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Abstract - Ever-increasing growth of high performance 

computing applications requires employment of novel methods 

in all aspects of computing systems. The response time of file 

storage and retrieval operations is one of the most important 

factors of storage systems and improving that will result 

higher computational power. Consequently, breathtaking 

efforts have been done and various file systems with different 

architectures have been proposed. Most of them are not aware 

of clusters’ execution state and do not consider variety of I/O 

operations’ response time on machines with different storage 

media, network traffic, and processing load. In this paper, we 

have proposed a mechanism to store and retrieve files with 

respect to the execution state of storage nodes and network 

topology of the cluster. Finally, the proposed architecture has 

been implemented and evaluated using Hadoop distributed file 

system. 

Keywords: File System, Response Time, Adaptive Storage 

and Retrieval, HPC 

1 Introduction 

  Exponential growth of the volume of stored data has made 

conventional methods of storage and retrieval inefficient 

which require new ways with higher performance to deal with 

[1]. Performed estimations show that the size of electronic 

data was about 1.8 zeta bytes in 2011 that illustrates the need 

to store tremendous amounts of data [2]. Furthermore, 

improving the performance of these operations in various 

aspects such as scalability and reliability must be considered 

[3]. In this way, three different approaches including 

improving the performance of each computational element, 

revising the algorithms, and making use of a series of ordinary 

computing elements could be followed [4]. 

 In the field of HPC computing, improving overall 

performance is mainly focused on reducing response time and 

increasing processing power of the system [4]. In order to fit 

in with the requirements of these environments and avoid 

becoming the bottleneck, file system designers have used 

several techniques to reduce the response time [5] [6]. 

Numerous file systems, such as HDFS and PVFS, have been 

proposed to cope with these issues and used novel algorithms 

and load balancing techniques to improve the overall system 

performance with the aid of distributed computing [7] [8]. 

 Heterogeneous storage clusters are made of various 

computational elements with different performance levels. 

This diversity leads to different response times of 

computational nodes to a single request. Moreover, the 

response time of each node depends on other parameters such 

as processor load, network traffic, and remaining storage 

space changing during time and will affect the performance of 

the node [9]. Network topology and the distance between data 

consumer and data provider is another important parameter 

that can affect the performance of I/O operations. In many 

HPC clusters, applications and their respective data are placed 

as closest as possible and data access is performed using a 

high-bandwidth and low-latency communication network. 

However, communication cost between two adjacent nodes is 

far less than two nodes which are located in different parts of 

the communication network, i.e. two different racks [7]. 

 In these clusters, data replication is performed in order to 

improve reliability and response time [7]. If the number and 

the place of replicas are determined with respect to the 

execution state of computational nodes, the response time and 

scalability of the cluster will be improved. In addition, the 

load will be distributed among the nodes and data will not 

aggregate in particular parts of the cluster. In this manner, an 

adaptive mechanism that replicates and distributes replicas in 

the cluster according to the execution state of cluster’s nodes 

has been proposed in this paper.  

2 Related works 

 Various usages of file systems are possible in computing 

systems. For example, resources could be represented, 

accessed, and managed by files in distributed computing 

systems [10]. Moreover, files could be used to store, retrieve, 

name, structure, protect, and manage user and system data. 

Our proposed mechanism considers file systems as the 

module which is responsible for the mentioned responsibilities 

in the second definition.  

 Remarkable efforts have been done in the field of file 

systems which can be categorized in three classes including 

centralized, decentralized, and distributed file systems. 

Traditional file systems like FAT belong to the first class and 

are inefficient for high performance applications [11]. 

Extremely low scalability and the limitations of storage media 

like disks’ seek time lead to the appearance of the other two 

classes. Decentralized file systems were mainly proposed to 

increase the number of master nodes in file systems and avoid 

consequences of having a single point of failure. NFS is one 

of the centralized file systems that a decentralized version of it 

has been proposed to increase its scalability [12]. 

