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Abstract— One of the scalability issues in parallel applica-
tions, in which each process creates each file and writes data
to the file, is the scalability of file management due to the in-
creasing number of files. To mitigate this issue, a new file ag-
gregation mechanism, called the file composition technique,
is proposed. Unlike existing aggregation mechanisms, the file
composition technique aggregates multiple files created by
parallel processes into a single shared file without changing
the code of file I/O operations. In contrast with the metadata
operations in existing aggregation mechanisms, the metadata
operations are distributed to each process in order to carry
out scalability. The proposed file composition technique is
evaluated using a climate simulation code, called SCALE.
The result shows that the elapsed time of file output is
approximately 30% faster than that of original POSIX I/O
functions.

Keywords: File I/O, Parallel file system, File aggregation

1. Introduction
I/O access patterns of parallel applications are broadly

classified into three patterns: N-1, N-N, and N-M. The
N-1 pattern means that all processes access some shared
files, and the N-N pattern means that each process accesses
some individual files. For example, in a climate simulation
program, all processes save their local data to a single file
or save each individual file. In the former case, the file I/O
access pattern is called N-1 and is called N-N in the later
case. Contrasting with applications employing the N-1 or N-
N pattern in other parallel applications, such as data mining
and processing huge sensor data, all processes following
the N-M I/O pattern handle many files whose sizes are not
uniform.

I/O access patterns of many parallel applications are
categorized as the N-N pattern. For example, it was reported
that, in ten projects using the Blue Gene/P at the Argonne
National Laboratory [1], four, seven, and two projects em-
ploy the N-1, N-N, and N-M patterns, respectively. In the
N-N pattern, as the number of processes increases, the
number of files grows and the I/O performance becomes the
bottleneck of scalability. For example, Figure 1 shows the
execution time of parallel processes creating one individual
file each. The execution time linearly increases according
to the increasing number of processes. This is the result

B

B

B

B

B
BBBBB0

1

2

3

4

5

6

0 50 100 150 200 250 300 350 400

c
re
a
te
 t
im
e
[s
e
c
]

# processes

Figure 1: Time it takes parallel processes to create one file
each

of using a cluster with the Lustre file system described in
Section 4.

An approach to mitigating the above problem is introduc-
ing a file aggregation mechanism that gathers multiple data
generated by an application and stores these data into one or
a few files in order to reduce the number of files accessed
by these processes. Several libraries carry out such a file
aggregation mechanism, e.g., MPI-IO [2], PnetCDF [3], and
SIONlib [4]. All of them assume that parallel applications
are based on the single program multiple data ‘SPMD’
execution model, that is, all processes access files at the same
time. Those libraries have two main issues, If an application
is written using Posix file I/O APIs, it must be rewritten
using their APIs. In the case that an application is not written
in the SPMD manner, its modification cost is much higher.
The other issue is the metadata management of libraries such
as PnetCDF and SIONlib. Because the metadata of files is
sequentially handled at the user level, metadata operations,
such as creation and extension of files, limits scalability.

In this paper, a new file aggregation mechanism called the
file composition technique is proposed. It makes application
programmers select the I/O pattern such that each process
may access multiple individual files. In the proposed tech-
nique, the middleware gathers files created in the application
and stores them into a single shared file in a parallel file
system. The Lustre file system [5] is currently utilized.
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Figure 2: SIONlib

The remainder of the paper is structured as follows. In
Section 2, existing file aggregation techniques are intro-
duced. The concept of the file composition technique is
proposed, followed by its design and implementation, in
Section 3, and its basic performance is evaluated in Section
4. Section 5 presents a summary.

2. Related Work
Several techniques gather multiple data and store them

into one file and that support mechanisms to access the
gathered file by parallel processes.

2.1 SIONlib
Figure 2 shows the basic concept of SIONlib [4]. If the

I/O pattern of a parallel application is such that each process
creates multiple files, N , then the collective SIONlib func-
tion must be called N times, and this yields N aggregated
files. As a result, the performance gain by the file aggregation
can be degraded.

2.2 NetCDF and HDF5
NetCDF [6] and HDF5 [7] are the other I/O aggregation

libraries providing self-describing data formats. NetCDF
primarily supports a way to access files containing array-
oriented data. HDF5 primarily supports a way to access
hierarchical data. By using these libraries, the application
programmer can describe and store various data into one
file with the meta-information about the data and the data
format. Parallel NetCDF [3] and Parallel HDF5 [7] are the
parallel versions of NetCDF and HDF5, respectively. Both
are extended by using MPI-IO and support storing data
dispersed among parallel processes (Figure 3).

