
Evaluation of Encryption Algorithms for Privacy
Preserving Association Rules Mining on Distributed

Horizontal Database

Ashraf El-Sisi, and Hamdy M. Mousa
 Faculty of Computers and Information, Menofyia University, Egypt

{ashrafelsisi@hotmail.com, hamdimmm@hotmail.com }

Abstract - Encryption algorithms used in privacy preserving
protocols can be affected on overall performance. In this
paper we study several encryption algorithms with two
methods of privacy preserving association rule mining on
distributed horizontal database (PPARM4, and PPARM3).
The first method PPARM4 computes association rules that
hold globally while limiting the information shared about
each site in order to increase the efficiency. The second
method PPARM3 is a modification for PPARM4 based on a
semi-honest model with negligible collision probability.
Common encryption algorithms for the two methods of
privacy preserving association rule mining on distributed
horizontal database selected based on performance metric. So
a performance comparison among five of the most common
encryption algorithms: RSA, DES, 3DES, AES and Blowfish
with the two privacy methods are presented. The comparison
has been conducted by running several encryption settings
with the two methods of privacy preserving association rule
mining on distributed horizontal database. Simulation has
been conducted using Java. Results show that, PPARM3 gives
better performance with all encryption algorithms
implemented. Also PPARM3 with encryption algorithm DES
gives best result with different database sizes. Based on the
results we can tune the suitable encryption algorithm from our
implementations to the required overall performance.

Keywords: Encryption, distributed data mining, Association
rule mining, privacy, security.

1 Introduction
 Data Mining (DM) techniques have been widely used in
many areas especially for strategic decision-making [1-8].
Apart from its usual benefits, it also has a few disadvantages
associated with it. Experts say that data mining in the wrong
hands will end up in destruction. The main threat of data
mining is to privacy and security of data residing in large data
stores [9-15]. Some of the information considered as private
and secret can be brought out with advanced data mining
tools. It is a real concern of people working in the field of
database technology. Different research efforts are under
way to address this problem of preserving security and

privacy. The privacy term is overloaded, and can, in general,
assume a wide range of different meanings. For example, in
the context of the Health Insurance Portability and
Accountability Act (HIPAA) Privacy Rule, privacy means the
individual’s ability to control who has the access to personal
health care information. From the organizations point of
view, privacy involves the definition of policies stating which
information is collected, how it is used, and how customers
are informed and involved in this process. We can
considering privacy as “The right of an entity to be secure
from unauthorized disclosure of sensible information that are
contained in an electronic repository or that can be derived as
aggregate and complex information from data stored in an
electronic repository”. There are many methods for privacy
preserving distributed association rule mining across private
databases. So these methods try to compute the answer to the
mining without revealing any additional information about
user privacy. An application that needs privacy preserving
distributed association rule mining across private databases,
like medical research. Sensitive information contained in a
database can be extracted with the help of non-sensitive
information. This is called the inference problem. Different
concepts have been proposed to handle the inference
problem. The process of modifying the transactional database
to hide some sensitive information is called sanitization. By
sanitizing the original transactional database, the sensitive
information can be hidden. In the sanitization process,
selective transactions are retrieved and modified before
handing over the database to a third party. Modification of
transaction involves removing an item from a transaction or
adding an element to the transaction. In some cases,
transactions will be either added to or removed from the
database as suggested in [16]. The modified database is called
sanitized database or released database. The efficiency of a
privacy-preserving algorithm is measured based on: (1) the
time taken to hide the data, (2) the number of new rules
introduced because of the hiding process, and (3) the number
of legitimate rules lost or unable to be extracted from the
released database. Encryption algorithm used in privacy
preserving can be affected on overall performance, so in this
paper we addresses the problem of evaluate several
encryption algorithms with two protocols of privacy
preserving association rule mining (PPARM4, and PPARM3)
on distributed horizontal database. The numbers (4 and 3) in

abbreviations (PPARM4, and PPARM3) respectively means
the number of computation steps to get the results of protocol.
The first protocol (PPARM4) computes association rules that
hold globally while limiting the information shared about
each site in order to increase the efficiency [17]. The second
protocol (PPARM3) is a modification for the first based on a
semi-honest model with negligible collision probability [18].
Section 2 gives an overview about the problem and the
related work in the area of privacy preserving association rule
mining on distributed homogenous databases. In section 3
some details of the two protocols of the algorithms of
computing the distributed association rule mining (PPARM4,
and PPARM3) to preserve the privacy of users. Sections 4
and 5 describe implementation and results of several
encryption algorithms with the two methods of privacy
preserving association rule mining on distributed horizontal
database. Finally, some conclusions are put forward in
Section 6.

