions in the code of the threads causing it to
explicitly switch to another thread. Thus, a thread system
(TS) is a software module that consists of: ready-queue,
suspend-queue, scheduler, context_switch_mechanism and a
source of new threads which is the execution of the parallel
program. A multiple queue thread system is a fixed set of
TSi and rules for exporting new threads to the different
STis.

In this work we, use a three level TS model containing
the following levels: Kernel threads generated using Pthreads
[12] with one thread per core, User threads- generated by
Pth [8] forming a lighter thread levels driven by explicit Pth
context-switch instructions. A User-Level TS is generated
once per each Kernel Thread. Program threads- that are
even lighter threads that run to completion in lazy thread
mode that is explained next. A single thread at each user
level TS will execute the lazy TS. Lazy execution of threads
and Parallel loops load balancing are known concepts and
basically imply that a maximal number of parfor iterations
will be executed sequentially without generating any thread.

Feitelson and Rudolph addressed the issue of how a

multiprocessor should divide its processing resources among
competing jobs. [9]. Since then many researches were
done in the field of clustering threads into gangs and
scheduling them to run over multiprocessors. Recent work
of Nikolopoulos and Polychronopoulos [13] addressed the
issue of of data locality. Calandrino and Anderson [6] [5]
attempted to prevent a case in which two threads that use
different areas of the memory and use the cache inten-
sively run concurrently. Thibault, Namyst and Wacrenier
[15] [16] address the problem of poor scheduling APIs.
Chu, Ravindran and Mahlke [7] proposed a profile-guided
method for partitioning memory accesses across distributed
data caches. "Lazy threads" were proposed in [10] but in a
limitted form using fork operations only. OpenMP suggests
several keywords that allow the programmer to predefine
the scheduling scheme [4]. several works done in the field
such as [1] suggest to preserve spatial locality, by assigning
contiguous chunks of iterations to the same thread whenever
possible.

3. Proposed lazy thread mechanism
The simplest form of lazy threads it to partition the n

iterations of a parfor(i = 0; i < n; i++)Si to p chunks of
n/p iterations that are executed sequentially:

parfor(k = 0; k < n; k+ = n/p)
for(i = k; i < k + n/p; i++) Si;

We use a function selector(f, t, Si){ for(i = f ; i <
t; i + +) Si; } to execute a chunk of parfor iterations i =
f . . . t − 1. There are two cases in which a chunk cannot
be executed sequentially using loop iterations. In the first,
one of the parfor threads (say i) of a chunk (from f to t)
executes a context switch instruction. Note that the ParC
compiler should insert a context switch instruction only
inside those while-loops whose condition may depend on
the value of shared variables. In this case, it might happen
that such a while-loop (of ParC thread i) depends on a
"releasing" assignment that will be executed by one of the
remaining iterations (threads) of this chunk i + 1 . . . t − 1.
Thus, in case of a context switch, the selector function might
be forced to send the remaining t − i − 1 iterations to be
executed concurrently on a new user thread, in order to allow
the execution of the aforementioned “releasing” assignment.
The second case occurs when the i’th iteration spawns a new
parallel construct. Here, a new selector function should be
called by the current selector. The problem in this case is that
a local descendant of this new parallel construct might be
dependent on one of the remaining i+1 . . . t−1 siblings of
the spawning thread i. However, the remaining i+1 . . . t−1
siblings will not be executed until the new call returns.

In order to reduce the number of user threads that are
used during the execution, we must take care not to create
a new kernel thread whenever a spawn occurs. A spawn
request in thread i can be executed in one of two ways:

either by sending the remaining i+1 . . . t− 1 threads to be
executed by another user thread, or by first executing the new
spawn locally (sequentially). Then, when all its descendants
terminate, local execution of the remaining i + 1 . . . t − 1
threads can be carried out sequentially. In our scheme,
we propose to delay the decision about how the spawn
should be executed, first we try to perform the remaining
threads sequentially, without spawning new threads, until
we discover that a descendant of the current thread i has
performed a context switch. If all the spawned descendants
of i have terminated without executing a context switch, then
the execution of the remaining threads i + 1 . . . t − 1 can
continue as if the spawn in i did not occurred. Otherwise,
a new thread will execute the remaining threads must be
created. This is because of possible dependency (through
shared variables in a while-loop) of this thread on one of the
remaining threads that can only be resolved by executing a
context switch.

