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Abstract - Encryption algorithms used in privacy preserving 
protocols can be affected on overall performance. In this 
paper we study several encryption algorithms with two 
methods of privacy preserving association rule mining on 
distributed horizontal database (PPARM4, and PPARM3). 
The first method PPARM4 computes association rules that 
hold globally while limiting the information shared about 
each site in order to increase the efficiency. The second 
method PPARM3 is a modification for PPARM4 based on a 
semi-honest model with negligible collision probability. 
Common encryption algorithms for the two methods of 
privacy preserving association rule mining on distributed 
horizontal database selected based on performance metric. So 
a performance comparison among five of the most common 
encryption algorithms: RSA, DES, 3DES, AES and Blowfish 
with the two privacy methods are presented. The comparison 
has been conducted by running several encryption settings 
with the two methods of privacy preserving association rule 
mining on distributed horizontal database. Simulation has 
been conducted using Java. Results show that, PPARM3 gives 
better performance with all encryption algorithms 
implemented. Also PPARM3 with encryption algorithm DES 
gives best result with different database sizes. Based on the 
results we can tune the suitable encryption algorithm from our 
implementations to the required overall performance. 

Keywords: Encryption, distributed data mining, Association 
rule mining, privacy, security. 
 

1 Introduction 
  Data Mining (DM) techniques have been widely used in 
many areas especially for strategic decision-making [1-8]. 
Apart from its usual benefits, it also has a few disadvantages 
associated with it. Experts say that data mining in the wrong 
hands will end up in destruction. The main threat of data 
mining is to privacy and security of data residing in large data 
stores [9-15]. Some of the information considered as private 
and secret can be brought out with advanced data mining 
tools. It is a real concern of people working in the field of 
database technology.  Different research efforts are under 
way to address this problem of preserving security and 

privacy. The privacy term is overloaded, and can, in general, 
assume a wide range of different meanings. For example, in 
the context of the Health Insurance Portability and 
Accountability Act (HIPAA) Privacy Rule, privacy means the 
individual’s ability to control who has the access to personal 
health care information. From the organizations point of 
view, privacy involves the definition of policies stating which 
information is collected, how it is used, and how customers 
are informed and involved in this process. We can 
considering privacy as “The right of an entity to be secure 
from unauthorized disclosure of sensible information that are 
contained in an electronic repository or that can be derived as 
aggregate and complex information from data stored in an 
electronic repository”. There are many methods for privacy 
preserving distributed association rule mining across private 
databases. So these methods try to compute the answer to the 
mining without revealing any additional information about 
user privacy. An application that needs privacy preserving 
distributed association rule mining across private databases, 
like medical research. Sensitive information contained in a 
database can be extracted with the help of non-sensitive 
information. This is called the inference problem. Different 
concepts have been proposed to handle the inference 
problem. The process of modifying the transactional database 
to hide some sensitive information is called sanitization. By 
sanitizing the original transactional database, the sensitive 
information can be hidden. In the sanitization process, 
selective transactions are retrieved and modified before 
handing over the database to a third party. Modification of 
transaction involves removing an item from a transaction or 
adding an element to the transaction. In some cases, 
transactions will be either added to or removed from the 
database as suggested in [16]. The modified database is called 
sanitized database or released database. The efficiency of a 
privacy-preserving algorithm is measured based on: (1) the 
time taken to hide the data, (2) the number of new rules 
introduced because of the hiding process, and (3) the number 
of legitimate rules lost or unable to be extracted from the 
released database. Encryption algorithm used in privacy 
preserving can be affected on overall performance, so in this 
paper we addresses the problem of evaluate several 
encryption algorithms with two protocols of privacy 
preserving association rule mining (PPARM4, and PPARM3) 
on distributed horizontal database. The numbers (4 and 3) in 



abbreviations (PPARM4, and PPARM3) respectively means 
the number of computation steps to get the results of protocol. 
The first protocol (PPARM4) computes association rules that 
hold globally while limiting the information shared about 
each site in order to increase the efficiency [17]. The second 
protocol (PPARM3) is a modification for the first based on a 
semi-honest model with negligible collision probability [18]. 
Section 2 gives an overview about the problem and the 
related work in the area of privacy preserving association rule 
mining on distributed homogenous databases. In section 3 
some details of the two protocols of the algorithms of 
computing the distributed association rule mining (PPARM4, 
and PPARM3) to preserve the privacy of users. Sections 4 
and 5 describe implementation and results of several 
encryption algorithms with the two methods of privacy 
preserving association rule mining on distributed horizontal 
database.   Finally, some conclusions are put forward in 
Section 6. 