2 Association Rule Mining
 Association rule mining finds interesting associations
and/or correlation relationships among large sets of data
items. Association rules show attributes value conditions that
occur frequently together in a given dataset. In [19] the
association rules mining problem can formally be defined as
follows: Let I = {i1, i2, . . . , in} be a set of items. Let DB be
a set of transactions, where each transaction T is an itemset
such that . Given an itemset , a transaction T contains A if
and only if . An association rule is an implication of the
form where and . The rule has support S in the transaction
database DB if S% of transactions in DB contains. The
association rule holds in the transaction database DB with
confidence C if C% of transactions in DB that contain A also
contains B. An itemset X with k items is called a k-itemset.

2.1 Distributed Association Rule Mining
Problem

 The problem of mining association rules is to find all
rules whose support and confidence are higher than certain
user specified minimum support and confidence. Clearly,
computing association rules without disclosing individual
transactions is straightforward. We can compute the global
support and confidence of an association rule knowing only
the local supports of AB and ABC, and the size of each
database:

∑

∑

=

==⇒ tesnumberofsi

i

tesnumberofsi

i

iSizedatabase

icountSupport
Support

ABC

CAB

1

1

)(_

)(_

∑

∑

=

== tesnumberofsi

i

tesnumberofsi

i

iSizedatabase

icountSupport
Support

AB

AB

1

1

)(_

)(_

AB

CAB
CAB

Support
SupportConfidence ⇒

⇒ =

 Note that this requires no sharing of any individual
transactions. And Protects individual data privacy, but it does
require that each site disclose what rules it supports, and how
much it supports each potential global rule. What if this
information is sensitive? Clearly, such an approach will be
secure under secure muti-party computation (SMC)
definitions by some modification, a way to convert the above
simple distributed method to a secure method in SMC model
is to use secure summation and comparison methods to check
whether threshold are satisfied for every potential itemset [18
]. For example, for every possible candidate 1-itemset, we can
use the secure summation and comparison protocol to check
whether the threshold is satisfied. Fig. (1) gives an example
of testing if itemset ABC is globally supported, it shows
determining if itemset support exceeds 5 percent threshold.
Each site first computes its local support for ABC, or
specifically the number of itemsets by which its support
exceeds the minimum support threshold (which may be
negative).

Fig. 1. Computing global support securely

The parties then use the secure summation algorithm (the first
site adds a random (R) to its local excess support, then passes
it to the next site to add its excess support, etc. and finally
when pass to first site subtract the generated random from the
result). The only change is the final step, the last site
performs a secure comparison with the first site to see if the
sum ≥ R. In the example, R -10 is passed to the second site,
which adds its excess support (5) and passes it to site 3. Site 3
adds its excess support; the resulting value (22) is tested
using secure comparison to see if it exceeds the Random

value (21). It is, so itemsets ABC is supported globally. Due
to huge number of potential candidate itemsets, we need to
have a more efficient method. This can be done by observing
this lemma, (If a rule has support > k% globally, it must have
support > k% on at least one of the individual sites). A
distributed algorithm for this would work as follows, request
that all rules are sent by each site with support at least k, for
each rule returned, request that all sites send the count for
their transactions that support the rule, and the total count of
all transactions at the site. From this, we can compute the
global support of each rule, and be certain that all rules with
support at least k have been found. This has been shown to be
an effective pruning technique. In order to use the above
lemma, we need to compute the union of locally large sets.
Then use the secure summation and comparison only on the
candidate itemsets contained in the union. Revealing
candidate itemsets means that the algorithm is no longer fully
secure: itemsets that are large at one site, but not globally
large, would not be disclosed by a fully secure algorithm.
However, by computing the union securely, we prevent
disclosure of which site, or even how many sites, support a
particular itemset. This release of innocuous information
(included in the final result) enables a completely secure
algorithm that approaches the efficiency of insecure
distributed association rule mining algorithms. The function
now being computed reveals more information than the
original association rule mining function. However, the key is
that we have provable limits on what is disclosed.

