
An Adaptive Storage and Retrieval Mechanism to Reduce

Response-Time in High Performance Computing Clusters

Amir Saman Memaripour, Ehsan Mousavi Khaneghah, Seyedeh Leili Mirtaheri, and Mohsen Sharifi

School of Computer Engineering, Iran University of Science and Technology, Tehran, Iran

Abstract - Ever-increasing growth of high performance

computing applications requires employment of novel methods

in all aspects of computing systems. The response time of file

storage and retrieval operations is one of the most important

factors of storage systems and improving that will result

higher computational power. Consequently, breathtaking

efforts have been done and various file systems with different

architectures have been proposed. Most of them are not aware

of clusters’ execution state and do not consider variety of I/O

operations’ response time on machines with different storage

media, network traffic, and processing load. In this paper, we

have proposed a mechanism to store and retrieve files with

respect to the execution state of storage nodes and network

topology of the cluster. Finally, the proposed architecture has

been implemented and evaluated using Hadoop distributed file

system.

Keywords: File System, Response Time, Adaptive Storage

and Retrieval, HPC

1 Introduction

 Exponential growth of the volume of stored data has made

conventional methods of storage and retrieval inefficient

which require new ways with higher performance to deal with

[1]. Performed estimations show that the size of electronic

data was about 1.8 zeta bytes in 2011 that illustrates the need

to store tremendous amounts of data [2]. Furthermore,

improving the performance of these operations in various

aspects such as scalability and reliability must be considered

[3]. In this way, three different approaches including

improving the performance of each computational element,

revising the algorithms, and making use of a series of ordinary

computing elements could be followed [4].

 In the field of HPC computing, improving overall

performance is mainly focused on reducing response time and

increasing processing power of the system [4]. In order to fit

in with the requirements of these environments and avoid

becoming the bottleneck, file system designers have used

several techniques to reduce the response time [5] [6].

Numerous file systems, such as HDFS and PVFS, have been

proposed to cope with these issues and used novel algorithms

and load balancing techniques to improve the overall system

performance with the aid of distributed computing [7] [8].

 Heterogeneous storage clusters are made of various

computational elements with different performance levels.

This diversity leads to different response times of

computational nodes to a single request. Moreover, the

response time of each node depends on other parameters such

as processor load, network traffic, and remaining storage

space changing during time and will affect the performance of

the node [9]. Network topology and the distance between data

consumer and data provider is another important parameter

that can affect the performance of I/O operations. In many

HPC clusters, applications and their respective data are placed

as closest as possible and data access is performed using a

high-bandwidth and low-latency communication network.

However, communication cost between two adjacent nodes is

far less than two nodes which are located in different parts of

the communication network, i.e. two different racks [7].

 In these clusters, data replication is performed in order to

improve reliability and response time [7]. If the number and

the place of replicas are determined with respect to the

execution state of computational nodes, the response time and

scalability of the cluster will be improved. In addition, the

load will be distributed among the nodes and data will not

aggregate in particular parts of the cluster. In this manner, an

adaptive mechanism that replicates and distributes replicas in

the cluster according to the execution state of cluster’s nodes

has been proposed in this paper.

2 Related works

 Various usages of file systems are possible in computing

systems. For example, resources could be represented,

accessed, and managed by files in distributed computing

systems [10]. Moreover, files could be used to store, retrieve,

name, structure, protect, and manage user and system data.

Our proposed mechanism considers file systems as the

module which is responsible for the mentioned responsibilities

in the second definition.

 Remarkable efforts have been done in the field of file

systems which can be categorized in three classes including

centralized, decentralized, and distributed file systems.

Traditional file systems like FAT belong to the first class and

are inefficient for high performance applications [11].

Extremely low scalability and the limitations of storage media

like disks’ seek time lead to the appearance of the other two

classes. Decentralized file systems were mainly proposed to

increase the number of master nodes in file systems and avoid

consequences of having a single point of failure. NFS is one

of the centralized file systems that a decentralized version of it

has been proposed to increase its scalability [12].

