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Abstract— Climate simulations have significant role in
analyzing changes that have occurred in the Earth, give us
better understanding of the recently happened processes.
Most of the existing models perform approximate results
and fundamental improvements of the software models are
necessary to increase accuracy. We present an efficient im-
plementation of ultra-high resolution atmospheric global
circulation model on graphics processing units(GPUs).
The model based on the nonhydrostatic system with the
icosahedral grid and called "NICAM". We ported compu-
tationally intensive part of the NICAM code to GPU by
using CUDA FORTRAN, then validated and compared its
GPU performance to that for the parallel CPU version of
the code. This approach shows a good performance results
together with reducing memory consumption compared to
a fully GPU approaches. Our results show 5x speedup
for a computationally intensive part of shallow water
simulation model on a single GPU in comparison with
a parallel CPU implementation (5 cores).

Keywords: GPU computations, CUDA Fortran, climate simu-
lations, nonhydrostatic system

1. Introduction

One of the main goals of climate simulations is a
prediction of future climate changes and their impact on
the Earth and society. It is essential to get a reliable results
from the simulations to plan our future ecological, finan-
cial and human strategy. For this purpose we need signif-
icantly increase scales of the current climate simulations.
Thus, it is important to adapt current climate applications
to take advantage of the performance capabilities of novel
hybrid architectures.

Performance rise of the climate and weather simulation
software was based on increasing processor speed rather
than increasing parallelism for last years[1]. Nowadays, to
sustain such an increase towards the exascale era, we need
some significant changes in the software models. GPUs
are a very high performance alternative to conventional
microprocessor. The massive parallelism of GPUs offers
tremendous performance in many high-performance com-
puting applications. GPUs were designed to exploit fine-
grained parallelism, which gives us an ability to create
weather and climate models with much finer parallelism.

In order to increase performance of the existing climate
simulation, we ported and optimized a high resolution

climate model to GPU. We aimed to get significant accel-
eration from applying heterogeneous computing with both
conventional CPUs and vector-oriented GPU accelerators.

In this work we use single GPU to run a new type
of ultra-high resolution atmospheric global circulation
model NICAM (Nonhydrostatic [Cosahedral Atmospheric
Model) [2] being developed at Advanced Institute for
Computational Science, RIKEN (see section II). Initial
NICAM code uses 2-dimensional MPI-parallelization and
shows good scalability results.

We propose to localize and port the most computation-
intensive part of the climate model to GPU. For this
purpose, we first study the original NICAM code and
isolate the most time-consuming modules. Then, we ported
those modules to GPU and evaluated the performance of
our implementation.

The main difference of our strategy from some of
existing GPU-based approaches [3], [4] is that we do not
port to the GPU entire climate model application. Our
method allows to reduce the memory to be allocated on
GPU by performing on CPU some low-cost computations
and porting to the GPU only the most time-consuming
computations.

The results of our evaluation show that we reach an
almost optimal performance for most of the ported kernels
and we see an important speedup. We have got 5x speedup
for a computationally intensive part of shallow water
simulation model on a single GPU, in comparison with
a parallel CPU implementation. Our GPU kernels give us
performance, close to the maximum one, which indicate
the efficient hardware utilization.

This paper is organized as follows. We describe some
important background in the "NICAMmodel" section.
Section III outlines our GPU NICAM implementation
approach, presents step-by-step algorithm of the "mapping
to GPU" process. In section IV we give some information
about environment we used, describe performance results
for both CPU and GPU versions of the code and present
GPU performance model. We give some conclusions and
outline our plans for future work in section V.

2. NICAM model

NICAM is a Nonhydrostatic ICosahedral Atmospheric
Model, used as a Global Cloud Resolving Model (GCRM).
It was designed to perform "cloud resolving simulations"
by directly calculating deep convection and meso-scale
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Fig. 1: Tropical cyclones SINLAKU and IKE reproduced
by NICAM 7km simulation [6] (OOUTC 13 Sep. 2008) (by
H.L. Tanaka).

circulations, which play key roles not only in the trop-
ical circulations but in the global circulations of the
atmosphere[2]. NICAM - is a unified model in the sense
that it can be used for both short term numerical predic-
tions for weather systems such as a week, and long term
simulations to obtain quasi-equilibrium climate states (see
Figure 1).

The model uses fully compressible (elastic) non-
hydrostatic system to obtain thermodynamically quasi-
equilibrium states by long time simulations. For this
purpose a nonhydrostatic numerical scheme which guar-
antees conservation of mass and energy was devised and
implemented to the global model using the icosahedral
grid configuration. The formulation and numerical scheme
of NICAM along with numerical results of some test cases
are thoroughly presented in [5].

The finite volume method is used for numerical dis-
cretization, so that total mass and energy over the domain
is conserved; thus this model is suitable for long term
climate simulation.