3. (PPARM4, and PPARM3) Protocols
Details
 In secure multi-party computation approaches, given
two parties with inputs x and y respectively, the goal of
secure multi-party computation is to compute a function f(x,
y) such that the two parties learn only f(x, y), and nothing
else. In [19] there are various approaches to this problem. In
[20] an efficient protocol for Yao’s millionaires’ problem
showed that any multi-party computation can be solved by
building a combinatorial circuit, and simulating that circuit.
A variant of Yao’s protocol is presented in [21] where the
oblivious transfers is used to make secure decision tree
learning using ID3 with efficient cryptographic protocol and
their also two solution of our problem under the secure multi
party computation for association rule mining [22], [23]. In
[23] an explanation of a much more efficient method for this
problem is described. To obtain an efficient solution without
revealing what each site supports, they instead exchange
locally large itemsets in a way that obscures the source of
each itemset. They assume a secure commutative encryption
algorithm with negligible collision probability. Intuitively,
under commutative encryption, the order of encryption does
not matter. If a plaintext message is encrypted by two
different keys in a different order, it will be mapped to the
same cipher text. Formally, commutatively ensures that
Ek1(Ek2(x)) = Ek2(Ek1(x)). The main idea is that each site

encrypts the locally supported itemsets, along with enough
“fake” itemsets to hide the actual number supported. Each
site then encrypts the itemsets from other sites. An example
illustrate the protocol in [19] is given in fig. (2). Using
commutative encryption, each party encrypts its own
frequent itemsets (e.g., Site 1 encrypts itemset ABC). The
encrypted itemsets are then passed to other parties, until all
parties have encrypted all itemsets. These are passed to a
common party to eliminate duplicates, and to begin
decryption. (In fig. (2), the full set of itemsets is shown to the
left of Site 1, after Site 1 decrypts). Then this set is passed to
each party, and each party decrypts each itemset. The final
result is the common itemsets (ABC and ABD in fig. (2)), an
approach to proof that protocol preserves privacy can be
found in [20]. This approach to prove that algorithm reveals
only the union of locally large itemsets and a clearly bounded
set of innocuous information.

Fig. 2. Steps needed for computing the algorithm in [25]

3.1 PPARM4 protocol
 Other method for privacy preserving association rule
mining on distributed homogenous databases (PPARM4) in
[17], showed that the protocol in [23] employs commutative
encryption algorithm so it adds large overhead to the mining
process then another protocol improves this by applying a
public-key cryptosystem algorithm on horizontally
partitioned data among three or more parties. In this protocol,
the parties can share the union of their data without the need
for an outside trusted party. Each party works locally finding
all local frequent itemsets of all sizes. Then use public key
cryptography to find the union of a frequent local itemset. We
find that this method reduce the number of steps from 6 to 4
to calculate the global candidate item sets as shown in fig. (3)
where K1 is private key and k2 public key . In [17] the results
showed that this improvement reduces the time of mining
process compared to method in [23]. For description this
protocol, let P = {P0, . . . , Pn} be a set of N parties where |N|
≥ 3. Each party Pi has a database DBi. With assuming that
parties running the protocol are semi-honest. The goal is to
share the union of DBi as one shuffled database and hide the
link between records in DBComp and their owners. This

employs a public-key cryptosystem algorithm on horizontally
partitioned data among three or more parties. In this protocol,
the parties can share the union of their data without the need
for an outside trusted party. The information that is hidden is
what data records where in the possession of which party.
Protocol is described for one party as the protocol driver as
shown in table [1]. The first party called Alice.