 Computation requirements of today’s applications need a

level of scalability which is far from what decentralized

approaches can reach. As a result, numerous file systems with

distributed architectures have been presented including HDFS

and GFS which are used to maintain organizational data at

Yahoo and Google respectively. These two are also good

examples of the successful experiences in increasing

scalability [7] [13].

 PVFS was introduced for parallel storage and retrieval of

files in Linux clusters and parallel execution of applications

which were previously performed using parallel machines.

This file system was designed to support different file system

interfaces like POSIX, facilitate installation and use of the file

system, and provide features to store and retrieve files in a

parallel and concurrent manner by several processes.

Moreover, scalability and robustness were among other goals

in the design process of this file system [8]. PVFS has been

developed as a base for research and development in the field

of parallel file systems in Linux [1] [5] [14]. Furthermore, a

branch of PVFS called OrangeFS has been developed to

consider issues like metadata operations, blocks replication,

and access control in more depth [15].

 In 2003, Google presented GFS which had been used before

that time by Google’s applications and designed according to

their storage requirements. In addition to different aspects of

performance which were addressed in other distributed file

systems, GFS has paid special attention to efficient execution

of its applications [13]. GFS do not support POSIX standard,

has larger basic storage blocks comparing to traditional file

systems, and is mainly focused on the optimization of append

operations because of the nature of its applications [13] [16].

Moreover, using commodity and cheap hardware in the

implementation process of GFS made hardware failure such

as network devices and storage media a probable event rather

than unexpected. In order to prevent the consequences of

these failures, several innovative methods have been

considered in the design of GFS.

 Ceph is another distributed file system which is proposed to

provide a scalable, reliable, and high performance storage

cluster [17]. It separates the management of data and metadata

and supports more than 250,000 metadata operations in every

second by using a pseudo-random distribution function, called

CRUSH, instead of allocation tables [18]. Moreover, it

distributes the replication, fault detection, and recovery

operations among storage nodes, where data and metadata are

stored. Ceph is composed of three major parts including

client, storage cluster, and metadata cluster. It also provides a

near-POSIX file system interface which is a remarkable

feature for a distributed file system.

 Another project called HDFS is currently in progress in

Yahoo that is similar to GFS in various aspects and is

published as an open-source file system [7]. HDFS performs

as a reliable and high performance storage cluster and used

several concepts proposed in GFS. More detailed information

about this file system is available in section 3, where

implementation platform of our proposed mechanism has been

introduced.

 Common file systems in this area have not effectively

considered execution state of the cluster and computational

nodes. In addition, heterogeneity of storage media is another

parameter that affects response time and has not properly

addressed in these file systems. Our proposed mechanism,

discussed in more detail in section 4, has considered these

parameters and introduced a method to improve the response

time of storage and retrieval operations.

3 Implementation platform

 In order to implement and evaluate our proposed

mechanism, we have used Hadoop Distributed File System as

our implementation platform. HDFS is designed to reliably

store large data sets and stream these data to user applications

at high bandwidth. Distributing stored data and computations

among several processing and storage nodes in HDFS leads to

a scalable and economic cluster that can grow to any size on

demand [7]. This file system has being used by Yahoo to

manage 25 petabytes of application data and has been

successful in this way [2]. We have stated our motivations to

use it as our implementation platform in section 3.2 and after

a brief introduction to HDFS.

3.1 Overview

 Every HDFS cluster at least consists of a NameNode and

one or more DataNodes. The cluster can grow to any size by

adding more DataNodes to it [19]. Moreover, other nodes

such as BackupNode and CheckpointNode can join the cluster

to improve its reliability [7]. User applications, usually

executed on DataNodes, are other pieces of the architecture

and interact with HDFS using a programming library. This

file system does not support POSIX standard and its interfaces

are provided via HDFS client which is a code library [2].

 In this architecture, NameNode maintains and manages

namespace. Moreover, it manages DataNodes and replicas of

each data block. The namespace is a hierarchical structure of

directories and files which are represented by inodes. Each

file is divided into large data blocks which could be replicated

independently and stored on various DataNodes. Besides

maintaining the file system namespace, NameNode stores

required information to perform the mapping between data

blocks and DataNodes [7].