 Computation requirements of today’s applications need a 

level of scalability which is far from what decentralized 

approaches can reach. As a result, numerous file systems with 

distributed architectures have been presented including HDFS 

and GFS which are used to maintain organizational data at 



Yahoo and Google respectively. These two are also good 

examples of the successful experiences in increasing 

scalability [7] [13]. 

 PVFS was introduced for parallel storage and retrieval of 

files in Linux clusters and parallel execution of applications 

which were previously performed using parallel machines. 

This file system was designed to support different file system 

interfaces like POSIX, facilitate installation and use of the file 

system, and provide features to store and retrieve files in a 

parallel and concurrent manner by several processes.  

Moreover, scalability and robustness were among other goals 

in the design process of this file system [8]. PVFS has been 

developed as a base for research and development in the field 

of parallel file systems in Linux [1] [5] [14]. Furthermore, a 

branch of PVFS called OrangeFS has been developed to 

consider issues like metadata operations, blocks replication, 

and access control in more depth [15]. 

 In 2003, Google presented GFS which had been used before 

that time by Google’s applications and designed according to 

their storage requirements. In addition to different aspects of 

performance which were addressed in other distributed file 

systems, GFS has paid special attention to efficient execution 

of its applications [13]. GFS do not support POSIX standard, 

has larger basic storage blocks comparing to traditional file 

systems, and is mainly focused on the optimization of append 

operations because of the nature of its applications [13] [16]. 

Moreover, using commodity and cheap hardware in the 

implementation process of GFS made hardware failure such 

as network devices and storage media a probable event rather 

than unexpected. In order to prevent the consequences of 

these failures, several innovative methods have been 

considered in the design of GFS. 

 Ceph is another distributed file system which is proposed to 

provide a scalable, reliable, and high performance storage 

cluster [17]. It separates the management of data and metadata 

and supports more than 250,000 metadata operations in every 

second by using a pseudo-random distribution function, called 

CRUSH, instead of allocation tables [18]. Moreover, it 

distributes the replication, fault detection, and recovery 

operations among storage nodes, where data and metadata are 

stored. Ceph is composed of three major parts including 

client, storage cluster, and metadata cluster. It also provides a 

near-POSIX file system interface which is a remarkable 

feature for a distributed file system. 

 Another project called HDFS is currently in progress in 

Yahoo that is similar to GFS in various aspects and is 

published as an open-source file system [7]. HDFS performs 

as a reliable and high performance storage cluster and used 

several concepts proposed in GFS. More detailed information 

about this file system is available in section 3, where 

implementation platform of our proposed mechanism has been 

introduced. 

 Common file systems in this area have not effectively 

considered execution state of the cluster and computational 

nodes. In addition, heterogeneity of storage media is another 

parameter that affects response time and has not properly 

addressed in these file systems. Our proposed mechanism, 

discussed in more detail in section 4, has considered these 

parameters and introduced a method to improve the response 

time of storage and retrieval operations. 

3 Implementation platform 

 In order to implement and evaluate our proposed 

mechanism, we have used Hadoop Distributed File System as 

our implementation platform. HDFS is designed to reliably 

store large data sets and stream these data to user applications 

at high bandwidth. Distributing stored data and computations 

among several processing and storage nodes in HDFS leads to 

a scalable and economic cluster that can grow to any size on 

demand [7]. This file system has being used by Yahoo to 

manage 25 petabytes of application data and has been 

successful in this way [2]. We have stated our motivations to 

use it as our implementation platform in section 3.2 and after 

a brief introduction to HDFS. 

3.1 Overview 

 Every HDFS cluster at least consists of a NameNode and 

one or more DataNodes. The cluster can grow to any size by 

adding more DataNodes to it [19]. Moreover, other nodes 

such as BackupNode and CheckpointNode can join the cluster 

to improve its reliability [7]. User applications, usually 

executed on DataNodes, are other pieces of the architecture 

and interact with HDFS using a programming library. This 

file system does not support POSIX standard and its interfaces 

are provided via HDFS client which is a code library [2]. 

 In this architecture, NameNode maintains and manages 

namespace. Moreover, it manages DataNodes and replicas of 

each data block. The namespace is a hierarchical structure of 

directories and files which are represented by inodes. Each 

file is divided into large data blocks which could be replicated 

independently and stored on various DataNodes. Besides 

maintaining the file system namespace, NameNode stores 

required information to perform the mapping between data 

blocks and DataNodes [7].  