Fig. 3. Steps needed for computing PPARM4 algorithm

Table [1] Description of PPARM4 protocol

1. Alice generates a public encryption key kPA.
Alice makes kPA known to all parties (for illustration
another two parties called Bob and Carol can be used).
2. Each party (including Alice) encrypts its database DBi
with Alice’s public key.
This means the encryption is applied to each row (record or
transaction) of the database. Parties will need to know the
common length of rows in the database. We denote the
result of this encryption as kPA(DBi). Note that, by the
properties of public cryptosystems, only Alice can decrypt
these databases.
3. Alice passes her encrypted transactions kPA(DB1) to
Bob. Bob cannot learn Alice’s transactions since he does
not know the decryption key.
4. Bob mixes his transactions with Alice’s transactions.
That is, he produces a random shuffle of kPA(DB1) and
kPA(DB2) before passing all these shuffled transactions to
Carol.
5. Carol adds and shuffles her transactions kPA(DB3) to
the transactions received from Bob.
6. The protocol continues in this way, each subsequent
party receiving a database with the encrypted and shuffled
transaction of all previous parties in the enumeration of the
parties. The i-th party mixes randomly his encrypted
transactions kPA(DBi) with the rest and passes the entries
shuffled transaction to the (i + 1)-th party.
7. The last party passes the transactions back to Alice.
8. Alice decrypts the complete set of transaction with her
secret decrypt key.
She can identify her own transactions. However, Alice is

unable to link transactions with their owners because
transactions are shuffled.
9. Alice publishes the transactions to all parties.
If the number of parties is N, then N − 1 of the parties need
to collude to associate data to their original owners (data
suppliers).

3.2 PPARM3 protocol
In [18] fast privacy preserving association rule mining on
distributed homogenous databases (PPARM3), reduces the
number of steps from four steps to only three steps for any
numbers of clients to calculate the global candidate itemsets.
The details of PPARM3 protocol as in fig. (4) and table
[2].Table [3] shows a comparison of the three algorithms in
[17, 18, and 23].

Fig. 4. General structure of PPARM3 algorithm

Table [2] Description of PPARM3 protocol
Protocol: Finding large itemsets of size k and global
association rules.
Require: N >3 sites one site is algorithm initiator and another
is data mining combiner and other called clients (local data
mining) sites numbered (1..N − 2) and we assume negligible
collision probability.
Step 1: All local data mining (LDM) compute the mining
results using fast distributed mining of association rules (FDM)
[23] as locally large k-item sets (LLi(k)) and local support for
each item set in LLi(k) then Encrypt frequent item sets and
support (LLei(k)) then send it to the data mining combiner.

Step 2: The combiner merge all received frequent items and
supports with the data mining combiner frequent items and
support in encrypted form then send LLe(k) to algorithm
initiator to compute the global association rules .
Step3: The algorithm initiator receives the frequent items with
support encrypted. The initiator first decrypt it, then merges it
with his local data mining result to obtain global mining results
L(k), then compute global association rules and distribute it to
all protocol parties.

Table 3. Comparison between algorithms in [17, 18, and 23].

Comparison
factors

Algorithm
[23]

Algorithm
[17]

Algorithm
[18]

Steps for
computation 6 steps 4 steps 3 steps

Rounds to
compute results 2 rounds 2 rounds 1 round

Cryptography
used

Communica
tive

Public
key

Public
key

Mining algorithm Apriori Apriori Apriori-
Tid

3.3 Encryption Algorithms
Many encryption algorithms are widely available and used in
information security. They can be categorized into Symmetric
(private) and Asymmetric (public) keys encryption. In
Symmetric keys encryption or secret key encryption, only one
key is used to encrypt and decrypt data. The key should be
distributed before transmission between entities. Keys play an
important role. If weak key is used in algorithm then every
one may decrypt the data. Strength of Symmetric key
encryption depends on the size of key used. For the same
algorithm, encryption using longer key is harder to break than
the one done using smaller key [24]. There are many
examples of strong and weak keys of cryptography
algorithms like RC2, DES, 3DES, RC6, Blowfish, and AES.
RC2 uses one 64-bit key. DES uses one 64-bits key. Triple
DES (3DES) uses three 64- bits keys while AES uses various
(128,192,256) bits keys. Blowfish uses various (32-448);
default 128bits while RC6 is used various (128,192,256) bits
keys [25-28]. Asymmetric key encryption or public key
encryption is used to solve the problem of key distribution. In
Asymmetric keys, two keys are used; private and public keys.
Public key is used for encryption and private key is used for
decryption (E.g. RSA and Digital Signatures). Because users
tend to use two keys: public key, which is known to the
public and private key which is known only to the user. There
is no need for distributing them prior to transmission.
Asymmetric encryption techniques are slower than
Symmetric techniques, because they require more
computational processing power.