 DataNodes are responsible for maintaining the replicas of

data blocks in their local storage media and store two files for

each replica. One of the files is used to store the data and the

other maintains block’s metadata. Each DataNode performs a

handshake with the NameNode at the startup. During this

operation, namespace identifier and software version of the

NameNode are compared with respective values of the

DataNode. Consequently, the consistency of the file system

will be preserved [7]. DataNodes send block reports to the

NameNode after joining the cluster and periodically to inform

it about their hosted replicas. Moreover, the NameNode

receives another kind of control messages from DataNodes

that indicates their presence in the cluster and accessibility to

their hosted replicas [2].

3.2 Motivations in using HDFS

 Availability of user manuals and books besides its open

source implementation made it feasible to use HDFS as the

implementation platform [2]. In addition, it is widely used in

extraordinary computing environments and has the potential

to be applied on high performance computing clusters.

Performing the replication under the supervision of the

NameNode provides required information for adaptive

distribution of replicas over the cluster and makes it a good

choice to run the proposed mechanism in this node. Moreover,

the execution state of computational nodes can be send along

with control messages which are periodically sent by

DataNodes to the NameNode.

 The mechanism used by HDFS to provide user applications

with the block replicas list can be changed to consider the

execution state of DataNodes and perform adaptively. HDFS

has also provided an interface to consider the network

distance between data providers and consumers in order to

sort hosts in the replica lists [7]. Furthermore, this file system

is designed to use commodity hardware that makes evaluation

feasible. HDFS is implemented using JAVA programming

language that facilitates source code modification and makes

it possible to run it on a wide variety of operating systems [2].

Considering these facts, we have chosen HDFS as our

implementation platform in order to evaluate our proposed

mechanism.

4 Proposed mechanism

 The goal of our proposed mechanism is to consider the

execution state of DataNodes and the topology of

communication network in storing and retrieving data blocks.

Adapting file system operations to the execution state of the

cluster will improve the overall performance and distribute the

I/O load across the storage cluster. Moreover, selecting least

loaded nodes to host replicas can improve the response time

of I/O operations.

 The execution state of DataNodes including remaining

storage space, available network bandwidth, and I/O speed of

storage media and where it is placed in the communication

network are considered with regard to selecting an appropriate

node. Besides adapting I/O operations to execution state of

nodes, our proposed mechanism introduces a method to

automatically detect the network topology that will help data

blocks distribution in the storage cluster.

4.1 Architecture

 Adapting reading and writing data blocks to execution state

of DataNodes and the network topology is performed by three

modules. One of these modules concerned about the network

topology and is responsible for maintaining the Network Tree

which is used by the other modules. Construction of the

Network Tree is performed according to relative distance

between computational nodes and communication switches.

For instance, direct connection of two nodes to a switch

means both of them belong to a same rack. In the same way,

relative distance between different racks is estimated using the

communication delay between their computational nodes.

Section 4.3 contains detailed information about this module.

 Adaptive generation of the list of DataNodes hosting

replicas of a data block is performed by another module which

is described in more detail in section 4.2. This module

estimates transfer time of the replica according to the last

known load of the DataNodes and the network distance

between each DataNode and the client.

 The other module of the proposed mechanism selects

destination DataNodes to host replicas of each data block. In

order to select more appropriate nodes, a priority value is

assigned to each DataNode and is continually being updated

based on its workload. Using these priority values and the

network distance between DataNodes and the client, this

module will choose the best node to host the replicas. More

information about this module has been stated in section 4.4.

4.2 Adaptive Generation of Replica-Hosts List

 Once the NameNode receives a request from a client for

reading a data block, it provides the client with a list of

DataNodes hosting replicas of the requested data block. HDFS

only considers the network distance between the client and

replica hosts in construction of this list and ignores the

execution state of DataNodes [7]. Our proposed mechanism

estimates the time that Ci will spend for reading Bk from Dj

and orders the replica-hosts list by these estimated values. As

a result, the overhead of read operations will distribute across

DataNodes that will improve the overall response time of the

cluster. Moreover, some required computations of this

mechanism are performed by DataNodes that avoids addition

of a considerable overhead to the NameNode.