In both netCDF and HDF5, the data aggregation takes
place so that the data structure is preserved. (P)netCDF and
(parallel) HDF5 give users a good view of a complex data
structure. However, when a user tries to change the file
structure, then the aggregated file must be restructured. Thus,
users sacrifice the flexibility of their data format.
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Figure 3: PnetCDF and Parallel HDF5
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Figure 4: Concept of the file composition technique

3. File Composition Technique
In this section, we propose a new approach to store

multiple data generated by a parallel application into a single
shared file.

3.1 Proposal
We propose another approach to store multiple data gen-

erated by a parallel application into a single shared file
by holding an application’s I/O pattern. We call the new
approach file composition technique. Figure 4 shows the
basic concept of the file composition technique.

This file composition technique composes data, which
looks like a file from the viewpoint of the application, into
an aggregated larger file. Unlike SIONlib, (P)netCDF, and
(parallel) HDF5, no restrictions are on how the “files” format
the application view, and how they are organized and/or
structured. Thus, the file composition technique can provide
more flexibility than can the existing techniques.

In this paper, we call a file from the application view a
“logical file,” and a composed file “a physical file.” In the
application layer, application processes can access various
data as if they are individual files. But in the file system
layer, all logical files are stored on a single physical file.
The file composition library aggregates I/O requests of
application processes and translates them into I/O operations
for a single shared physical file.



3.2 Design
In this subsection, a design of the implementation of the

file composition library is described. We explain how to
manage a logical file, how to map logical files to physical
files, and how to access the physical file. Figure 5 shows a
design overview of the file composition library.

Logical files are managed by our library at the computing
node where each logical file has been created, not by a
single server such as a metadata server. Even if parallel
processes access each individual logical file at the same
time, requests are not concentrated at a particular node. Thus,
it is expected that the I/O performance does not decrease.
Each library process treats logical files as separately divided
into a metadata object and data objects. A metadata object
holds the information about every logical file, filename, size,
position in the physical file, and so on. A data object is an
entity of each logical file.

The metadata object and the data objects are split into
blocks of a constant size and are distributed into a logical
file. By making the block size the same as the stripe
size of the file system, each library process can access
each individual stripe block without collisions with other
processes.

The stripe size of a parallel file system is the maximum
message size with which clients and the storage server
can communicate. If each library accesses a physical file
with the stripe size, then it is expected to have a higher
I/O performance. So, each library process has a buffer for
data objects with the length equal to the stripe size. If an
application process writes many small logical files, then the
buffer holds the data of these logical files and writes to a
physical file when the buffer becomes full.

4. Evaluation
We implemented the file composition library and eval-

uated its performance on the Lustre file system. Figure 6
shows the evaluation environment where all of the following
experiments took place. The cluster consists of 32 computing
nodes and a parallel file system, Lustre. Each computing
node has two Intel X5670 CPUs and 96 GiB memory and is
connected with the other nodes and the file server nodes
by Infiniband 4xQDR. Lustre consists of one Meta Data
Server (MDS) and 12 Object Storage Servers (OSSs). Each
OSS has 128 Object Storage Targets (OSTs) and the total
capacity of the file system is 10 PB. Each OSS has 192 GiB
memory. Two switches for the computing nodes and the file
system servers are connected with four links. Throughout
this evaluation section, the buffer size of the file composition
technique is set to 16 MiB.

4.1 Micro Benchmark
We measured the basic performance of our file com-

position library and the performance of POSIX I/O for

comparison. We show the performance of the create, write,
and read operations. In each benchmark, the number of
processes is increased from one process to 32 processes.
Each process runs on one computing node.

On the Lustre file system, files are split into multiple
object blocks and each object block is distributed to multiple
servers. The size of each object block is called the stripe size,
and the number of OSTs used to distribute the object blocks
is called the stripe count. These parameters are factors of
the I/O performance. In the case of POSIX I/O, the stripe
count is set to 4 and 64, while in the case of using the file
composition library, the stripe count is set to 64 and 160.
The stripe size is set to 16 MiB constant in all cases.

File Create

Figure 7 shows the time of file creation. Each process
repeats the procedure of calling the create and then the
close functions for a file 128 times, yielding 128 files.
The creations of each file are synchronized and the time
is measured from the time to the first create call until the
termination of the slowest call of close on the 128th file.

In the case of 32 processes, POSIX with the 4 stripe count
took 0.69 seconds and POSIX with the 64 stripe count took
37 seconds. The file composition with the 64 stripe count
and with the 160 stripe count took 0.08 seconds.

In all cases, the elapsed time increases as the number
of processes increases. But the increasing rate of the file
composition case is smaller than that of POSIX. This phe-
nomenon can be considered as that the I/O requests are
concentrated on the Meta Data Server in the POSIX I/O.
In contrast, the file composition technique can decrease the
degree of concentration.

In the POSIX case, when the stripe count gets larger,
the creation time gets slower. This is because each create
operation involves the operation on the Object Storage
Target. In the file composition case, the creation time is
constant over the number of processes, independent from
the stripe count.