4. Implementation of (PPARM4 and
PPARM3) Methods
 We implement PPARM4 and PPARM3 algorithms using
java. Because the distributed association rules mining need
the mining run in more than one site, we can use the RMI
(remote method invocation) to connect the sites with each

other. Our application is two parts one name server and other
is client so we have two site works as server. First is the
protocol initiator and second is the data mining combiner and
we need client for every participant in the protocol. The
initiator is responsible of the threshold of the mining
algorithm so it need to define the support and confidence and
also generate the public key (k2)and private key (k1) used in
encryption and decryption in protocol and finally compute the
final results. The data mining combiner responsible of
combining the results of clients sites and mix the results to
make better privacy of user data and every client is
responsible of making the local data mining and encrypt the
results of mining and send to data mining combiner. In our
implementation our test in data that represent based on 0/1
matrix. And using Public-Key Cryptography, where each user
places in a public file an encryption procedure. That is, the
public file is a directory giving the encryption procedure of
each user. The user keeps secret the details of his
corresponding decryption procedure. There are several
examples of commutative encryption; perhaps the most
famous being RSA (if keys are not shared) and Pohlig-
Hellman encryption. Firstly we use RSA that is useful to
fulfill our requirements. After that we repeat the same work
with different encryption algorithms (DES, 3DES, AES and
Blowfish] to evaluate the best encryption algorithm improving
the overall performance privacy preserving protocol.

5. Results of implementations and
discussion
By running PPARM4 and PPARM3 algorithms 75 times.
Running testing based on 5 homogenous data bases with
different size from 2500 bytes to 2500000 bytes by 15 time
for every data base. The 15 values are much closed to each
other. The values listed in table [4] and tables [5] are the
average values of time for PPARM4 and PPARM3
respectively in case RSA, DES, 3DES, AES and Blowfish
encryption algorithms. Testing is performed using P4 (2.8
GHZ) with Java (SDK 1.6). Fig. (5) and fig. (6) shown the
relation between different database sizes and time consuming
of protocols (PPARM4 and PPARM3) for each encryption
algorithm (RSA, DES, 3DES, ASE, and Blowfish)
respectively. The results show PPARM3 is faster than
PPARM4 in case all encryption algorithms implemented by
the same ratio. Fig. (7) and fig. (8) show a comparison
between time of protocol (PPARM4 and PPARM3)
respectively and different encryption algorithms (RSA, DES,
3DES, AES and Blowfish) with variable database size. From
these results we can say that the best performance of time for
privacy protocols PPARM4 and PPARM3 is in case using
encryption algorithm DES. So we can tune the required
performance of privacy protocol by control in changing the
encryption algorithm.

Table [4] Computation time in ms for PPARM4 with

different encryption algorithms

Database
size (B) RSA DES 3DES AES

Blowfis
h

2500 0.11058 0.00055 0.00166 0.00083 0.00070
25000 1.21152 0.00606 0.01817 0.00909 0.00771
50000 2.35848 0.01179 0.03538 0.01769 0.01501

250000 11.6384 0.05819 0.17458 0.08729 0.07406
2500000 109.453 0.54727 1.64180 0.8209 0.69652

PPARM4

0.0001

0.001

0.01

0.1

1

10

100

1000

1 2 3 4 5

Database size

Ti
m

e
in

 s
ec

 (l
og

ar
ith

m
ic

)