 ()

 () () () (1)

 Equation 1 is used to estimate the time required for reading

a data block called Bk from Dj by the client that is running on

Ci in seconds. The value of size(Bk) is stored on the

NameNode and can be fetched by one memory access.

Furthermore, required computations for ReadLatency(Dj), the

amount of time in seconds to read one megabyte of data from
Dj, is performed by the respective DataNode and the result is

sent to the NameNode via heartbeat messages. Equation 2

shows how this value is calculated. The network distance

between Ci and Dj is estimated based on the network topology

using NetDist(Ci, Dj). Section 4.3 contains detailed

information about this function and the way it detects the

network topology.

 ()

 ()

(()) ()
 (2)

 In order to estimate ReadLatency(Dj) in Eq. 2, we need to

be aware of the execution state of Dj including the transfer

speed and the utilization of its NIC besides the I/O speed of its

storage media. The momentary I/O speed of the storage media

can be estimated based on the current data streams of the

DataNode. In order to rate the maximum I/O speed of the

storage media, a shell script will be executed at each startup of

the DataNode. Using this information, Eq. 3 estimates

ReadSpeed(Dj) in megabytes by calculating a weighted-

average of the capacity of all local storages in Dj. Similarly,

network transfer speed is evaluated by multiplication of

network utilization and total transfer speed of the NIC in

MB/s. In this manner, the total transfer speed of each network

interface is determined by parsing the respective output of

ethtool in Linux. Finally, the addition of inverse of these

values represents the time required for reading one megabyte

of data from Dj by any other node in the cluster.

 ()

∑ () (() ())

∑ ()

 (3)

4.3 Dynamic network topology detection

 In order to estimate the network distance between

DataNodes, an n-ary tree called Network Tree is used. The

interior nodes of this tree represent communication switches,

while its leaves contain DataNodes of each rack. The

branching factor of this tree is the maximum number of ports

of all communication switches and is denoted by BF. As a

result, the height of this tree can be calculated by h=⌈logBF n⌉
for some positive n that reflects the number of racks in the

cluster. Moreover, every leaf of the Network Tree is assigned

with a unique identifier called RackID which is used for

indexing all the DataNodes belonging to a same rack [20].

 Once a DataNode joins the cluster, it is considered to be a

member of a new rack and is added to the Network Tree as the

immediate successor of the root. After that, the Network Tree

and the indexed list of DataNodes will be sent to the newly

joined DataNode to find its place in the network. Fig. 1

contains the pseudo-code of the search algorithm a DataNode

follows to find its place in the network along with the

structure of the Network Tree. The result of the performed

search in the newly joined DataNode will be sent to the

NameNode in order to update the Network Tree.

Figure 1: The structure of Network Tree and pseudo-code of its

search algorithm

 By identifying the nearest common predecessor of two

DataNodes in the Network Tree and counting the number of

interior nodes in their communication path, the NameNode

can estimate the communication latency between every two

DataNodes in the cluster. The NameNode assumes a constant

communication delay for each switch in the communication

path in order to estimate the total communication latency. The

running time of this algorithm is O(log
BF

n). Considering the

large values of BF, its overhead could not be remarkable. As

an example, assuming n=350 and BF=16, the height of the

Network Tree would be 3 that supports our point.

4.4 Adaptive selection of replication hosts

 Once a new data block is created or an existing one is going

to be replicated, the NameNode should select some

DataNodes to host the newly created replicas. This selection

can be performed based on various considerations such as

reducing replication time, improving data distribution,

reducing the distance between data provider and consumer,

and hosting replicas in the nearest racks. Our proposed

mechanism assumes that reader processes are uniformly

distributed across the cluster, so it tries to select the more

appropriate DataNodes from the nearest racks to the data

source. In addition, it obeys the replication rules of HDFS and

stores a data block in a rack that contains at most one of its

replicas. At the final step of selection, qualified DataNodes

are ordered by their remaining storage space and available

network bandwidth using Eq. 4. After that, the most proper

nodes will be chosen to host the recently created replicas.