2.1 Numerical methods

For the horizontal discretization, icosahedral grid sys-
tem on the sphere is used. Figure 2 shows an example of
series of consecutive icosahedral grids.

The icosahedral grids are constructed by a recursive
division of geodesic arches on the sphere. Starting from the
original icosahedron, one-level finer grids are generated
by bisecting the geodesic arches of the former coarser
grids. We call the n-th bisection of the icosahedron glevel
n (glevel: grid division level). The average grid interval of
glevel 11 is about 3.5 km, for example. The total number
of grid points is Ng = 10(2")? + 2.

Numerical models with this grid system are first inves-
tigated by Sadourny et al. [7] and Williamson [8], and
are recently revisited as a candidate for next-generation
high-resolution global models.

In the [9] Tomita et al. describe the modifications, which
was applied to the original icosahedral grids by using the
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Fig. 2: Horizontal discretization scheme of NICAM model,
based on icosahedral grid system on the sphere. Grid level
0 - original icosahedron, 2 grid points. The number of
grid points for grid level n can be calculated by Ng =
10(27)2 + 2

spring dynamics. With this modifications, the fractal struc-
ture of the original icosahedral grid is relaxed and more
uniform grid structure with a smaller ratio of minimum to
maximum grid intervals is obtained by smoothing the grid
arrangement. It was found that the numerical errors can
be reduced using the modified grid[10].

The governing equations of the global model are a
newly developed nonhydrostatic schemes that guaran-
tees conservation of mass and energy. The finite volume
method is used for the flux form equations. The Arakawa-
A type grid is used where all the variables are allocated at
the vertices of triangles. The shape of the control volume
is either hexagon or pentagon.

Further details about numerical scheme, used in NICAM
are described in [2], [9], [10].

2.2 MPI parallelization

In this paper we present our single GPU implementation
of NICAM model, but we plan to use current NICAM
MPI-parallelization method to create a multi-GPU imple-
mentation for a following work.

Initial NICAM code use 2-d domain decomposition with
FLAT-MPI parallel programming model (see Figure 3,
Figure 4).

MPI parallelization strategy is based on discretization
grid by regions, which then managed by the different MPI
processes.

Region discretization algorithm is shown at the Figure
3. First, we create region level 0 by connecting two
neighboring icosahedral triangles. In this case we have



(1) region level 1

(0) region level O

Fig. 3: NICAM region decomposition, used for FLAT MPI
parallelization scheme. Region level 0 has 10 rectangles.
The number of rectangles for the region level n can be
calculated by Nr = 10(4"™)

Fig. 4: MPI distribution strategy: region level 1, 40 regions
and 10 MPI processes. Each process manage 4 regions
with the same color

only 10 rectangles for the level 0 region. To increase
region level to 1, we divide each of rectangles into 4 sub-
rectangles by connecting the diagonal mid-points (revel-
1). Continuing this process recursively we can get region
level-n.

MPI distribution strategy is presented on Figure 4. One
process manages rectangle regions with the same color.
Figure 4 shows an example case for the region level 1, 40
regions and 10 MPI processes. Each process manages 4
regions with the same color.

Assuming one process manages one rectangle region,
increasing r-level computational intensity on 1 process is
reducing.
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Fig. 5: Simplified flow-graph of the original NICAM
Shallow Water model code.

3. GPU implementation

Our GPU implementation approach is based on porting
the most computationally intensive part of the initial
NICAM code to GPU. In this work we investigate 2-
dimensional (Shallow water) case of NICAM model [11],
which plan to implement for the 3- dimensional case in
future work.

First, we selected a computationally intensive module
of NICAM, then modified this Fortran model to run
on NVIDIA GPU using PGI CUDA Fortran[12], [13],
validated and compared its GPU performance to that of
the original MPI parallel module.

In purpose to analyze runtime behavior of the given
code we used the Scalasca performance toolset [14]. We
have got profiling results for different configurations of the
grid and region level numbers.

In the Figure 5 we present a simplified flow-graph of
the original NICAM Shallow Water model code. The main
computations performs in the cycle by the time steps (nl).
Before starting the main cycle computations we need to
setup MPI configuration and compute the initial data. At
the end of each time step we collect the data from each
MPI process and go to the next time iteration.

According to the profiling results "one large step" is
the most time consuming module of the code. It takes
more then 50% of the whole time to compute this mod-
ule. Therefore, in purpose to accelerate computations, we
decided to port this module to GPU.

In the Figure 6 we present our GPU implementation
approach scheme.