RSA
DES
3DES
ASE
BF

Fig. 5. Computation time in ms for PPARM4 with

different encryption algorithms

Table [5] Computation time in ms for PPARM3 with

different encryption algorithms
Database
size (B) RSA DES 3DES AES Blowfish

2500 0.081684 0.00041 0.00123 0.00061 0.00052
25000 0.404043 0.00202 0.00606 0.00303 0.00257
50000 0.722407 0.00361 0.01085 0.00542 0.00460

250000 3.181355 0.01591 0.04772 0.02386 0.02025

2500000 53.23277 0.26616 0.79849 0.39925 0.33875

PPARM3

0.0001

0.001

0.01

0.1

1

10

100

1 2 3 4 5

Database Size

Ti
m

e
in

 s
ec

 (l
og

ar
ith

m
ic

)

RSA
DES
3DES
ASE
BF

Fig. 6. Computation time in ms for PPARM3 with

different encryption algorithms

RSA, DSE, 3DSE, ASE, and BF with different DBs

0.0001

0.001

0.01

0.1

1

10

100

1000

1 2 3 4 5

RSA DES 3DES ASE BF

Ti
m

e
in

 s
ec

 (L
og

ar
ith

m
ic

 s
ca

le
)

DB1
DB2
DB3
DB4
DB5

Fig. 7. Computation time in ms for PPARM4 with

different database sizes

RSA, DSE, 3DSE, ASE, and BF with different DBs

0.0001

0.001

0.01

0.1

1

10

100

1 2 3 4 5

RSA DSE 3DSE ASE BF

Ti
m

e
in

 s
ec

 (L
og

ar
th

m
ic

 s
ca

le
)

DB1
DB2
DB3
DB4
DB5

Fig. 8. Computation time in ms for PPARM3 with

different database sizes

6. Conclusions
 In this paper we presented study several encryption
algorithms (RSA, DES, 3DES, AES and Blowfish) with
different protocols of privacy preserving association rule
mining on distributed horizontal database (PPARM4, and
PPARM3). Testing is performed using P4 (2.8 GHZ) with
Java (SDK 1.6). The results show PPARM3 is faster than
PPARM4 in case all encryption algorithms implemented by
the same ratio. The results prove that, the best performance of
time for privacy protocols PPARM4 and PPARM3 is in case
using encryption algorithm DES. So we can tune the required
performance of privacy protocol by control in changing the
encryption algorithm. In future work we can consider finer
tuning by implement many different setting for encryption
algorithm using with privacy protocol. For example longer
key is harder to break than the one done using smaller
key.3DES uses three 64-bits keys while AES uses various
(128,192,256) bits keys. Blowfish uses various (32-448);
default 128bits.

References
[1] Agarwal, R., Imielinski, T., & Swami, A. “Mining
association rules between sets of items in large databases”, In
Proceedings of the ACM International Conferences on
Management of Data pp. 207-216, 1993