 () (
 ()

 ()

) (4)

 The selection priority of every DataNode is determined by

comparing its free storage space and available network

bandwidth with the total storage space and maximum network

bandwidth of the cluster. FreeSpace(Dj), AvailBW(Dj),

maxStorageSize and maxNetBW are calculated using the

information which is being periodically received from

DataNodes. Moreover, the effect of free storage media and

available network bandwidth on NodeRate(Dj) can be adjusted

using α and β constants. Here, we have used α=1 and β=1 for

the sake of simplicity.

 The respective statistics and information of all DataNodes

of each rack is stored in a max-heap according to their

selection priority value [20]. These max-heaps are referenced

by the leaves of the Network Tree and are accessible in this

way. As a result, selection of the most proper DataNode of a

rack can be performed in O(1). Fig. 2 shows the pseudo-code

of the algorithm for selecting the DataNodes to host the

recently created replicas of the data block hosted by Di.

 Once a new data block is created in a DataNode, the first

replica is stored in the same node. The other two DataNodes

to store replicas are selected using the algorithm shown in Fig.

2 and a pipeline will be organized by HDFS to transfer

replicas to the selected hosts. By default, this algorithm stores

the replicas in the nearest racks to the data source. However,

other policies to select replication hosts could be used in order

INPUT: NC = current DataNode
INPUT: p = the root of NetworkTree
OUTPUT: Rid = null
while (Rid == null) do

last_RTT= 0
for each nodei in childs(p)

ND = select one of the descendent DataNodes of nodei in a

random manner
new_RTT = eval_RTT(NC, ND)
if (new_RTT < last_RTT) {
if (childs(nodei) == null) Rid = nodei
p = switchi
break
}
last_RTT = new_RTT

S1

S2 S3 S4

R1 R2 R3 R4 R5 R6

to improve reliability of the cluster. For example, storing a

replica in another part of the cluster can keep the data block

accessible on the event of communication switch failures.

Figure 2: The structure of leafs of Network Tree and the psuedo-code

of host selection algorithm

 Replication of an existing data block is performed in a

similar way. In order to find the proper DataNode to host the

new replica, every DataNode that hosts one of the replicas of

the data block selects a host using an algorithm similar to the

one shown in Fig. 2 with Qn=1. Next, the proper host for the

new replica will be chosen from the selected hosts in the

previous step and replication will be performed by the nearest

DataNode to it. HDFS performs the replication whenever one

of the replicas of a data block becomes corrupted, so the

execution rate of this mechanism cannot be remarkable.

Moreover, this mechanism can be used to adapt the number of

replicas with a dynamic replication factor in storage clusters.

5 Evaluation

 We have measured the performance of the proposed

mechanism using three distinct criterions. The first two

evaluations were performed using HDFS benchmarks in order

to demonstrate the improvements in I/O performance of

DataNodes and response time of the NameNode. The third

one was performed to verify the low computational cost,

network traffic and execution time of the algorithm proposed

for Network Tree construction. According to the evaluation

results, the proposed mechanism can improve the response

time of file storage and retrieval operations in heterogeneous

clusters with long-term I/O operations.

5.1 I/O performance

 In order to evaluate the I/O throughput of HDFS in presence

and absence of our proposed mechanism, we have used

TestDFSIO benchmark, one of the benchmark packages of

hadoop-test-1.0.1. In this manner, a cluster of one master node

and three slave nodes is used. Hardware configuration and OS

specification of these systems is shown in Table 1.

Table 1: Hardware and OS specification of cluster nodes

 OS CPU RAM Disk (RPM)

Master Mac 10.6.8
Intel Core

2 Due 2.8
4 GB 5400

Slave Ubuntu 10.04

Intel

Pentium IV

3 GHz

2 GB 5400

 TestDFSIO is a MapReduce job and proceeds in two

distinct phases. First, it creates some map and reduce tasks to

write a number of files which is specified as an input

parameter. After that, some other tasks are created to estimate

the read performance of the cluster by reading specified

number of files. In each phase, the benchmark prints some

statistical information about the I/O operation performance of

the cluster. In order to examine the effect of our proposed

mechanism on HDFS I/O performance, TestDFSIO is

executed in the presence and absence of the mechanism using

various input parameters and the results are shown in Table 2.