 DataNodes are responsible for maintaining the replicas of 

data blocks in their local storage media and store two files for 

each replica. One of the files is used to store the data and the 

other maintains block’s metadata. Each DataNode performs a 

handshake with the NameNode at the startup. During this 

operation, namespace identifier and software version of the 

NameNode are compared with respective values of the 

DataNode. Consequently, the consistency of the file system 

will be preserved [7]. DataNodes send block reports to the 

NameNode after joining the cluster and periodically to inform 

it about their hosted replicas. Moreover, the NameNode 

receives another kind of control messages from DataNodes 

that indicates their presence in the cluster and accessibility to 

their hosted replicas [2]. 

3.2 Motivations in using HDFS 

 Availability of user manuals and books besides its open 

source implementation made it feasible to use HDFS as the 

implementation platform [2]. In addition, it is widely used in 

extraordinary computing environments and has the potential 

to be applied on high performance computing clusters. 



Performing the replication under the supervision of the 

NameNode provides required information for adaptive 

distribution of replicas over the cluster and makes it a good 

choice to run the proposed mechanism in this node. Moreover, 

the execution state of computational nodes can be send along 

with control messages which are periodically sent by 

DataNodes to the NameNode. 

 The mechanism used by HDFS to provide user applications 

with the block replicas list can be changed to consider the 

execution state of DataNodes and perform adaptively. HDFS 

has also provided an interface to consider the network 

distance between data providers and consumers in order to 

sort hosts in the replica lists [7]. Furthermore, this file system 

is designed to use commodity hardware that makes evaluation 

feasible. HDFS is implemented using JAVA programming 

language that facilitates source code modification and makes 

it possible to run it on a wide variety of operating systems [2]. 

Considering these facts, we have chosen HDFS as our 

implementation platform in order to evaluate our proposed 

mechanism. 

4 Proposed mechanism 

 The goal of our proposed mechanism is to consider the 

execution state of DataNodes and the topology of 

communication network in storing and retrieving data blocks. 

Adapting file system operations to the execution state of the 

cluster will improve the overall performance and distribute the 

I/O load across the storage cluster. Moreover, selecting least 

loaded nodes to host replicas can improve the response time 

of I/O operations. 

 The execution state of DataNodes including remaining 

storage space, available network bandwidth, and I/O speed of 

storage media and where it is placed in the communication 

network are considered with regard to selecting an appropriate 

node. Besides adapting I/O operations to execution state of 

nodes, our proposed mechanism introduces a method to 

automatically detect the network topology that will help data 

blocks distribution in the storage cluster. 

4.1 Architecture 

 Adapting reading and writing data blocks to execution state 

of DataNodes and the network topology is performed by three 

modules. One of these modules concerned about the network 

topology and is responsible for maintaining the Network Tree 

which is used by the other modules. Construction of the 

Network Tree is performed according to relative distance 

between computational nodes and communication switches. 

For instance, direct connection of two nodes to a switch 

means both of them belong to a same rack. In the same way, 

relative distance between different racks is estimated using the 

communication delay between their computational nodes. 

Section 4.3 contains detailed information about this module. 

 Adaptive generation of the list of DataNodes hosting 

replicas of a data block is performed by another module which 

is described in more detail in section 4.2. This module 

estimates transfer time of the replica according to the last 

known load of the DataNodes and the network distance 

between each DataNode and the client. 

 The other module of the proposed mechanism selects 

destination DataNodes to host replicas of each data block. In 

order to select more appropriate nodes, a priority value is 

assigned to each DataNode and is continually being updated 

based on its workload. Using these priority values and the 

network distance between DataNodes and the client, this 

module will choose the best node to host the replicas. More 

information about this module has been stated in section 4.4. 