2 Association Rule Mining  
 Association rule mining finds interesting associations 
and/or correlation relationships among large sets of data 
items. Association rules show attributes value conditions that 
occur frequently together in a given dataset. In [19] the 
association rules mining problem can formally be defined as 
follows: Let I = {i1, i2, . . . , in} be a set of items. Let DB be 
a set of transactions, where each transaction T is an itemset 
such that  . Given an itemset  , a transaction T contains A if 
and only if  . An association rule is an implication of the 
form  where   and  . The rule has support S in the transaction 
database DB if S% of transactions in DB contains. The 
association rule holds in the transaction database DB with 
confidence C if C% of transactions in DB that contain A also 
contains B. An itemset X with k items is called a k-itemset. 

2.1 Distributed Association Rule Mining 
Problem 

 The problem of mining association rules is to find all 
rules whose support and confidence are higher than certain 
user specified minimum support and confidence. Clearly, 
computing association rules without disclosing individual 
transactions is straightforward. We can compute the global 
support and confidence of an association rule knowing only 
the local supports of AB and ABC, and the size of each 
database:  
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 Note that this requires no sharing of any individual 
transactions. And Protects individual data privacy, but it does 
require that each site disclose what rules it supports, and how 
much it supports each potential global rule. What if this 
information is sensitive? Clearly, such an approach will  be 
secure under secure muti-party computation (SMC) 
definitions by some modification, a way to convert the above 
simple distributed method to a secure method in SMC model 
is to use secure summation and comparison methods to check 
whether threshold are satisfied for every potential itemset [ 18 
]. For example, for every possible candidate 1-itemset, we can 
use the secure summation and comparison protocol to check 
whether the threshold is satisfied. Fig. (1)  gives an example 
of testing if itemset ABC is globally supported, it shows 
determining if itemset support exceeds 5 percent threshold. 
Each site first computes its local support for ABC, or 
specifically the number of itemsets by which its support 
exceeds the minimum support threshold (which may be 
negative).  

 

Fig. 1. Computing global support securely 

The parties then use the secure summation algorithm (the first 
site adds a random (R) to its local excess support, then passes 
it to the next site to add its excess support, etc. and finally 
when pass to first site subtract the generated random from the 
result). The only change is the final step, the last site 
performs a secure comparison with the first site to see if the 
sum ≥ R. In the example, R -10 is passed to the second site, 
which adds its excess support (5) and passes it to site 3. Site 3 
adds its excess support; the resulting value (22) is tested 
using secure comparison to see if it exceeds the Random 



value (21). It is, so itemsets ABC is supported globally. Due 
to huge number of potential candidate itemsets, we need to 
have a more efficient method. This can be done by observing 
this lemma, (If a rule has support > k% globally, it must have 
support > k% on at least one of the individual sites). A 
distributed algorithm for this would work as follows, request 
that all rules are sent by each site with support at least k, for 
each rule returned, request that all sites send the count for 
their transactions that support the rule, and the total count of 
all transactions at the site. From this, we can compute the 
global support of each rule, and be certain that all rules with 
support at least k have been found. This has been shown to be 
an effective pruning technique. In order to use the above 
lemma, we need to compute the union of locally large sets. 
Then use the secure summation and comparison only on the 
candidate itemsets contained in the union. Revealing 
candidate itemsets means that the algorithm is no longer fully 
secure: itemsets that are large at one site, but not globally 
large, would not be disclosed by a fully secure algorithm. 
However, by computing the union securely, we prevent 
disclosure of which site, or even how many sites, support a 
particular itemset. This release of innocuous information 
(included in the final result) enables a completely secure 
algorithm that approaches the efficiency of insecure 
distributed association rule mining algorithms. The function 
now being computed reveals more information than the 
original association rule mining function. However, the key is 
that we have provable limits on what is disclosed. 