 Considering the presented evaluation results, our proposed

mechanism is more beneficial for storage clusters with long-

term I/O operations. As a result, increasing the size of files

will magnify the effect of adaptive selection algorithms on the

performance of storage clusters.

Table 2: Evaluated I/O throughput using TestDFSIO

Number of files 10 100 10 100

File size (MB) 100 100 1000 1000

Read

(MB/s)

HDFS 7.006 7.421 8.983 9.603

HDFS + AM 7.043 7.492 9.217 10.039

Write

(MB/s)

HDFS 4.893 5.161 6.037 6.958

HDFS + ASM 4.923 5.202 7.686 7.278

5.2 Cluster scalability

 Execution overhead of the proposed mechanism can

degrade the number of metadata operations that the

NameNode is capable of performing in every second. Once

the NameNode reaches its resource limits as a result of an

extraordinary number of metadata operations, presence of the

proposed mechanism can increase response time of metadata

operations and decrease overall performance of the cluster.

For investigating this issue, one of the benchmark packages of

hadoop-test-1.0.1 called NNBench is used. This benchmark

performs in four distinct phases including create_write,

open_read, rename, and delete. Moreover, NNBench supports

a wide variety of input parameters including sizeOfBlocks and

numberOfFiles. Fig. 3 shows the execution results of

NNBench in the presence and absence of our proposed

mechanism.

 As it can be seen in Fig. 3, execution overhead of the

proposed mechanism can have a slight impact on the

NameNode performance only when the NameNode is

overwhelmed with user requests. Indeed, this performance

degradation is a direct outcome of centralize nature of the

INPUT: Di = source DataNode
INPUT: Qn = replication factor
OUTPUT: Dd = a list of DataNodes to host replicas
p = Di

while (size(Dd) < Qn – 1) do
visit(p) // Mark p as visited
p = parent(p)
for each Node in descendants(p)

if (Node is VISITED) continue
if (Node is LEAF) {
Dd = Dd ∪ Node
if (size(Dd) == Qn) remove_worst(Dd)
}

S
2

R1 R
2

0.8

0.7 0.5

0.5 0.6

Points to FreeSpace = 700 GB

AvailBW = 80 MB/s

maxStorageSize = 1000 GB

maxNetBW = 100 Mb/s

NodeRate = min(0.7, 0.8)

NameNode in Hadoop clusters and can be avoided on the first

sight by downscaling the cluster or improving hardware

specification of the NameNode. However, using the proposed

mechanism looks economical and effective with regards to

how much it improves the system performance by spending a

slight amount of processing power and memory space.

Figure 3: NameNode TPS evaluation using NNBench

5.3 Construction cost of Network-Tree

 Construction of Network Tree is performed using ICMP

network messages and the Ping utility. To evaluate the

performance of our proposed method, we have examined the

total network traffic and construction time of this method.

Total network traffic of each run is monitored using

Wireshark [21]. Searching the Network Tree is a one-time

operation and every DataNode have to perform it just after

joining the cluster. D-Link switches with a total bandwidth of

100 Mbps have been used to from the communication network

and connect computational nodes running a Linux

distribution. The height of the Network Tree is two that

demonstrates a two level network topology including the core

switch and rack switches which are directly connected to the

core switch. Fig. 4 shows our experimental results, in which

total network traffic and the execution time are in KB and

seconds respectively.

 The execution time of this algorithm, which is used for

searching the Network Tree, directly depends on the

branching factor and the height of the tree. Height of the tree

does not vary much and even in extra-large clusters, it can

hardly ever reach a value more than 3. For instance, using 16-

port switches in building a communication tree with the height

of 3 will lead to a cluster of size 16
3
. The largest operational

Hadoop cluster at Yahoo contains 3500 DataNodes which is

far less than 4096. Moreover, the branching factor does not

exceed 16 most of the times. In most of the clusters, network

switches with more than 16 ports are used as rack switches

that have no effect on the branching factor of the Network

Tree. Considering how this method can facilitate joining of

new DataNodes to the cluster, it can be inferred that its

execution time and network traffic are reasonable.