4.2 Adaptive Generation of Replica-Hosts List 

 Once the NameNode receives a request from a client for 

reading a data block, it provides the client with a list of 

DataNodes hosting replicas of the requested data block. HDFS 

only considers the network distance between the client and 

replica hosts in construction of this list and ignores the 

execution state of DataNodes [7]. Our proposed mechanism 

estimates the time that Ci will spend for reading Bk from Dj 

and orders the replica-hosts list by these estimated values. As 

a result, the overhead of read operations will distribute across 

DataNodes that will improve the overall response time of the 

cluster. Moreover, some required computations of this 

mechanism are performed by DataNodes that avoids addition 

of a considerable overhead to the NameNode. 
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 Equation 1 is used to estimate the time required for reading 

a data block called Bk from Dj by the client that is running on 

Ci in seconds. The value of size(Bk) is stored on the 

NameNode and can be fetched by one memory access. 

Furthermore, required computations for ReadLatency(Dj), the 

amount of time in seconds to read one megabyte of data from 
Dj, is performed by the respective DataNode and the result is 

sent to the NameNode via heartbeat messages. Equation 2 

shows how this value is calculated. The network distance 

between Ci and Dj is estimated based on the network topology 

using NetDist(Ci, Dj). Section 4.3 contains detailed 

information about this function and the way it detects the 

network topology. 
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 In order to estimate ReadLatency(Dj) in Eq. 2, we need to 

be aware of the execution state of Dj including the transfer 

speed and the utilization of its NIC besides the I/O speed of its 

storage media. The momentary I/O speed of the storage media 

can be estimated based on the current data streams of the 

DataNode. In order to rate the maximum I/O speed of the 

storage media, a shell script will be executed at each startup of 

the DataNode. Using this information, Eq. 3 estimates 

ReadSpeed(Dj) in megabytes by calculating a weighted-

average of the capacity of all local storages in Dj. Similarly, 

network transfer speed is evaluated by multiplication of 

network utilization and total transfer speed of the NIC in 

MB/s. In this manner, the total transfer speed of each network 



interface is determined by parsing the respective output of 

ethtool in Linux. Finally, the addition of inverse of these 

values represents the time required for reading one megabyte 

of data from Dj by any other node in the cluster. 
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4.3 Dynamic network topology detection 

 In order to estimate the network distance between 

DataNodes, an n-ary tree called Network Tree is used. The 

interior nodes of this tree represent communication switches, 

while its leaves contain DataNodes of each rack. The 

branching factor of this tree is the maximum number of ports 

of all communication switches and is denoted by BF. As a 

result, the height of this tree can be calculated by h=⌈logBF n⌉ 
for some positive n that reflects the number of racks in the 

cluster. Moreover, every leaf of the Network Tree is assigned 

with a unique identifier called RackID which is used for 

indexing all the DataNodes belonging to a same rack [20]. 

 Once a DataNode joins the cluster, it is considered to be a 

member of a new rack and is added to the Network Tree as the 

immediate successor of the root. After that, the Network Tree 

and the indexed list of DataNodes will be sent to the newly 

joined DataNode to find its place in the network. Fig. 1 

contains the pseudo-code of the search algorithm a DataNode 

follows to find its place in the network along with the 

structure of the Network Tree. The result of the performed 

search in the newly joined DataNode will be sent to the 

NameNode in order to update the Network Tree. 

 

Figure 1: The structure of Network Tree and pseudo-code of its 

search algorithm 

 By identifying the nearest common predecessor of two 

DataNodes in the Network Tree and counting the number of 

interior nodes in their communication path, the NameNode 

can estimate the communication latency between every two 

DataNodes in the cluster. The NameNode assumes a constant 

communication delay for each switch in the communication 

path in order to estimate the total communication latency. The 

running time of this algorithm is O(log
BF

n). Considering the 

large values of BF, its overhead could not be remarkable. As 

an example, assuming n=350 and BF=16, the height of the 

Network Tree would be 3 that supports our point.  