3. (PPARM4, and PPARM3) Protocols 
Details 
 In secure multi-party computation approaches, given 
two parties with inputs x and y respectively, the goal of 
secure multi-party computation is to compute a function f(x, 
y) such that the two parties learn only f(x, y), and nothing 
else. In [19] there are various approaches to this problem.  In 
[20] an efficient protocol for Yao’s millionaires’ problem 
showed that any multi-party computation can be solved by 
building a combinatorial circuit, and simulating that circuit. 
A variant of Yao’s protocol is presented in [21] where the 
oblivious transfers is used to make secure decision tree 
learning using ID3 with efficient cryptographic protocol and 
their also two solution of our problem under the secure multi 
party computation for association rule mining [22], [23]. In 
[23] an explanation of a much more efficient method for this 
problem is described. To obtain an efficient solution without 
revealing what each site supports, they instead exchange 
locally large itemsets in a way that obscures the source of 
each itemset. They assume a secure commutative encryption 
algorithm with negligible collision probability. Intuitively, 
under commutative encryption, the order of encryption does 
not matter. If a plaintext message is encrypted by two 
different keys in a different order, it will be mapped to the 
same cipher text. Formally, commutatively ensures that 
Ek1(Ek2(x)) = Ek2(Ek1(x)). The main idea is that each site 

encrypts the locally supported itemsets, along with enough 
“fake” itemsets to hide the actual number supported. Each 
site then encrypts the itemsets from other sites. An example 
illustrate the protocol in [19] is given in fig. (2). Using 
commutative encryption, each party encrypts its own 
frequent itemsets (e.g., Site 1 encrypts itemset ABC). The 
encrypted itemsets are then passed to other parties, until all 
parties have encrypted all itemsets. These are passed to a 
common party to eliminate duplicates, and to begin 
decryption. (In fig. (2), the full set of itemsets is shown to the 
left of Site 1, after Site 1 decrypts). Then this set is passed to 
each party, and each party decrypts each itemset. The final 
result is the common itemsets (ABC and ABD in fig. (2)), an 
approach to proof that protocol preserves privacy can be 
found in [20]. This approach to prove that algorithm reveals 
only the union of locally large itemsets and a clearly bounded 
set of innocuous information. 

 

Fig. 2. Steps needed for computing the algorithm in [25] 
 

3.1 PPARM4 protocol  
 Other method for privacy preserving association rule 
mining on distributed homogenous databases (PPARM4) in 
[17], showed that the protocol in [23] employs commutative 
encryption algorithm so it adds large overhead to the mining 
process then another protocol improves this by applying  a 
public-key cryptosystem algorithm on horizontally 
partitioned data among three or more parties. In this protocol, 
the parties can share the union of their data without the need 
for an outside trusted party. Each party works locally finding 
all local frequent itemsets of all sizes. Then use public key 
cryptography to find the union of a frequent local itemset. We 
find that this method reduce the number of steps from 6 to 4 
to calculate the global candidate item sets as shown in fig. (3)  
where K1 is private key and k2 public key . In [17] the results 
showed that this improvement reduces the time of mining 
process compared to method in [23]. For description this 
protocol, let P = {P0, . . . , Pn} be a set of N parties where |N| 
≥ 3. Each party Pi has a database DBi. With assuming that 
parties running the protocol are semi-honest. The goal is to 
share the union of DBi as one shuffled database and hide the 
link between records in DBComp and their owners. This 



employs a public-key cryptosystem algorithm on horizontally 
partitioned data among three or more parties. In this protocol, 
the parties can share the union of their data without the need 
for an outside trusted party. The information that is hidden is 
what data records where in the possession of which party. 
Protocol is described for one party as the protocol driver as 
shown in table [1]. The first party called Alice. 

 

 

Fig. 3. Steps needed for computing PPARM4 algorithm 

 

Table [1] Description of PPARM4 protocol 

1. Alice generates a public encryption key kPA.  
Alice makes kPA known to all parties (for illustration 
another two parties called Bob and Carol can be used). 
2. Each party (including Alice) encrypts its database DBi 
with Alice’s public key.  
This means the encryption is applied to each row (record or 
transaction) of the database. Parties will need to know the 
common length of rows in the database. We denote the 
result of this encryption as kPA(DBi). Note that, by the 
properties of public cryptosystems, only Alice can decrypt 
these databases. 
3. Alice passes her encrypted transactions kPA(DB1) to 
Bob. Bob cannot learn Alice’s transactions since he does 
not know the decryption  key. 
4. Bob mixes his transactions with Alice’s transactions.  
That is, he produces a random shuffle of kPA(DB1) and 
kPA(DB2) before passing all these shuffled transactions to 
Carol. 
5. Carol adds and shuffles her transactions kPA(DB3) to 
the transactions received from Bob. 
6. The protocol continues in this way, each subsequent 
party receiving a database with the encrypted and shuffled 
transaction of all previous parties in the enumeration of the 
parties. The i-th party mixes randomly his encrypted 
transactions kPA(DBi) with the rest and passes the entries 
shuffled transaction to the (i + 1)-th party. 
7. The last party passes the transactions back to Alice. 
8. Alice decrypts the complete set of transaction with her 
secret decrypt key. 
She can identify her own transactions. However, Alice is 

unable to link      transactions with their owners because 
transactions are shuffled. 
9. Alice publishes the transactions to all parties. 
If the number of parties is N, then N − 1 of the parties need 
to collude to     associate data to their original owners (data 
suppliers). 