Figure 4: Evaluation results of the tree construction algorithm

6 Further works

 Besides the proposed mechanism, distributed file systems

can adapt with the execution state of the cluster in some more

ways. Using dynamic replication factors and popularity

domains for files are two of these ways that can benefit the

storage cluster in both reliability and response time.

 Considering the concept of files’ popularity which is widely

used in P2P file sharing systems, the replication policy can be

improved. Thus, each file will be replicated in every

neighborhood that contains more reader or writer nodes. In

this way, a popularity domain will be assigned to each file

containing the DataNodes that will probably read or write

from/to it in the future. This mechanism can be used along

with the task distribution mechanism of Hadoop which

executes every task near to its required data. The cooperation

of these two can lead to better distribution of load in Hadoop

clusters. As a result, the behavior of file system users will

affect the replication of data blocks and the file system will

adapt with users’ activity.

 Besides being used for determining proper replication factor

of each file, the concept of popularity domains is beneficial

for improving reliability of the NameNode in Hadoop clusters.

As each popularity domain normally contains the list of

DataNodes sharing the respective file, the global namespace

can be divided into many popularity domains and distributed

across several NameNodes. Consequently, reliability of the

central mechanism which is currently in use in Hadoop

clusters to maintain file system metadata will be improved by

increasing the number of metadata servers. This mechanism

follows the same idea as namespaces in Plan 9 and uses

popularity domains in exchange of per-process namespaces.

Reducing the computational overhead of the NameNode will

directly improve the response time of storage and retrieval

800

1000

1200

1400

1600

T
P

S

Operation: create_write

Hadoop

Hadoop + ASM

1500

2000

2500

3000

3500

T
P

S

Operation: open_read

Hadoop

Hadoop + ASM

0

10

20

30

40

BF = 2 BF = 3 BF = 4

Max Time

Min Time

0

20

40

60

BF = 2 BF = 3 BF = 4

Total Packets

Send/Rec

operations of files. Indeed, this mechanism can improve both

reliability and response time of distributed file systems.

7 Conclusion

 Our proposed mechanism considers the execution state of

the storage cluster in performing data blocks replication.

Various aspects of the cluster such as network topology and

different state variables of computational nodes like network

traffic and remaining storage space are considered to find the

proper host for storing replicas. As the first step in the

replication process, the NameNode specifies the required

number of replicas for each data block. Next, the replication

roadmap is designed based on the performed calculations and

the selected host will store the newly created replica. The host

selection algorithm will choose the proper nodes to store the

new replica by looking at their execution state, available

resources, and distance to the source of data. As a result, the

load of storage and retrieval operations will be uniformly

distributed across the cluster.

 A similar method is used in order to find proper replica

hosts to provide read operations with requested data blocks. In

this manner, our proposed mechanism estimates the cost of

reading a data block from every host and uses the results to

generate an ordered list of hosts. Some execution variables of

storage nodes including available network bandwidth, disk

read speed, and current data streams are considered in

evaluating the cost of reading every data block. The network

distance between the replica host and reader node is also

considered in this selection algorithm.

 HDFS has been used as our implementation platform.

Several facts like easy to use interfaces and open source

implementation of HDFS lead to this decision. Performed

evaluations show that our proposed mechanism improves the

response time of file storage and retrieval operations in

heterogeneous clusters running long-term I/O operations.

Furthermore, its computational overhead will not have a

remarkable effect on cluster scalability.

8 References

[1] R. Ross, D. Nurmi, A. Cheng, and M. Zingale, "A Case

Study in Application I/O on Linux Clusters," in Proceedings

of the 2001 ACM/IEEE Conference on Supercomputing, New

York, NY, USA, 2001, pp. 11-11.

[2] T. White, Hadoop: The Definitive Guide, 2nd Edition.