4.4 Adaptive selection of replication hosts 

 Once a new data block is created or an existing one is going 

to be replicated, the NameNode should select some 

DataNodes to host the newly created replicas. This selection 

can be performed based on various considerations such as 

reducing replication time, improving data distribution, 

reducing the distance between data provider and consumer, 

and hosting replicas in the nearest racks. Our proposed 

mechanism assumes that reader processes are uniformly 

distributed across the cluster, so it tries to select the more 

appropriate DataNodes from the nearest racks to the data 

source. In addition, it obeys the replication rules of HDFS and 

stores a data block in a rack that contains at most one of its 

replicas. At the final step of selection, qualified DataNodes 

are ordered by their remaining storage space and available 

network bandwidth using Eq. 4. After that, the most proper 

nodes will be chosen to host the recently created replicas. 

        (  )     (  
         (  )

              
   

       (  )

        
)             (4) 

 The selection priority of every DataNode is determined by 

comparing its free storage space and available network 

bandwidth with the total storage space and maximum network 

bandwidth of the cluster. FreeSpace(Dj), AvailBW(Dj), 

maxStorageSize and maxNetBW are calculated using the 

information which is being periodically received from 

DataNodes. Moreover, the effect of free storage media and 

available network bandwidth on NodeRate(Dj) can be adjusted 

using α and β constants. Here, we have used α=1 and β=1 for 

the sake of simplicity. 

 The respective statistics and information of all DataNodes 

of each rack is stored in a max-heap according to their 

selection priority value [20]. These max-heaps are referenced 

by the leaves of the Network Tree and are accessible in this 

way. As a result, selection of the most proper DataNode of a 

rack can be performed in O(1). Fig. 2 shows the pseudo-code 

of the algorithm for selecting the DataNodes to host the 

recently created replicas of the data block hosted by Di. 

 Once a new data block is created in a DataNode, the first 

replica is stored in the same node. The other two DataNodes 

to store replicas are selected using the algorithm shown in Fig. 

2 and a pipeline will be organized by HDFS to transfer 

replicas to the selected hosts. By default, this algorithm stores 

the replicas in the nearest racks to the data source. However, 

other policies to select replication hosts could be used in order 

INPUT: NC = current DataNode 
INPUT: p = the root of NetworkTree 
OUTPUT: Rid = null 
while (Rid == null) do 

last_RTT= 0 
for each nodei in childs(p) 

ND = select one of the descendent DataNodes of nodei in a 

random manner 
new_RTT = eval_RTT(NC, ND) 
if (new_RTT < last_RTT) { 
if (childs(nodei) == null) Rid = nodei 
p = switchi 
break 
}  
last_RTT = new_RTT 
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to improve reliability of the cluster. For example, storing a 

replica in another part of the cluster can keep the data block 

accessible on the event of communication switch failures. 

 

Figure 2: The structure of leafs of Network Tree and the psuedo-code 

of host selection algorithm 

 Replication of an existing data block is performed in a 

similar way. In order to find the proper DataNode to host the 

new replica, every DataNode that hosts one of the replicas of 

the data block selects a host using an algorithm similar to the 

one shown in Fig. 2 with Qn=1. Next, the proper host for the 

new replica will be chosen from the selected hosts in the 

previous step and replication will be performed by the nearest 

DataNode to it. HDFS performs the replication whenever one 

of the replicas of a data block becomes corrupted, so the 

execution rate of this mechanism cannot be remarkable. 

Moreover, this mechanism can be used to adapt the number of 

replicas with a dynamic replication factor in storage clusters. 

5 Evaluation 

 We have measured the performance of the proposed 

mechanism using three distinct criterions. The first two 

evaluations were performed using HDFS benchmarks in order 

to demonstrate the improvements in I/O performance of 

DataNodes and response time of the NameNode. The third 

one was performed to verify the low computational cost, 

network traffic and execution time of the algorithm proposed 

for Network Tree construction. According to the evaluation 

results, the proposed mechanism can improve the response 

time of file storage and retrieval operations in heterogeneous 

clusters with long-term I/O operations. 

5.1 I/O performance 

 In order to evaluate the I/O throughput of HDFS in presence 

and absence of our proposed mechanism, we have used 

TestDFSIO benchmark, one of the benchmark packages of 

hadoop-test-1.0.1. In this manner, a cluster of one master node 

and three slave nodes is used. Hardware configuration and OS 

specification of these systems is shown in Table 1. 

