
Accelerating and Characterizing Seam Carving Using a

Heterogeneous CPU-GPU System

Ronald Duarte and Resit Sendag

Department of Electrical, Computer, and Biomedical Engineering,

University of Rhode Island, Kingston, RI, USA

Abstract - Seam carving has been widely used for content-

aware resizing of images and videos with little to no

perceptible distortion. Unfortunately, for high-resolution

videos and large images it becomes computationally

unfeasible to do the resizing in real-time using small-scale

CPU systems. In this paper, we exploit the highly parallel

computational capabilities of CUDA-enabled Graphics

Processing Units (GPUs) for accelerating the content-aware

resizing of videos and images. The performance results show

that our implementation of the seam carving algorithm

achieves up to 100x and 14x speed-ups on the

computationally-intensive part of the algorithm compared to

the faster single-threaded and the faster multithreaded CPU

implementations, respectively, on the systems tested. The

overall resizing operation is over 6x and 2x faster than the

best single-threaded and multithreaded CPU implementations,

respectively, which demonstrates the potential to resize videos

and large images in real-time.

Keywords: Seam carving, GPU, CUDA, parallelization,

heterogeneous system

1 Introduction

 One of the most popular uses of diverse mobile devices

today is for browsing images and playing videos. However,

different devices have different resolution capabilities, so it is

necessary to resize images and videos efficiently and

effectively to fit them into diverse displays (such as cell

phones, PDAs, desktop displays, etc), preferably without

distortion.

 Cropping [1-5] has been one of the most popular

approaches to resize images. However, cropping may lose an

unacceptable amount of visual information when important

structures lie at all edges of an image. In addition, it can only

remove information, but it cannot add information to expand

the image. Scaling methods, with or without interpolation,

tend to produce distorted images, especially when an image is

scaled in one direction.

 Avidan and Shamir [6] recently provided a new approach

to image and video resizing, called seam carving. Seam

carving functions by establishing a number of seams (paths of

least importance) in a digital media and automatically removes

or inserts seams to resize the media. This content-aware

resizing method has been shown to effectively resize images

and videos with little to no perceptible distortion. Seam

carving is a computationally-intensive operation. For high-

resolution images and videos, it could be difficult to perform

the resizing in real-time by using the CPUs in a desktop-scale

computer.

 The advent of commodity massively parallel

architectures, such as modern GPUs, is a compelling option

for inexpensively removing the computationally-intensive

operations from the CPU. In this paper, we exploit the data-

parallel execution model of GPUs for the implementation of

content-aware image and video resizing. This paper makes the

following contributions:

1) We evaluate GPU-based seam carving algorithm on

two CUDA-enabled NVIDIA GPUs.

2) We compare single- and multi-threaded CPU

versions of the algorithm with the GPU versions.

3) We demonstrate that GPUs facilitate low-cost real-

time resizing of images and videos.

2 Seam Carving

 Seam carving [6] transforms the size of images and

videos by carving-out pixels that form a path of low-energy.

These low-energy connected paths, called seams, go from top

to bottom or left to right for vertical or horizontal resizing,

respectively. The seams are added to or removed from an

image
1
 in order to increase or reduce its size with minimal

observable distortion. Figure 1 shows the steps of horizontally

resizing an example image. Since the majority of execution

time is spent on the energy function and seam map

computations (see section 5), in this paper, we focus on

accelerating these two computationally-intensive parts.

 (a) (b) (c) (d)

Figure 12: Seam Carving Steps. (a) The original image. (b) The energy of

the image using gradient magnitude. (c) The low energy seams with the

energy function. (d) Resized image after the seams are removed.

2.1 Energy function

 Seam Carving can utilize a variety of energy functions to

generate seams [6]. The magnitude of the gradient approach

uses equation (1) to compute the energy of each pixel relative

1 For most of the paper, we only discuss images. However, a video is a set of

images or frames displayed at the video rate of 30 frames per seconds. Seam
carving is equally applicable to both images and videos.
2 Image taken from Wikimedia Commons.

to its surrounding pixels by quantifying the amount of change

in color from one pixel to the next.

y

I

x

I
IIe

1
)(

 (1)

 The energy function computation exhibits vast data

parallelism. However, attention must be given to memory

access patterns, which may have a huge implication on

performance. The need for accessing neighboring pixels to

compute the energy function strongly influences the way we

access memory on the GPU.