The usefulness of this scheme for lazy threads is demon-
strated in the following example. Consider the execution of
the following program using the proposed scheme. There is a
spawn in the first thread i == 0. Thus, the range 1 . . . n

p −1
is stored in the remaining stack. The chunks of the inner
parfor contain a while-loop while(x), causing a context
switch to occur. Thus, the remaining iterations 1 . . . n

p − 1
will be executed concurrently by another thread. As a result,
thread i == 1 will set x = 0 and free the threads of the inner
parfor that are waiting in while(x). Thread i == 0 will
execute y = 0, allowing the termination of all the while(y)
in threads i = 2 . . . n. This is close to the optimal scheduling,
as most of the while-loops’ flags will be reset as soon as
thread i == 1 executes x = 0.

int x=1,y=1;
parfor(int i=0;i<n;i++) {

if(i == 0){
parfor(int j=0;j<n;j++){ while(x);}
y = 0;

}
else if(i== 1) x = 0;
else while(y);

}

4. The cache aware scheduling algorithm
In here we outline the main stages and detailes involved

with the cache aware scheduling. The cache aware schedul-
ing is executed using the following steps: Program execution
step- the program is compiled using the ParC compiler that
generate C++ program with suitable function calls to spawn
threads. The compiler implements the aggressive lazy thread
technique described earlier. The resulting code is linked
with the thread system and is executed in parallel on every
core. Figure 2 illustrates a snapshot in the execution of

a program where the lazy threading generated four user-
threads T1, T2, T3, T4 such that T1, T3 reside in core-0’s
ready queue and T2, T4 reside in core-1’s ready-queue. Note
that this implies that any profile information collected is
relevant only to the specific scheduling that occurs during
the program’s execution.

Fig. 2: Executing a program

Cache profile step- where each memory reference is
instrumented such that upon execution, a logfile containing
cache access statistics is generated. For every cache line Lj

and user thread Ti, we record the number of times Ti updated
a variable in Lj .(as depicted in figure 3). This number is
called Ti,j . In order to capture potential cost for threads
that run from different cores, we assume that each thread is
executed from a different core. The cache simulation used
here does not include cache associativity. Time intervals of
cache references are used to determine when two threads
have a possible cache conflict. Threads that originate from
the same parallel constract, e.g. , chunks originating from the
same parfor, are also considered conflicting. The potential
conflict cost generated from two conflicting threads Ti1 and
Ti2 is the sum of all minimums between(Ti1,j and Ti2,j)
where j represent conflicting cache lines for threads Ti1 and
Ti2.

Fig. 3: Cache statistics obtained for the execution of figure
2.

MESI profile step- where each memory reference is instru-
mented such that upon execution, a logfile recording MESI’s
bus transactions will be generated. The simulation refers

to different threads as different cores. During execution
the MESI operation in each thread is fully simulated and
bus transactions resulting by accessing shared variables are
recorded. The information is collected such that for every
two threads < Ti, Tj > we record the number of bus-
transactions resulting from a consecutive accesses of Ti

and Tj to the same cache line. For example assume that
Ti updates a shared variable x residing in cache line L8

invalidating L8 in the remote core where Tj is executed.
Next Tj attempts to read y which is also mapped to L8. Thus,
Tj will cause a MESI bus-transaction which will increment
the counter of bus-transactions between Ti and Tj . These
type of threads will be defined as conflicting threads. The
cache simulation used here does include cache associativity.

Fig. 4: MESI statistics obtained for the execution of figure
2.

Unified profile step- where the Cache profile information
and the MESI profile information are unified. This is done
by first summing the common cache accesses between every
two conflicting threads < Ti, Tj > based on the information
in figure 3. Next we factor in conflicting threads information
collected during the MESI profile, for every two conflicting
threads < Ti, Tj > we add the half of the MESI statistics
as depicted in figure 5. Note that both profiles are needed

Fig. 5: Unifying MESI profile and the cache profile for
the execution example of figure 2. edge(Tin, Tim) =
0.5 ∗MESI(Tin, Tim) +

∑cache lines
j=1 minimum cache−

profile(Tin,j , Tim,j)

since:

• The MESI profile is more accurate than the cache
profile since it counts real bus-transactions skipping
cache references that do not lead to bus transactions.
For example, consecutive updates to a variable that is
in state Exclusive should not be counted.