Table 1: Hardware and OS specification of cluster nodes 

 OS CPU RAM Disk (RPM) 

Master Mac 10.6.8 
Intel Core 

2 Due 2.8 
4 GB 5400 

Slave Ubuntu 10.04 

Intel 

Pentium IV 

3 GHz 

2 GB 5400 

 TestDFSIO is a MapReduce job and proceeds in two 

distinct phases. First, it creates some map and reduce tasks to 

write a number of files which is specified as an input 

parameter. After that, some other tasks are created to estimate 

the read performance of the cluster by reading specified 

number of files. In each phase, the benchmark prints some 

statistical information about the I/O operation performance of 

the cluster. In order to examine the effect of our proposed 

mechanism on HDFS I/O performance, TestDFSIO is 

executed in the presence and absence of the mechanism using 

various input parameters and the results are shown in Table 2. 

 Considering the presented evaluation results, our proposed 

mechanism is more beneficial for storage clusters with long-

term I/O operations. As a result, increasing the size of files 

will magnify the effect of adaptive selection algorithms on the 

performance of storage clusters. 

Table 2: Evaluated I/O throughput using TestDFSIO 

Number of files 10 100 10 100 

File size (MB) 100 100 1000 1000 

Read 

(MB/s) 

HDFS 7.006 7.421 8.983 9.603 

HDFS + AM 7.043 7.492 9.217 10.039 

Write 

(MB/s) 

HDFS 4.893 5.161 6.037 6.958 

HDFS + ASM 4.923 5.202 7.686 7.278 

5.2 Cluster scalability 

 Execution overhead of the proposed mechanism can 

degrade the number of metadata operations that the 

NameNode is capable of performing in every second. Once 

the NameNode reaches its resource limits as a result of an 

extraordinary number of metadata operations, presence of the 

proposed mechanism can increase response time of metadata 

operations and decrease overall performance of the cluster. 

For investigating this issue, one of the benchmark packages of 

hadoop-test-1.0.1 called NNBench is used. This benchmark 

performs in four distinct phases including create_write, 

open_read, rename, and delete. Moreover, NNBench supports 

a wide variety of input parameters including sizeOfBlocks and 

numberOfFiles. Fig. 3 shows the execution results of 

NNBench in the presence and absence of our proposed 

mechanism. 

 As it can be seen in Fig. 3, execution overhead of the 

proposed mechanism can have a slight impact on the 

NameNode performance only when the NameNode is 

overwhelmed with user requests. Indeed, this performance 

degradation is a direct outcome of centralize nature of the 

INPUT: Di = source DataNode 
INPUT: Qn = replication factor 
OUTPUT: Dd = a list of DataNodes to host replicas 
p = Di 

while (size(Dd) < Qn – 1) do 
visit(p) // Mark p as visited 
p = parent(p) 
for each Node in descendants(p) 

if (Node is VISITED) continue 
if (Node is LEAF) { 
Dd = Dd ∪ Node 
if (size(Dd) == Qn) remove_worst(Dd) 
} 
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NameNode in Hadoop clusters and can be avoided on the first 

sight by downscaling the cluster or improving hardware 

specification of the NameNode. However, using the proposed 

mechanism looks economical and effective with regards to 

how much it improves the system performance by spending a 

slight amount of processing power and memory space. 

 

Figure 3: NameNode TPS evaluation using NNBench 

5.3 Construction cost of Network-Tree 

 Construction of Network Tree is performed using ICMP 

network messages and the Ping utility. To evaluate the 

performance of our proposed method, we have examined the 

total network traffic and construction time of this method. 

Total network traffic of each run is monitored using 

Wireshark [21]. Searching the Network Tree is a one-time 

operation and every DataNode have to perform it just after 

joining the cluster. D-Link switches with a total bandwidth of 

100 Mbps have been used to from the communication network 

and connect computational nodes running a Linux 

distribution. The height of the Network Tree is two that 

demonstrates a two level network topology including the core 

switch and rack switches which are directly connected to the 

core switch. Fig. 4 shows our experimental results, in which 

total network traffic and the execution time are in KB and 

seconds respectively. 