 

3.2 PPARM3 protocol 
In [18] fast privacy preserving association rule mining on 
distributed homogenous databases (PPARM3), reduces the 
number of steps from four steps to only three steps for any 
numbers of clients to calculate the global candidate itemsets. 
The details of PPARM3 protocol as in fig. (4) and table 
[2].Table [3] shows a comparison of the three algorithms in 
[17, 18, and 23].  
 

 
Fig. 4. General structure of PPARM3 algorithm 

Table [2] Description of PPARM3 protocol 
Protocol: Finding large itemsets of size k and global 
association rules. 
Require: N >3 sites one site is algorithm initiator and another 
is data mining combiner and other called clients (local data 
mining) sites numbered (1..N − 2) and we assume negligible 
collision probability. 
Step 1: All local data mining (LDM) compute the mining 
results using fast distributed mining of association rules (FDM)
[23] as locally large k-item sets (LLi(k))  and local support for 
each item set in LLi(k) then Encrypt frequent item sets and 
support (LLei(k)) then send it to the data mining combiner. 

Step 2: The combiner merge all received frequent items and 
supports with the data mining combiner frequent items and 
support in encrypted form then send LLe(k) to algorithm 
initiator to compute the global association rules . 
Step3: The algorithm initiator receives the frequent items with 
support encrypted. The initiator  first decrypt it, then merges it 
with his local data mining result to obtain global mining results
L(k), then compute global association rules and distribute it to 
all protocol parties. 



 

Table 3. Comparison between algorithms in [17, 18, and 23]. 

Comparison 
factors 

Algorithm  
[23] 

Algorithm  
[17] 

Algorithm  
[18] 

Steps for 
computation 6 steps 4 steps 3 steps 

Rounds to 
compute results 2 rounds 2 rounds 1 round 

Cryptography 
used 

Communica
tive 

Public 
key 

Public 
key 

Mining algorithm Apriori Apriori Apriori-
Tid 

 
 
 
3.3 Encryption Algorithms 
Many encryption algorithms are widely available and used in 
information security. They can be categorized into Symmetric 
(private) and Asymmetric (public) keys encryption. In 
Symmetric keys encryption or secret key encryption, only one 
key is used to encrypt and decrypt data. The key should be 
distributed before transmission between entities. Keys play an 
important role. If weak key is used in algorithm then every 
one may decrypt the data. Strength of Symmetric key 
encryption depends on the size of key used. For the same 
algorithm, encryption using longer key is harder to break than 
the one done using smaller key [24]. There are many 
examples of strong and weak keys of cryptography 
algorithms like RC2, DES, 3DES, RC6, Blowfish, and AES. 
RC2 uses one 64-bit key. DES uses one 64-bits key. Triple 
DES (3DES) uses three 64- bits keys while AES uses various 
(128,192,256) bits keys. Blowfish uses various (32-448); 
default 128bits while RC6 is used various (128,192,256) bits 
keys [25-28]. Asymmetric key encryption or public key 
encryption is used to solve the problem of key distribution. In 
Asymmetric keys, two keys are used; private and public keys. 
Public key is used for encryption and private key is used for 
decryption (E.g. RSA and Digital Signatures). Because users 
tend to use two keys: public key, which is known to the 
public and private key which is known only to the user. There 
is no need for distributing them prior to transmission. 
Asymmetric encryption techniques are slower than 
Symmetric techniques, because they require more 
computational processing power.  

4. Implementation of (PPARM4 and 
PPARM3) Methods 
        We implement PPARM4 and PPARM3 algorithms using 
java. Because the distributed association rules mining need 
the mining run in more than one site, we can use the RMI 
(remote method invocation) to connect the sites with each 