After we computed an initial data on CPU we send
the ones, necessary for "One large step" computations, to
GPU and store them in GPU global memory. Some of this
initial data are constant and by porting them once in the
beginning of the NICAM computations we reduce CPU-
GPU communicational overheads.
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Fig. 6: NICAM GPU implementation approach. Porting
the most computationally intensive module "One large
step” to the GPU

The data, which are variable inside the cycle and
necessary for the GPU computations, are transferring to
GPU before the "One large step” module on each time
step. Then, data, computed on GPU and needed for farther
computations on CPU, copying to the CPU at the end of
the "One large step".

In the Figure 7 we present "One large step" module
in detail. This module performs one full time step of the
second-order Runge-Kutta scheme, which uses for the ap-
proximation of solutions of ordinary differential equations.
"One large step" module consist of 3 main subroutines:
OPRT_gradient, OPRT _vorticity and OPRT_divergence. If
we port only this subroutines to GPU the communication
overheads will be significant and affect to the performance.
Therefore we also port initial data and output data com-
putation modules to GPU and keep all temporary data in
the GPU global memory. Initial CPU code for this module
was slightly modified in purpose to reduce the amount of
memory to be allocated on GPU.

We created one kernel for OPRT_gradient and one
for OPRT _divergence. For OPRT _vorticity module it was
necessary to create 2 kernels for the data synchronization
issue. Figure 8 shows how our numerical scheme is
computed by executing 6 CUDA kernels in order.

Each module, ported to the kernels, based on a nested
loop calculation. Each loop iteration computes 1 element
of 2-dimensional array. Each thread of our GPU kernels
calculates 1 element of the array.

The CUDA programming model requires the program-
mer to organize parallel kernels into a grid blocks, which
divided into thread blocks with at most 512 threads each.
The NVIDIA GPU architecture executes the threads of a
block in SIMT (single instruction, multiple thread) groups
of 32 called warps.

We use 2-dimensional grid, which size depends on the
of grid level and region level sizes. We use a block
configuration of 256 threads where we have one thread
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Fig. 7: "One large step" module. Left side blocks - input
data, right side blocks - output data.

COPY to GPY:

h, vx, vy,vz

P <<< kernel for scl, hvx, hvy, hvz >>>
<<< kernel OPRT_gradient >>>

<<< kernel OPRT_vorticity 1>>>
<<< kernel OPRT_vorticity 2>>>

<<<kernel OPRT_divergence >>>

' <<< kernel fordvx, dvy, dvz, dh>>>

COPY to CPU:
dh, dvx, dvy,dvz

Fig. 8: "One large step" on GPU.

per element. Our block size is a multiple of 32 which
fits with the warp size and, therefore, allow us to achieve
maximum efficiency.

We have h, vz, vy and vz arrays as an input data for the
GPU computations, and dh, dvz, dvy, dvz as an output
data. All the data, used for GPU computations, are stored
in GPU Global memory during the entire NICAM model
computation process. This allows different kernels access
to the common data.

4. Evaluation

In this section we present results of implementation
NICAM code on 1 node and single GPU.

4.1 Evaluation environment

Described approach was implemented on the TSUB-
AME 2.0 supercomputer, established at Tokyo Institute of
Technology.

TSUBAME 2.0 consists of 1408 compute nodes (thin
nodes) of two Intel Xeon Westreme-EP 2.9 GHz CPUs and
tree NVIDIA M2050 GPUs with 52Gb and 3Gb of system



and GPU memory, running SUSE Linux Enterprise Server
II SP1.

1 node has 2 sockets, 12 cores/node. Each node is
interconnected by dual QDR Infinitband network with a
full bisection- bandwidth fat-tree topology.

NICAM code consists of both FORTRAN and C++
modules. We use PGI CUDA FORTRAN pgfortran
version 2011 compiler for the GPU and FORTRAN code
and mpicc compiler for the C++ code.

4.2 Performance results

In purpose to compare NICAM CPU version perfor-
mance with one for the GPU version we investigated initial
CPU version for the code performance on TSUBAME 2.0
supercomputer. After performing the CPU code analysis
we modified the code, porting the most time-consuming
module to the single GPU, verified and validated our
implementation. Then we compared MPI-parallel code
performance with the single GPU code performance.

4.2.1 CPU performance

As it was described in section II, NICAM CPU code
is based on 2d-domain decomposition with FLAT-MPI
parallel programming model. Initial grid is divided by
regions, managed by different MPI processes. The number
of cores is restricted by the region division level, which can
has limited number of the regions, that is 10 (2")?, where
n - the region level order. Therefore, the total number of
processes can be only the divisor of the total number of
regions.

Figure 9 shows strong scalability results for the initial
CPU version on TSUBAME 2.0 supercomputer. Problem
size is grid level 11 with region level 5, which corresponds
to 41943042 grid points. Strong scalability results demon-
strate good speed up resulting on the number of cores up
to 2560.

Figure 10 and Figure 11 present CPU performance
results for the most time-consuming modules, ported to
GPU.