2.2 Seam map

 After finding the energy of each pixel, the result is used to

locate the lowest-energy paths or seams. We focus on the

implementation of the seams required for horizontal resizing,

i.e. the vertical seams. The first row of the seam map is

directly obtained from the first row of the energy function.

Starting from the second row of the image, we use a dynamic

programming approach (2) to compute the seam map value at

every pixel.

 otherwiseSSSE

iifE
S

jijijiji

j

ji

1,1,11,1,

,0

, ,,min

0 (2)

 In equation (2), S is the seam map table, E is the energy

function table, and i and j are the rows and columns indices of

the tables. This dynamic programming approach produces the

optimal seam/s [6]. The values in the final row of the seam

map table correspond to the cumulative energy of the seams.

The most important point to note about equation (2) is that the

computation for each element is entirely dependent on the

result of the three elements directly above it, as shown in

Figure 2. Therefore, unlike the energy function, the data in the

seam map computation is not 100% separable. This makes

parallelizing the seam computation much more difficult than

the energy function.

3 Hardware resources

 All of the implementations presented in this paper were

executed on two different heterogeneous computer systems.

The First system is a Mac Pro running the Mac OS X 10.6

operating system powered by two 2.8GHz quad-core Intel

Xeon E5462s CPUs. The Mac pro has an NVIDIA 8800GT

GPU (G80 architecture) with 112 cores and 512MB of

GDDR3 memory.

 The second system is a newer machine running the

Ubuntu Linux 10.04 operating system, powered by a single

3.4 GHz quad-core Intel Core i7 2600k CPU. The GPU on the

Linux machine is the NVIDIA GTX580 Featuring the Fermi

architecture with 16 SMs (32 cores per SM) for a total of 512

SPs. The GTX580 has 1.5GB of GDDR5 memory, 768KB L2

cache, and 64KB configurable L1 cache/shared memory per

SM. The Intel Core i7 supports simultaneous multithreading

(SMT) while the Intel Xeon does not support SMT [8, 9].

 The parallelization tool for the CPU implementation is

POSIX threads (pthread). Both of the CPU implementations

were optimized and compiled with gcc -O2 optimization level.

Finally, the heterogeneous implementations were compiled

with the NVIDIA nvcc compiler, which uses gcc and the -O2

flag to compile the CPU code

4 Implementation

4.1 CPU implementation

4.1.1 Energy function

 The single threaded CPU implementation of the energy

function utilizes a set of nested for-loops to compute each of

the partial derivatives (Algorithm 1, lines 1-7), and utilizes the

result to compute the magnitude of the gradient (Algorithm 1,

lines 8-9). The one-half is factor out of the derivatives and

applied after the sum in order to save one multiplication

operation per pixel. Instead of directly storing a 2D image in a

2D array, we store the 2D image in a 1D array and map the 1D

to a 2D array. This minimizes the allocation time, and the data

is stored in a more suitable manner to take advantage of spatial

locality. Note that the derivative of each pixel is computed

once, the purpose of the nester loops is to ease the

computation, but each derivative has O(n) time complexity.

 Given that there are no data dependencies in the

computation of the energy function, we are able to divide the

computation into as many threads as the operating system

supports. However, the performance is dictated by the

hardware and the CPUs’ ability to execute threads

simultaneously. We divide the input image into tiles consisting

of consecutive rows. The height of each tile is computed based

on the number of threads and the height of the image. Figure 3

illustrates the decomposition of the input image for an

execution configuration of eight threads. The Algorithm for

the multithreaded version is very similar to Algorithm1 with

the exception that each thread only loops through its

corresponding portion of the image.

 Figure 2. Seam map example. Figure 3: Division of work for the CPU.