Write

Figure 8 shows the throughput of open-write-close. In
this case, each process calls open, write, and close. Each
process accesses 128 individual files. The open calls are
synchronized and the time is measured from the time to
the first create call until the termination of the slowest call
of close on the 128th file.

The upper graph of Figure 8 shows the result of the case
of setting the file size to 1 MiB, and the lower one shows
the result of the case of setting the file size to 16 MiB.

In the case that the file size is set to 1 MiB, the file
composition performance is almost twice better than that of
POSIX. The assumed reason for this performance improve-
ment is that the file creation time is reduced and that the
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Figure 5: Design overview of the file composition library
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Figure 6: Evaluation environment

buffering in the composition technique decreases the number
of write calls.

In the case that the file size is set to 16 MiB, the perfor-
mance of the file composition is approximately twice faster
than that of POSIX. This is because the file creation cost
is reduced with the file composition technique. However, in
the file composition case, when the stripe count is small and
the number of processes is large, its performance gain is not
high. This is because the number of Object Storage Targets
that all processes can access is limited to the stripe counts
with the file composition technique.

Read
Figure 9 shows the throughput of open-read-close. Each

process opens a file and reads data from the file and closes
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Figure 7: Time of create-close

the file. Each process accesses 128 individual files that were
created in the previous write benchmark runs. To eliminate
the effect of page cache in the Linux kernel, the cache of
all computation nodes and all file system servers is cleared
before running this benchmark.

The upper graph of Figure 9 shows the result of the case
that each file size is set to 1 MiB, and the lower graph shows
the result of the case that each file size is set to 16 MiB.

In the case that the file size is set to 1 MiB, the perfor-
mance of the file composition is approximately three times
faster than that of POSIX. In the case that the file size is
set to 16 MiB, the performance of the file composition is
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Figure 8: Throughput of open-write-close

almost the same as that in the POSIX case. The assumed
reason for this performance improvement in the case of 1
MiB is that the process can read the same stripe block as in
the case of the file composition. In contrast, in the case that
the file size is set to 16 MiB, which is the same size as the
buffer of the file composition technique, the file composition
technique has no buffering effect.

4.2 Evaluation with a real application
Finally, our file composition technique is applied to a

real application that is a climate simulation program, called
SCALE, being developed by RIKEN AICS Computational
Climate Science Research Team.

When the program is running in parallel, each process
periodically calls a file-output function that creates a new file
and writes data into the file. When the file-output function is
called, first, a new file is created and a file header is written.
The file header has meta information about the data to be
written in the file. Then, 16 arrays in the program are written
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Figure 9: Throughput of open-read-close

and the file is closed.
We rewrote the file-output function by replacing the

POSIX I/O functions with the function that our file composi-
tion library provides. The file composition library aggregates
all files that the SCALE program creates and stores them into
a single shared file throughout the whole program execution.

We executed the SCALE program in parallel and mea-
sured the elapsed time of the file-output function called by
each application process. The program was executed with
32 processes and the size of one array was 10.1 MiB. The
SCALE program was set up so that it repeated the file output
10 times. In the POSIX case, the stripe count was set to 0,
because that was the fastest parameter variable setting. In
the case of the file composition library, the stripe count was
set to 160, which is the maximum value we can set.

Table 1 shows the result of the total elapsed time of the
output function. The performance of the file composition
library was approximately 30% faster than that of POSIX.
The assumed reason for this performance improvement is



Table 1: Time of SCALE’s file output.

the fastest the slowest average of
process process all processes

POSIX 12. 75 15.33 14.43
File Composition 8.79 12.17 10.37

[sec]

that the file composition technique could successfully reduce
the number of accesses to a metadata server when each
process creates files.

5. Summary
In this paper, we proposed the file composition technique

that achieves good I/O scalability of parallel applications
without changing the code using the POSIX file I/O inter-
faces. The library employing this technique aggregates I/O
requests of parallel processes and translates them into I/O
operations in a single shared file in a parallel file system,
which is currently the Lustre file system. Two techniques
are integrated to achieve good scalability of I/O operations.
The metadata information is separately managed by each
process to avoid the contention of metadata operations. The
middleware of each process accesses its own stripe block
exclusively in the parallel file system to avoid the contention
of read/write operations.

The result of the basic performance showed that the
proposed library is eight times faster than the regular POSIX
I/O library in the case that 32 parallel processes create
128 files each. The results two times better throughput of
parallel open-write-close operations and three times better
throughput of parallel open-read-close operations. We also
applied the file composition technique to the file-output
function of a climate simulation program called SCALE.
The elapsed time of the file-output function with the file
composition library was approximately 30% faster than that
of the POSIX I/O. These experiments demonstrated that I/O
performance can be improved by using the file composition
technique without changing the POSIX file I/O interfaces.
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