• The MESI profile can be misleading as well since it can
only count bus transactions that occur between threads
that run concurrently. However, since the actual cache
aware schedule that will occur during the final run of
the program might be different than the original one
used for collecting the MESI profile, we might ignore
cache misses between threads that were not executed is
parallel in the original schedule.

• The reason for dividing the MESI profile values by two
when factoring it with the weights of the cache profile is
due to the fact that the Cache profile represents a set of
possibly bad events that can occur under any schedule
while the MESI profile is relevant only for a specific
schedule.

The unified profile also includes the number of memory
references executed by each thread (associated with every
node) Graph partition step- where we use a graph partition
package [11] to partition the nodes of the unified profile
graph into p clusters of threads such that:

• The total weight of edges connecting threads between
different clusters is minimized.

• The total weight of nodes in each cluster is about the
same.

In the cache aware schedule all the threads that were
allocated to the same cluster will be schedule to the same
core. The graph partition thus obtains good load balancing
while minimizing the number of bus transactions that are
likely to occur between threads that are executed on different
cores. Figure 6 depicts the resulting graph partition of the
unified profile graph.

Fig. 6: Graph partition of the unified profile graph of figure
5.

Final execution step- where the resulting graph partition
is recoreded into a configuration file that is used by a future
run of the program with possibly a different input. The
program must be recompiled with a suitable flag to avoid the

overhead of the instrumented code used to collect the profile
information. Figure 7 depicts the resulting scheduling that
will occur when the program will be executed with specific
directions for the scheduler reflecting the graph partition
obtained by the profile gathering stage. It follows that the
resulting cache aware schedule reduces the expected number
of bus-transactions from 90 + 110 + 22.5 to 22.5 + 25.
Obviously, this is only an estimation and does not reflect
real numbers of bus transactions that will occur in an actual
execution.

Fig. 7: New execution guided by the graph partition of figure
6.

A final aspect related to the proposed technique is how
threads are labeled during the profile gathering stage and
in during actual execution of the program that is using the
resulting cache aware scheduling. Technically the labels of
threads should allow us to:

• Uniquely identify threads resulting from the different
parfors and parblocks of the program.

• Match between the set of threads generated during the
profile-state and the set of threads generated by a “final-
run”. Note that since the final-run will use a different
input than the one used for the profile run then the set of
threads that it generated can be different than the one
for which the cache aware scheduling was computed
with,

We thus use thread-labels that are based on the static nesting
structure of the program which is the same for both runs as
follows:

• Each parfor/parblock in the source code is assigned a
unique label, e.g., PF1,PB2, and so forth.

• Upon execution when a thread is generated its label is
concatenated to the label of the thread that spawned it,
e.g., for a three level nested parfor the innermost thread
labels will be of the form PF5.PF10.PF17.

• Iterations numbers are also dynamically concatenated
to the labels according to the range of iterations of the
selector() functions, e.g., PF110 : 20.PF577 : 198.

• Sequential executions of a parallel construct, such as
parfor will result in a rising sequential iteration number.

If a configuration file with a cache aware scheduling is

available, the scheduler at the current run will use the labels
to match threads to cores and implement the scheduling
in the order specified in configuration file. Threads whose
labels do not match the labels in the configuration file are
scheduled in the core that scheduled one of their ancestors
according to their label.

5. Experiments
We describe and analyze the results of running 7 known

benchmarks to compare OpenMP with ParC. The bench-
marks were downloaded for OpenMP and implemented for
ParC. We were extra careful to ensure that the ParC code
will be true to the original OpenMP source code, meaning,
no changes were made to the structure of the code in order to
give synthetic advantage to ParC. We used 8 kernel threads
for both OpenMP and ParC assuming two hardware threads
per core. The experiments in this section were conducted
on Core. i7 64 bit machine with Core. i7 920 processor, 48
Giga bytes of memory and four cores. In the following ex-
periment, we measure the performance improvement gained
from using the cache aware scheduling (lazy scheduling was
turned off by using eparfor). Not optimized, the code bellow
will spawn multiple threads, which most probably access the
same cache line in the same time from different cores. After
running the profiler, the threads will be grouped in such a
way that threads which share a cache line will be executed
from the same core.

The following experiments are public benchmarks used
to compare OpenMP vs ParC performance. ParC showed
a consistent advantage of X 1.2 shorter execution time
on various matrices sizes. For example the following table
contains the results for matrix multiplication:

Matrixes sizes 2000 2500 3000
OpenMP 24 49.5 90
ParC 20 41.5 75
Improvement Ratio 1.2 1.19 1.2

Table 1: OpenMP VS ParC Matrix multiplication compari-
son.