Alg. 1 Single threaded Energy function

1: Set all elements of Ix and Iy to 0

2: for i ← 0 to height ‒ 1

3: for j ← 1 to width ‒ 2

4: Ix(i, j) ← I(i, j+1) ‒ I(i, j-1)

5: for i ← 1 to height ‒ 2

6: for j ← 0 to width ‒ 1

7: Iy(i, j) ← I(i+1, j) ‒ I(i-1, j)

8: for all pixel in the image

9: energy = 0.5 (|Ix| + |Iy|)

Alg. 2 multithreaded Seam map

1: for i ← 1 to height ‒ 1

2: for j ← t_start to t_end

3: if (j-1 < t_start)

4: wait for S(i, j-1) to be unlock

5: if (j+1 > t_end)

6: wait for S(i, j+1) to be unlock

7: S(i, j) ← Min(S(i-1, j-1),

 S(i-1, j), S(i-1, j+1))+energy(i, j)

8: Unlock S(i, j) //initially locked

4.1.2 Seam map

 Unlike the energy function, the seam map computation

uses a dynamic programming approach that is not

parallelization-friendly (see section 2.2). Therefore, we have

to perform a row-by-row computation of the seam map,

which serializes the execution of rows. We achieve

parallelism by dividing each row into fixed-width tiles and

computing these tiles in parallel. We synchronize all threads

after the execution of each row. This method does not yield

any significant benefit over the single-threaded version; in

fact, with more than two threads, the program spends more

time synchronizing than performing the computations.

 In an attempt to optimize the seam map

implementation, we used locks to create local barriers in

place of global barriers. Instead of stalling threads until every

thread finishes its part, each thread is only concerned with the

execution of its neighboring threads. We therefore use an

array of locks to allow each thread to manage the availability

of the seam map results of its boundary element on every

row. This approach is illustrated in Algorithm 2 where t_start

and t_end are computed by dividing the width of the image

by the number of threads and assigning each thread their

respective areas.

4.2 Energy function on the GPU

4.2.1 Naive implementation

 The first GPU method presented in this paper is the

naive-non-aligned implementation. In this implementation,

the image was partitioned into 16x16 tiles containing 256

pixels as illustrated in Figure 4a. In addition to loading the

corresponding data into shared memory, the kernel also needs

to load the pixels immediately adjacent to the tile. These

outer pixels are known as the tile apron, shown in white in

Figure 4b. Each tile utilizes one 2D block of 324 threads

(18x18), thus assigning one thread per pixel load.

 All CUDA threads in the Naive kernel execute

Algorithm 3. First, each thread calculates the necessary pixel

indices to copy a pixel from the global to the shared memory

(lines 1-4). Line 6 caches the pixels in shared memory and

line 8 ensure that all data transfer completes before

performing the computation. Finally, we use 256 out of 324

threads to compute the gradient and store result (lines 10-12).

 At first, we used a three-byte data structure to store the

RGB components of each pixel. A three-byte data structure

causes unaligned memory accesses, which reduces

performance. We solved this problem by aligning pixels to

word length (4 bytes). This implementation waste 25% of the

total memory. However, if the memory size is sufficient, this

is an excellent tradeoff. In addition, there are times when we

are interested in preserving the alpha component of all pixels;

this implementation guarantees that all pixels retain the

original alpha value. Another optimization technique is to

allocate memory on the device using the cudaMallocPitch

function [7]. Using the two-dimensional allocation and copy

functions (cudaMemcpy2D), we guarantee that each row of

the image starts on a 64- or 128-bytes boundary in global

memory depending on the device architecture.

(a) (b)

Figure 4: (a) Division of work between threads in the naive GPU

implementations; the white area represents idle threads. (b) Partition of

block; the tile apron is shown in white and the writable pixels in blue.

 (a)

Figure 5: Partition of the image. (a) Vertical tiles. (b) Horizontal tiles.

White represents the apron pixels and blue/dark the workable pixels

4.2.2 Split-aligned implementation

 To achieve nearly full coalesced memory access, we

decided to separate the energy function calculation into two

separate kernels, a horizontal and a vertical gradient kernel,

and combine the results of the two. This allows us to

reorganize the thread grid to suit the kind of memory accesses

expected for each direction of the derivatives. Both the apron

pixels and workable pixels in the vertical direction are always

aligned to 16 pixels as shown in Figure 5a, allowing coalesced

accesses of 64 bytes.

 For the horizontal calculation, it is not possible with this

approach to avoid uncoalesced memory accesses because the

apron pixels lie outside the alignment boundary. However, by

increasing the tile width to 128 pixels (Figure 5b), some of the

wasted bandwidth due to uncoalesced memory accesses is

hidden. This improves the memory efficiency allowing only

two uncoalesced loads per every eight coalesced loads, and

thus increasing bandwidth usage. Algorithm 4 and 5 show the

implementation of the split-aligned method to compute the

energy function.