O'Reilly Media / Yahoo Press, 2010.

[3] B. Witworth, J. Fjermestad, and E. Mahinda, "The Web

of System Performance," Communications of the ACM, vol.

49, no. 5, pp. 93-99, May 2006.

[4] R. Buyya, High Performance Cluster Computing.

Prentice Hall, 1999.

[5] W. Yu, S. Liang, and D. K. Panda, "High Performance

Support of Parallel Virtual File System (PVFS2) over

Quadrics," in Proceedings of the 19th Annual International

Conference on Supercomputing, New York, NY, USA, 2005,

pp. 323-331.

[6] B. Nicolae, G. Antoniu, L. Bougé, D. Moise, and A.

Carpen-Amarie, "BlobSeer: Next-Generation Data

Management for Large Scale Infrastructures," Journal of

Parallel and Distributed Computing, vol. 71, no. 2, p. 169–

184, Feb. 2011.

[7] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, "The

Hadoop Distributed File System," in 26th Symposium on Mass

Storage Systems and Technologies (MSST), Incline Village,

NV, 2010, pp. 1-10.

[8] P. H. Carns, W. B. Ligon, and R. T. Robert B. Ross,

"PVFS: A Parallel File System for Linux Clusters," in

Proceedings of the 4th Annual Linux Showcase, Berkeley,

CA, USA, 2000, pp. 28-28.

[9] J. Montes, B. Nicolae, G. ntoniu, . nche , and . .

 re , sing Global ehavior odeling to mprove o in

Cloud Data Storage Services," in Second International

Conference on Cloud Computing Technology and Science

(CloudCom), Indianapolis, IN, 2010, pp. 304-311.

[10] D. Presotoo, R. Pike, K. Thompson, and H. Trickey,

"Plan 9, A Distributed System," AT&T Bell Laboratories,

1991.

[11] W. J. Bolosky, J. R. Douceur, D. Ely, and M. Theimer,

"Feasibility of a Serverless Distributed File System Deployed

on an Existing Set of Desktop PCs," in Proceedings of the

2000 ACM SIGMETRICS International Conference on

Measurement and Modeling of Computer Systems, Santa

Clara, California, United States, 2000, pp. 34-43.

[12] T. E. Anderson, et al., "Serverless Network File

Systems," ACM SIGOPS Operating Systems Review, vol. 29,

no. 5, pp. 109-126, Dec. 1995.

[13] S. Ghemawat, H. Gobioff, and S.-T. Leung, "The Google

File System," SIGOPS Oper. Syst. Rev., vol. 37, no. 5, pp. 29-

43, Oct. 2003.

[14] A. Devulapalli, D. Dalessandro, P. Wyckoff, N. Ali, and

P. Sadayappan, "Integrating Parallel File Systems with

Object-Based Storage Devices," in Proceedings of the 2007

ACM/IEEE Conference on Supercomputing, New York, NY,

USA, 2007, pp. 1-10.

[15] OrangeFS. (2011, Dec.) Orange File System. [Online].

http://www.orangefs.org/

[16] J. Dean and S. Ghemawat, "MapReduce: Simplified Data

Processing on Large Clusters," Communications of the ACM,

vol. 51, no. 1, pp. 107-113, Jan. 2008.

[17] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long, and

C. Maltzahn, "Ceph: A Scalable, High-Performance

Distributed File System," in 7th Symposium on Operating

Systems Design and Implementation, Washington, 2006, pp.

307-320.

[18] S. A. Weil, S. A. Brandt, E. L. Miller, and C. Maltzahn,

"CRUSH: Controlled, Scalable, Decentralized Placement of

Replicated Data," in Proceedings of the 2006 ACM/IEEE

Conference on Supercomputing, New York, NY, USA, 2006,

pp. 31-31.

[19] J. Venner, Pro Hadoop. Apress, 2009.

[20] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein,

Introduction to Algorithms, 3rd ed. MIT Press, 2009.

[21] Wireshark Foundation. (2012, Feb.) Wireshark. [Online].

http://www.wireshark.org/