other. Our application is two parts one name server and other 
is client so we have two site works as server. First is the 
protocol initiator and second is the data mining combiner and 
we need client for every participant in the protocol. The 
initiator is responsible of the threshold of the mining 
algorithm so it need to define the support and confidence and 
also generate the public key (k2)and private key (k1) used in 
encryption and decryption in protocol and finally compute the 
final results. The data mining combiner responsible of 
combining the results of clients sites and mix the results to 
make better privacy of user data and every client is 
responsible of making the local data mining and encrypt the 
results of mining and send to data mining combiner. In our 
implementation our test in data that represent based on 0/1 
matrix. And using Public-Key Cryptography, where each user 
places in a public file an encryption procedure. That is, the 
public file is a directory giving the encryption procedure of 
each user. The user keeps secret the details of his 
corresponding decryption procedure. There are several 
examples of commutative encryption; perhaps the most 
famous being RSA (if keys are not shared) and Pohlig-
Hellman encryption. Firstly we use RSA that is useful to 
fulfill our requirements. After that we repeat the same work 
with different encryption algorithms (DES, 3DES, AES and 
Blowfish] to evaluate the best encryption algorithm improving 
the overall performance privacy preserving protocol. 

 

5. Results of implementations and 
discussion  
By running PPARM4 and PPARM3 algorithms 75 times. 
Running testing based on 5 homogenous data bases with 
different size from 2500 bytes to 2500000 bytes by 15 time 
for every data base. The 15 values are much closed to each 
other. The values listed in table [4] and tables [5] are the 
average values of time for PPARM4 and PPARM3 
respectively in case RSA, DES, 3DES, AES and Blowfish 
encryption algorithms. Testing is performed using P4 (2.8 
GHZ) with Java (SDK 1.6). Fig. (5) and fig. (6) shown the 
relation between different database sizes and time consuming 
of protocols (PPARM4 and PPARM3) for each encryption 
algorithm (RSA, DES, 3DES, ASE, and Blowfish) 
respectively. The results show PPARM3 is faster than 
PPARM4 in case all encryption algorithms implemented by 
the same ratio. Fig. (7) and fig. (8) show a comparison 
between time of protocol (PPARM4 and PPARM3) 
respectively and different encryption algorithms (RSA, DES, 
3DES, AES and Blowfish) with variable database size. From 
these results we can say that the best performance of time for 
privacy protocols PPARM4 and PPARM3 is in case using 
encryption algorithm DES. So we can tune the required 
performance of privacy protocol by control in changing the 
encryption algorithm. 



 

 
Table [4] Computation time in ms for PPARM4 with 

different encryption algorithms 
 

Database 
size (B) RSA DES 3DES AES 

Blowfis
h 

2500 0.11058  0.00055  0.00166  0.00083  0.00070  
25000 1.21152 0.00606 0.01817 0.00909 0.00771 
50000 2.35848 0.01179 0.03538 0.01769 0.01501 

250000 11.6384  0.05819  0.17458 0.08729 0.07406  
2500000 109.453  0.54727 1.64180  0.8209 0.69652  
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Fig. 5. Computation time in ms for PPARM4 with 

different encryption algorithms 
 

 
Table [5] Computation time in ms for PPARM3 with 

different encryption algorithms 
Database 
size (B) RSA DES 3DES AES Blowfish 

2500 0.081684 0.00041 0.00123 0.00061 0.00052 
25000 0.404043 0.00202 0.00606  0.00303 0.00257  
50000 0.722407 0.00361  0.01085 0.00542 0.00460 

250000 3.181355 0.01591 0.04772 0.02386 0.02025 

2500000 53.23277 0.26616  0.79849  0.39925 0.33875  
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Fig. 6. Computation time in ms for PPARM3 with 

different encryption algorithms 

RSA, DSE, 3DSE, ASE, and BF with different DBs
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Fig. 7. Computation time in ms for PPARM4 with 

different database sizes 
 

RSA, DSE, 3DSE, ASE, and BF with different DBs
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Fig. 8. Computation time in ms for PPARM3 with 

different database sizes 
 

6. Conclusions 
 In this paper we presented study several encryption 
algorithms (RSA, DES, 3DES, AES and Blowfish) with 
different protocols of privacy preserving association rule 
mining on distributed horizontal database (PPARM4, and 
PPARM3). Testing is performed using P4 (2.8 GHZ) with 
Java (SDK 1.6). The results show PPARM3 is faster than 
PPARM4 in case all encryption algorithms implemented by 
the same ratio. The results prove that, the best performance of 
time for privacy protocols PPARM4 and PPARM3 is in case 
using encryption algorithm DES. So we can tune the required 
performance of privacy protocol by control in changing the 
encryption algorithm.  In future work we can consider finer 
tuning by implement many different setting for encryption 
algorithm using with privacy protocol. For example longer 
key is harder to break than the one done using smaller 
key.3DES uses three 64-bits keys while AES uses various 
(128,192,256) bits keys. Blowfish uses various (32-448); 
default 128bits. 
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