(b)

Alg. 3 Naive implementation of the energy function in CUDA

1: col ← block_x tile_width + x ‒ 1 // x : thread_x

2: row ← block_y tile_height + y ‒1 // y : thread_y

3: k ← row * image_width + col

4: i ← y bw + x // bw : block_width

5: Ix ← 0, Iy ← 0

6: if (k is an index within the image) SMEM (i) ← image(k)

7: else SMEM (i) ← 0

8: Synchronize_threads

9: if (x > 0 and x ≤ tile_width and y > 0 and y ≤ tile_height)

10: Ix ← SMEM(i + 1) ‒ SMEM (i ‒ 1)

11: Iy ← SMEM (i + bw) ‒ SMEM (i ‒ bw)

12: ENERGY (k) ← 0.5 (|Ix| + |Iy|)

4.2.3 Locality-aware implementation

 The split-aligned method has the potential to reduce the

number of uncoalesced memory accesses by a significant

amount, but it does not make the best use of locality.

Therefore, when porting the implementation to the newer

heterogeneous system, we decided to revise the split-aligned

method in order to take advantage of locality and the new

capabilities provided by the Fermi architecture. The GTX580

offers approximately 4.5X more SPs than the 8800GT. It also

supports memory accesses of up to 128-bytes on a single

coalesce load.

 Apart from the two outermost pixels that surround the

entire image, all pixels are utilized four times in the energy

function computation; twice for each of derivatives. Even

when these pixels are cached in shared memory, which saves

one global load per derivative, the split-aligned method

requires that each pixel be loaded twice. Therefore, we

decided to go back to implementing the energy computation

using a single kernel to compute both partial derivatives.

 The locality-aware method breaks the image into 2D

blocks of 512 threads. Each tile contains 64 columns and 8

rows. With a 64x8-block configuration, two warps are

assigned per row. All 32 threads in a warp are able to cache

their corresponding pixel on a single coalesce load of 128-

bytes for 16 fully coalesce loads. Loading the top and bottom

aprons also results in fully coalesce loads. The uncoalesce

loads are introduced by the left and right aprons of the tile.

Increasing the number of rows in a tile improves locality, but

increases the number of uncoalesce loads. Increasing the block

width minimizes the number of uncoalesce loads, but reduces

locality. After careful analysis and performance tests, we

found that 8 rows and 64 columns generate the best

performance. Algorithm 6 gives an in-depth description of the

locality-aware implementation of the energy function.

4.3 Seam map on the GPU

 The GPU implementation of the seam map computation

is very similar to the multithreaded CPU implementation,

which is described in Section 4.1.2. Each row of the image is

broken into horizontal tiles, whose width is carefully selected

in order to maximize the occupancy of the GPU. Given that,

blocks are not scheduled deterministically and that there is no

synchronization among threads on different blocks, we must

resort to calling the kernel once per row and synchronize in

between calls. For this implementation, wider images should

perform much better than narrow images. Similar to the

multithreaded CPU implementation, a significant amount of

the data is not separable. This limits the amount of parallel

execution per kernel launch.

4.4 Page-Locked Memory

 The CUDA runtime environment has functionalities to

allocate and use page-locked memory in place of regular

pageable host memory [7]. We included this feature in our

heterogeneous implementation to optimize the memory

transfer. In the performance evaluation, we demonstrate that

page-locked memory does not affect the performance or

results of individual kernels, but it improves the execution

time of the memory transfer between the host and device.

Alg. 5 Split-aligned implementation of energy in CUDA

1: col ← block_x block_width + thread_x

2: row ← block_y block_height + thread_y

3: k ← row image_pitch + col

4: x ← thread_x + 1, y ← thread_y, Ix ← 0

5: i ← y HORIZ _WIDTH + x

6: if (k is an index within the image) SMEM (i) ← image(k)

7: if (thread_x == 0 and row < image_ height)

8: pbase ← col * image_pitch

9: SMEM (y * HORIZ _WIDTH) ← image(pbase + block_width * block_x ‒ 1)

10: SMEM (y * 2 * HORIZ_WIDTH ‒ 1) ← image(pbase + (block_width+1) * block_x)

11: Synchronize_threads

12: if (col < image_width)