From the CPU performance graph we can see that in-
creasing grid level the scalability is rising due to increasing
of the computational intensity per one process.

We assume 5 processes is a saturation point of the
MPI parallelization and further compare CPU performance
results on 5 processes with the GPU performance results
on single GPU (see Figure 12)

4.2.2 GPU numerical performance

We compared single GPU version performance result
with the performance for parallel MPI-parallel version
(saturation point). We assume that the saturation point for
performance of the MPI-parallel version achieves when
the number of cores equal 5. Due to the fact that we have
6 cores in one socket on Intel Xeon X5670, we compare
1 CPU socket results versus 1 GPU socket.

This comparison results for the 3 main subroutines
of the NICAM Shallow Water model are shown on the
Figure 12. We can see that for the grid level 6 (gl06)
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Fig. 9: Strong scalability of the CPU version. Average
running time and speedup as a function of the number of
cores for the grid level 11 and region level 5, which is
correspond to horizontal size of grid cell around 3.5 km,
41943042 grid points
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Fig. 11: CPU performance graph. Average speedup as a
function of the number of cores for the different configu-
rations of the grid and region levels

GPU versions performs 3 times faster then multi-CPU one.
Increasing grid level to gl07 GPU version performs about
5 times faster then parallel-CPU one. It can be explained
by the increasing computational intensity per kernel. We
get 5x acceleration also for the grid level 8.

Due to limitations in GPU global memory, we were
unable to scale NICAM code to a grid level higher then
8. The NVIDIA M2050 GPU only provides 3 GByte of
Global memory. This limitation can be relaxed by using
GPUs with higher amount of global memory. Also, as a
future work, we are going to reduce amount of memory
to be allocated per one GPU by splitting kernels between
multiple GPUs, sharing 1 node.

4.2.3 GPU performance model

In purpose to measure the performance of our GPU
NICAM implementation, we used "roofline" model of
Samuel Willams [15]. This model compares achieved
performance to a "roofline" graph of peak data streaming
bandwidth and peak FLOP/s capacity.

We calculated performance by the next formula (1):

FLOP

Per formance = =
FLOP + Byte +a

Fpeak Bpeak

FLOP/Byte

= Fpeak )
FLOP + Fpeak +aneak:

Byte Bpeak Byte

Here FFLOP - number of floating-point operations for
applications, Byte - byte number of memory access for
applications, F'peak - peak performance of floating-point
operation, Bpeak - peak memory bandwidth, o - time
taken by other OPs except both FP and memory access.

For TSUBAME 2.0 supercomputer Fpeak =
515G Flops, Bpeak = 148GByte/sec in double
precision, we assume o = 0.
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Fig. 12: Average running time for MPI-parallel CPU
module versus time for GPU kernel as a function of the
problem configuration for 3 main modules of the NICAM
code.

Arithmetic intensity was calculated as F'LOP/Byte.

Figure 13 shows "roofline" performance model for all
GPU kernels of the GPU NICAM implementation. It is
shown that output data calculations kernel, both vorticity
kernels and gradient kernel give performance, close to
theoretical one. This results indicate that we get maximum
performance from the kernels. Performance of the input
calculation kernel and divergence kernel we get is not the
maximum one, but we will try to increase it by applying
some additional optimization in the following work.

5. Conclusion

In this paper we have described our strategy of map-
ping to GPU a ultra-high resolution atmospheric model
NICAM. We outlined the main steps of the mapping
process and reported about results we got on TSUBAME
2.0 supercomputer.

We ported the most time-consuming modules of the
initial NICAM Fortran code to a single GPU by using PGI
CUDA Fortran. In this work we investigated 2-dimensional
(Shallow water) case of NICAM model, and we plan to
implement our GPU algorithm to the 3- dimensional case
in a future work.

The results of our evaluation show a 5x speedup for a
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model.

computationally intensive part of shallow water simulation
model on a single GPU in comparison with a parallel CPU
implementation.

In purpose to investigate performance of our GPU
NICAM implementation, we created a "roofline" perfor-
mance model for the GPU kernels. It was shown, that 4 of
our 6 kernels give us performance close to the maximum
one and, therefore, do not need any optimization. Two
kernels still can be optimized to get better performance.

As our work progresses we will optimize current GPU
implementation to get better performance. Then, we plan
to apply our strategy to the multiple GPUs on one node,
in order to reduce the amount of memory to be stored on
one GPU. After that we plan to finish our MPI-CUDA
implementation and run on multiple GPU nodes. We hope
to see additional significant performance gains.

We also plan to investigate behavior of the NICAM code
with OpenACC and the 3 compilers: PGI, CAPS/OMPP
and Cray. Then it might be interesting to look at the
NICAM code at the Cray XK6, which has been installed
at Tokyo Tech this spring.
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