Other benchmarks include: NASA’s NPB2.3, Molecular
Dynamics (MD), a Clustering Algorithm, Game Of Life
(GOL), Hopfield Neural Network (HNN), and Discrete
Cosine Transform (DCT), Table 2 shows the improvement
obtained due to the use of our cache aware scheduling
summery of all of the above benchmarks:

References
[1] Eduard Ayguade, Bob Blainey, Alejandro Duran, Jesús Labarta,

Francisco Martínez, Xavier Martorell, and Raul Silvera. Is the
schedule clause really necessary in openmp? In Proceedings of the
International Workshop on OpenMP Applications and Tools 2003,
volume 2716 of Lecture Notes in Computer Science, pages 69–83,
2003.

Benchmark #Lines -
OpenMP

Lines -
ParC

OpenMP
Time in
Seconds

ParC
Time in
Seconds

Improvement Ratio

Mat Mul 69 69 90 75 1.20
NPB 2.3 926 1008 130 24 5.42
MD 626 636 96 33 2.91
Cluster 294 320 354 635 0.56
GOL 270 260 6.1 1.1 5.55
Hopfield 255 235 54 18 3.00
DCT 240 240 52 17 3.06

Table 2: OpenMP VS ParC Comparison.

[2] Y. Ben-Asher., A. Cohen, A. Schuster, and J.F. Sibeyn. The impact
of task-length parameters on the performance of the random load-
balancing algorithm. Technical report, Proc. 6th International Parallel
Processing Symposium, 1992.

[3] Y. Ben-Asher, D. G. Feitelson, and L. Rudolph. Parc: An extension
of c for shared memory parallel processing. Software practice &
Experience, 26(5):581–612, 1996.

[4] Addison C., LaGrone J., Huang L., and Chapman B. Openmp 3.0
tasking implementation in openuh. Open64 Workshop at CGO 2009,
2009.

[5] John M. Cal and James H. Anderson. Cache-aware real-time schedul-
ing on multicore platforms: Heuristics and a case study ?, 2008.

[6] John M. Cal, James H. Anderson, and Dan P. Baumberger. A hybrid
realtime scheduling approach for large-scale multicore platforms.
Univ. of North Carolina at Chapel Hill.

[7] Michael Chu, Rajiv Ravindran, and Scott Mahlke. Data access
partitioning for fine-grain parallelism on multicore architectures. In
Proceedings of the 40th Annual IEEE/ACM International Symposium
on Microarchitecture, pages 369–380, 2007.

[8] RALF S. ENGELSCHALL. Gnu portable threads (pth), 1999.
http://www.gnu.org/software/pth/, ftp://ftp.gnu-/org/gn.

[9] Dror G. Feitelson and Larry Rudolph. Gang scheduling performance
benefits for fine-grain synchronization. Journal of Parallel and
Distributed Computing, 16(4):306 – 318, 1992.

[10] Seth Copen Goldstein, Klaus Erik Schauser, and David E. Culler.
Lazy threads: Implementing a fast parallel call. Journal of parallel
and distributed computing, 37:5–20, 1996.

[11] George Karypis and Vipin Kumar. Metis - unstructured graph
partitioning and sparse matrix ordering system, version 2.0. Technical
report, The University of Minnesota, 1995.

[12] Frank Mueller. A library implementation of posix threads under unix.
In In Proceedings of the USENIX Conference, pages 29–41, 1993.

[13] Dimitrios S. Nikolopoulos, Eleftherios D. Polychronopoulos, and
Theodore S. Papatheodorou. Efficient runtime thread management for
the nano-threads programming model. In Proc. of the Second IEEE
IPPS/SPDP Workshop on Runtime Systems for Parallel Programming,
LNCS, 1998.

[14] Mark S. Papamarcos and Janak H. Patel. A low-overhead coherence
solution for multiprocessors with private cache memories. SIGARCH
Comput. Archit. News, 12:348–354, January 1984.

[15] Samuel Thibault. A flexible thread scheduler for hierarchical multi-
processor machines. CoRR, abs/cs/0506097, 2005.

[16] Samuel Thibault, Raymond Namyst, and Pierre andr? Wacrenier.
Building portable thread schedulers for hierarchical multiprocessors:
the bubblesched framework. ACM, 8:00154506, 2007.