13: k ← row energy_pitch + col

14: Ix ← SMEM (y * HORIZ_WIDTH + x + 1) ‒ SMEM (y * HORIZ_WIDTH + x ‒ 1)

15: ENERGY(k)← 0.5 (|Ix| + ENERGY(k))

Alg. 4 Vertical implementation of the gradient in CUDA

1: col ← block_x bw + x // x/y : thread_x/y, bw : block_width

2: row ← block_y tile_height + y ‒1

3: k ← row * image_pitch + col

4: i ← y bw + x, Ix ← 0, Iy ← 0

5: if (k is an index within the image) SMEM (i) ← image(k)

6: else SMEM (i) ← 0

7: Synchronize_threads

8: if (y < tile_height)

9: row ← row + 1, i ← i + bw

10: k ← row * energy_pitch + col

11: if (row < image_height)

12: Iy ← SMEM (i + bw) ‒ SMEM (i ‒ bw)

13: ENERGY (k) ← |Iy|

Alg. 6 Locality-aware implementation of the energy in CUDA

1: col ← block_x block_width + thread_x // We ensure col

2: row ← block_y block_height + thread_y // and row are within

3: k ← row image_pitch + col // the image width

4: j ← thread_x + 1, i ← thread_y + 1 // and height

5: SMEM (i, j) ← image(k)

6: if (thread_x == 0 and col ≠ 0) SMEM (i, 0) ← image(k ‒ 1)

7: if (thread_x == block_width‒1 and col ≠ image_width‒1)

8: SMEM (i, block_width + 1) ← image(k +1)

9: if thread_y == 0 and row ≠ 0

10: SMEM (0, j) ← image(k ‒ image_pitch)

11: if thread_y == block_height‒1 and row ≠ image_height‒1

12: SMEM (block_height + 1, j) ← image(k + image_pitch)

13: Synchronize_threads

14: Ix ← 0, Iy ← 0, k ← row energy_pitch + col

15: if pixel are not on the edge of the image

16: Ix ← SMEM (i, j + 1) ‒ SMEM (i, j ‒1)

17: Iy ← SMEM (i + 1, j) ‒ SMEM (i ‒ 1, j)

18: else if pixel is in the first or last rows

19: Ix ← SMEM(i, j + 1) ‒ SMEM (i, j ‒ 1)

20: else if pixel is on the first or last columns

21: Iy ← SMEM (i + 1, j) ‒ SMEM (i ‒ 1, j)

22: ENERGY(k)← 0.5 (|Ix| + |Iy|)

5 Performance evaluation

 The overall time that it takes to remove a single seam of

an image depends highly on the size of the image. The

energy function takes the largest fraction of the total

execution time, followed by the seam computation. Hence, in

this paper, we focus on improving the energy function and

the seam map computations. However, we also compare and

discuss the total execution times.

5.1 CPU evaluation and results

5.1.1 Energy function

 Figure 6 illustrates the performance gained by

multithreading the energy function computation and

executing the implementation on the Intel Core i7 (4-cores

each with SMT) and Xeon CPUs (8-cores, no SMT). The

execution of the energy function single-threaded

implementation takes 31.5 ms to complete on the Intel Xeon

CPU. This is the base system in Figure 6. Results show that

the newer Intel Core i7 CPU outperforms the Intel Xeon

processor for all of the thread configurations. The best CPU

performance for the energy function computation of a

1200x900 image is with the Intel Core i7 and 16 threads.

Overall, the energy function computation scales well on

multi-core CPUs. With eight cores, the Intel Xeon achieves

7x performance improvement. With four cores and eight

hardware threads, the Intel Core i7 achieves 7x speedup over

its single-threaded execution. In addition, the Intel Core i7

achieves a 10x performance improvement over the Intel

Xeon single-threaded execution. Finally, as the number of

threads launched increase beyond the number of hardware

threads in the system, the performance gain becomes smaller

due to the thread switching overheads. The only exception is

the 16-thread execution of the Intel Core i7, which needs

further research and it is left as future work.

5.1.2 Seam map

 In section 4.1.2, we discussed the implementation of

the seam map on the CPU and the dependability among rows

of pixels. We emphasized how dependability due to the

dynamic programming approach serialized the execution of

rows. However, the results exposed another problem that

significantly affects the parallelization of the seam map

computation. Figure 7 illustrates the performance results of

the seam map. The Figure shows that barriers impose a

substantial overhead, resulting in a zero gain in performance.