[2] Agarwal, R. & Srikant, R., “Fast algorithm for mining
association rules”, In Proceedings of the 20th International
Conference on Very Large Data Bases pp. 487-499, 1994.
[3] Fayyad, U. M., Piatetsky-Shapiro, G. Smyth, P., &
Uthurusamy, R., “Advances in knowledge discovery and data
mining”, AAAI Press/The MIT Press. 1996.
[4] Han, J. W. & Kamber, M., “Data mining: Concepts and
techniques”, Morgan Kaufmann Publishers. 2001
[5] Han, J. W., Pei, J., & Yin, Y. W., “Mining frequent
patterns without candidate generation”, In Proceedings of
the ACM International Conference on Management of Data
pp. 1-12, 2000.
[6] Hidber, C., “Online association rules mining”, In
Proceedings of the ACM SIGMOD Conference Management
of Data. 1999
[7] Lin, D., & Kedam, Z. M., “Pincer-search: An efficient
algorithm for discovering the maximum frequent se”, IEEE
Transactions on Knowledge and Data Engineering, 14. 2002.
[8] Webb, G. I., “Efficient search for association rules”, In
Proceedings of the ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining pp. 99-107, 2000.
[9] Agrawal, R. & Srikant, R., “Privacy preserving data
mining”, In Proceedings of the ACM SIGMOD Conference,
2000.
[10] Agrawal, D., & Aggarwal, C. C., “On the design and
quantification of privacy preserving data mining algorithms”,
In Proceedings of the ACM PODS Conference, 2001.
[11] Ashrafi, M. Z., Taniar, D., & Smith, K., “PDAM:
Privacy-preserving distributed association-rule-mining
algorithm”, International Journal of Intelligent Information
Technologies, (1), 49-69, 2005.
[12] Atallah, M., Bertino, E., Elmagarmid, A., Ibrahim, M.,
& Verykios, V., “Disclosure limitation of sensitive rules”, In
Proceedings of Knowledge and Data Exchange Workshop.
1999.
[13] Clifton, C., “Protecting against data mining through
samples”, In Proceedings
of the 13th IFIP WG11.3 Conference on Database Security,
1999.
[14] Lee, G., Chang, C., & Chen, A. L. P., “ Hiding sensitive
patterns in association
rules mining”, In Proceedings of the 28th Annual
International Conference on Computer software and
Applications Conference pp. 424-429, 2004.
[15] Fatima M. and Safia N., “Privacy Preserving K-means
Clustering: A Survey Research”, International Arab Journal
of Information Technology, Vol. 9, No. 2, 2012.
[16] Clifton, C. & Marks, D., “Security and privacy
implications of data mining”, In Proceedings of the ACM
Workshop Data Mining and Knowledge Discovery, 1996.
[17] V. Estivill-Castro and A. Hajyasien “Fast Private
Association Rule Mining by a Protocol Securely Sharing
Distributed Data”, Proceedings of the 2007 IEEE Intelligence
and Security Informatics (ISI 2007), pp. 342-330, New
Brunswick, New Jersey, USA, May 23-24, 2007.

[18] Ashraf El-Sisi, "Efficient Privacy Preserving
Association Rules Mining Algorithm on Distributed
Homogenous Data Base", International Arab Journal of
Information Technology, Vol. 7, No. 2, 2010.
[19] D. Agrawal and C. C. Aggarwal, “On the design and
quantification of privacy preserving data mining algorithms,”
in Proceedings of the Twentieth ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems.
Santa Barbara, California, USA: ACM, May 21-23 2001, pp.
247–255.
[20] O. Goldreich, “Secure multi-party computation,”
(working draft). [Online]. Available:
http://www.wisdom.weizmann.ac.il/ oded/pp.html
[21] I. Ioannidis and A. Grama, “An efficient protocol for
yao’s millionaires’ problem”, Hawaii International
Conference on System Sciences (HICSS-36), Waikoloa
Village, Hawaii, Jan. 6-9 2003.
[22] Yehuda Lindell and Benny Pinkas, “Privacy Preserving
Data Mining”, Journal of Cryptography pp.177-206, 2002.
[23] M. Kantarcioglu and C. Clifton. “Privacy-preserving
distributed mining of association rules on horizontally
partitioned data”, In IEEE Transactions on Knowledge and
Data Engineering Journal, volume 16(9), pages 1026–1037,
September 2004.
[24] Diaa S. Abdul. El., Hatem M. Abdul Kader and Mohie
M. H., “Performance Evaluation of Symmetric Encryption
Algorithms”, IJCSNS International Journal of Computer
Science and Network Security, VOL.8 No.12, pp. 280-286,
2008.
[25] W.Stallings, ''Cryptography and Network Security”, 4th
Ed. Prentice Hall , PP. 58-309 . 2005.
[26] Coppersmith, D. "The Data Encryption Standard and Its
Strength Against Attacks."I BM Journal of Research and
Development, pp. 243-250, May 1994.
[27] Bruce Schneier, “The Blowfish Encryption Algorithm”,
Retrieved October 25, 2008,
http://www.schneier.com/blowfish.html
[28] R. L. Rivest, A. Shamir, and L. Adleman, “A method for
obtaining digital signatures and public-key cryptosystems”,
Communications of the ACM, vol. 21, no. 2, pp. 120–126,
1978.