 The execution time of this algorithm, which is used for 

searching the Network Tree, directly depends on the 

branching factor and the height of the tree. Height of the tree 

does not vary much and even in extra-large clusters, it can 

hardly ever reach a value more than 3. For instance, using 16-

port switches in building a communication tree with the height 

of 3 will lead to a cluster of size 16
3
. The largest operational 

Hadoop cluster at Yahoo contains 3500 DataNodes which is 

far less than 4096. Moreover, the branching factor does not 

exceed 16 most of the times. In most of the clusters, network 

switches with more than 16 ports are used as rack switches 

that have no effect on the branching factor of the Network 

Tree. Considering how this method can facilitate joining of 

new DataNodes to the cluster, it can be inferred that its 

execution time and network traffic are reasonable. 

 

Figure 4: Evaluation results of the tree construction algorithm 

6 Further works 

 Besides the proposed mechanism, distributed file systems 

can adapt with the execution state of the cluster in some more 

ways. Using dynamic replication factors and popularity 

domains for files are two of these ways that can benefit the 

storage cluster in both reliability and response time.   

 Considering the concept of files’ popularity which is widely 

used in P2P file sharing systems, the replication policy can be 

improved. Thus, each file will be replicated in every 

neighborhood that contains more reader or writer nodes. In 

this way, a popularity domain will be assigned to each file 

containing the DataNodes that will probably read or write 

from/to it in the future. This mechanism can be used along 

with the task distribution mechanism of Hadoop which 

executes every task near to its required data.  The cooperation 

of these two can lead to better distribution of load in Hadoop 

clusters. As a result, the behavior of file system users will 

affect the replication of data blocks and the file system will 

adapt with users’ activity. 

 Besides being used for determining proper replication factor 

of each file, the concept of popularity domains is beneficial 

for improving reliability of the NameNode in Hadoop clusters. 

As each popularity domain normally contains the list of 

DataNodes sharing the respective file, the global namespace 

can be divided into many popularity domains and distributed 

across several NameNodes. Consequently, reliability of the 

central mechanism which is currently in use in Hadoop 

clusters to maintain file system metadata will be improved by 

increasing the number of metadata servers. This mechanism 

follows the same idea as namespaces in Plan 9 and uses 

popularity domains in exchange of per-process namespaces. 

Reducing the computational overhead of the NameNode will 

directly improve the response time of storage and retrieval 
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operations of files. Indeed, this mechanism can improve both 

reliability and response time of distributed file systems. 

7 Conclusion 

 Our proposed mechanism considers the execution state of 

the storage cluster in performing data blocks replication. 

Various aspects of the cluster such as network topology and 

different state variables of computational nodes like network 

traffic and remaining storage space are considered to find the 

proper host for storing replicas. As the first step in the 

replication process, the NameNode specifies the required 

number of replicas for each data block. Next, the replication 

roadmap is designed based on the performed calculations and 

the selected host will store the newly created replica. The host 

selection algorithm will choose the proper nodes to store the 

new replica by looking at their execution state, available 

resources, and distance to the source of data. As a result, the 

load of storage and retrieval operations will be uniformly 

distributed across the cluster. 

 A similar method is used in order to find proper replica 

hosts to provide read operations with requested data blocks. In 

this manner, our proposed mechanism estimates the cost of 

reading a data block from every host and uses the results to 

generate an ordered list of hosts. Some execution variables of 

storage nodes including available network bandwidth, disk 

read speed, and current data streams are considered in 

evaluating the cost of reading every data block. The network 

distance between the replica host and reader node is also 

considered in this selection algorithm. 

 HDFS has been used as our implementation platform. 

Several facts like easy to use interfaces and open source 

implementation of HDFS lead to this decision. Performed 

evaluations show that our proposed mechanism improves the 

response time of file storage and retrieval operations in 

heterogeneous clusters running long-term I/O operations. 

Furthermore, its computational overhead will not have a 

remarkable effect on cluster scalability. 
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