Figure 6: Improvement of the energy function over the single-threaded

executing of the Intel Xeon for a 1200x900 image.

In the multithreaded implementation, the performance is

worse than that of the single-threaded implementation.

 As mentioned in section 4.1.2, a more efficient approach

is to synchronize locally instead of at the global level. This

implementation performs better because locks inflict less

overhead. However, we are only able to achieve 26% and 60%

improvement with 2 threads on the Intel Xeon and Intel Core

i7, respectively. This speedup is minor in comparison to the

speedups achieved for the energy function. Beyond two

threads, we see a large drop in performance even though both

systems have eight hardware threads.

5.2 GPU performance evaluation

5.2.1 Naive-non-aligned energy function

 On the 8800GT, the naive-non-aligned method achieves

5.7x and 8x performance improvement over the single-

threaded CPU implementation executing on the Intel Xeon

and Core i7, respectively, as shown in Figure 8. This

performance improvement is similar to that of the

multithreaded CPU implementations. However, this

implementation does not take advantage of the GPU's wide

memory bus. Its memory access patterns are not coalesced due

to the data not being aligned. Since the naive-non-aligned

method only utilizes three bytes per pixel, a warp will only

load 96 bytes and a half of a warp will load 48 bytes. Such

memory access pattern is not aligned. The naive-non-aligned

method was initially designed with the G80 architecture in

mind. However, with minimum modifications, this

implementation yields 89.7x and 62x performance

improvement on the Fermi GTX580, over the single-threaded

implementation running on Intel Xeon and Intel Core i7,

respectively (see Figure 9).

5.2.2 Naive-aligned energy function

 The changes to transform the naive method from a non-

aligned to an aligned implementation (see Section 4.2.1)

improve the performance relative to the single-threaded

version from 8x to 18x and 5.7x to 12.4x on their respective

systems as shown in Figure 8. Utilizing the CUDA profiler,

we were able to determine the remaining source of our

performance problems, uncoalesced accesses. The first naive

version incurred over 500,000 uncoalesced loads and 300,000

uncoalesced stores for a 1200x900 image (≈ 1 megapixel); the

improved aligned version incurred only 100,000 uncoalesced

loads and 50,000 uncoalesced stores. This is still significantly

more than one would expect, as an image with

Figure 7: Performance of multi-threaded implementations of Seam map

0

2

4

6

8

10

1 2 4 8 16 32 64 128

P
e

rf
o

rm
an

ce

Im
p

ro
ve

m
en

t

Number of CPU Threads

Intel i7 (4 Core)

Intel Xeon (8 Core)

0

0.5

1

1.5

2

1 2 4 8 16 32 64 128

P
e

rf
o

rm
an

ce

Im
p

ro
ve

m
en

t

Number of CPU Threads

Barrier implementation (Xeon)

Barrier Implementation (i7)

Semaphore implementation (Xeon)

Semaphorer implementation (i7)

 Figure 8: speedup of the energy function over the single threaded CPU

this amount of pixels should only need 16,875 loads

assuming the GPU can bring in 64 bytes per coalesced loads.

The naive-aligned method was also designed for the 8800GT.

When executed on the GTX580, this implementation shows a

performance improvement of 100x and 69x over the

respective Intel Xeon and Core i7 single-thread CPU

implementations (see Figure 9).

5.2.3 Split-aligned energy function

 The split-aligned method described in Section 4.2.2

achieves an average of 850 megapixels per second

throughput, a 24x and a 16.5x improvement over the single-

threaded CPU version on the Intel Xeon and Core i7,

respectively, as shown in Figure 8. As expected, the CUDA

profiler reveals that for a 1200x900 image, approximately,

only 31,000 loads and 15,000 stores were needed (each pixel

must be loaded from global memory twice; once for each

directional kernel), reducing the total memory access latency

by an order of magnitude. On the GTX580, the split-aligned

achieves 108.6x improvement over the Intel Xeon CPU and

75x over the Intel Core i7 as shown in Figure 9.

5.2.4 Merging the split-aligned method

 The locality-aware method described in section 4.2.3

achieves the highest performance improvement on both

GPUs for the energy function computation. By merging the

computation of the two derivatives in a way that the number

of coalesce loads remains close, and by further taking

advantage of locality of accesses, we manage to improve the

performance of the energy function by 144.5x and 100x over

the single-threaded CPU version on the Intel Xeon and Core

i7, respectively, as shown in Figure 9. In addition, when

executed on the 8800GT, this method shows a performance

improvement of 30x and 21x over the Xeon and Core i7

single-threaded version (Figure 8).

5.2.5 Seam map

 The seam map GPU implementation exhibits

approximately 4x performance improvement over the single-

threaded CPU implementation on the Intel Xeon and no

improvement over the Intel Core i7 single-threaded

implementation (figure not shown). This performance gain is

relatively small in comparison to the energy function

speedup. The performance is heavily impacted by the

profound dependability among rows in the image. This limits

the amount of parallel computation by serializing the

execution of rows. Another significant performance impact is

the lacking of optimal methods for synchronizing threads

Figure 9: Improvement of the energy function on the GTX580 (Fermi)

over the single threaded CPU implementations

among different blocks. Launching the kernel 899 times for a

1200x900 image imposes a significant overhead.

Approximately 57% of the seam map execution time is due to

kernel launch overhead. Minimizing the launch overhead

could potentially improve the performance by a factor of two.

5.3 Evaluation of total execution time of the

resizing operation on the GTX580

 As previously stated, the energy function and seam map

computations account for the largest fraction of the execution

time of seam carving. Therefore, by improving these two

parts, one would normally achieve a high overall performance

improvement. However, there is a penalty when performing

computation on the GPU device. The data must be copy from

the host memory to the device memory. Once the computation

is performed, we must copy the results back to the host

memory; if we care to use the results on the CPU side. Both of

these operations introduce additional overhead. For extensive

GPU computation, the overhead is easily hidden. However,

this is not the case for seam carving given that the

computations are in the order of micro and milliseconds.

 In order to use this GPU implementation of the seam

carving in a real word application, we need to utilize the

operation described above. Therefore, we need to incorporate

the total time that it takes to copy the image from the host to

the device, compute both the energy function and the seam

map, and copy the result back to the host memory. Figure 10

illustrates the total time that the entire operation takes on the

Intel Core i7 and on the GTX580, respectively. This

heterogeneous system is selected because it performs the best

for both the CPU and the GPU. Figure 11 shows the

performance improvement for the entire operation.

 Figures 10 and 11 illustrate that the GPU methods

perform better than the CPU methods, especially when the

size of the image increases. Overall, Figure 11 shows that the

total execution time of the best resizing implementation on the

GTX580 is about 6x faster than the best single-threaded CPU

implementation and over 2x faster than the best multithreaded

CPU implementation. The best execution time on entire

operation is achieved with the locality-aware method using

page-locked memory. The reason is that the CUDA run-time

environment can optimize the host to device and device to

host memory copy if the CPU memory is allocated as non-

pageable memory (see [7]). We therefore modified our fastest

implementation, locality-aware, to take advantage of page-

locked memory, which yields the best overall performance as

shown in Figures 10 and 11.

0

10

20

30

Naïve-non-aligned Naïve-aligned Split-aligned Locality-aware

P
e

rf
o

rm
an

ce

Im
p

ro
ve

m
en

t
8800GT over Intel Core i7

8800GT over Intel Xeon

0

50

100

150

P
e

rf
o

rm
an

ce

Im
p

ro
ve

m
en

t
 GTX580 over Intel i7

GTX580 over Intel Xeon

Figure 10: Total time to copy to and from the device, compute the energy

function and seam map on the GTX580 and Core i7

Figure 11: Total time to copy to and from the device, compute the energy

function and seam map on the GTX580 and Core i7

6 Related work

 Resizing images and videos have been studied

extensively in the literature. One of the most popular

approaches is to perform cropping [1-5], which involves

finding the best rectangular sub-window in the image.

However, cropping may lose an unacceptable amount of

visual information when important structures lie at all edges

of an image. Scaling methods, with or without interpolation,

tend to produce distorted images, especially when an image

is scaled in one direction.

 Avidan and Shamir [6] recently provided a new

approach to image and video resizing, called seam carving.

Seam carving is an algorithm for content-aware resizing of

images and videos with little to no perceptible distortion.

Seam carving is a computationally-intensive method, which

makes it difficult to perform on large images or videos in

real-time.

 To the best of our knowledge, this paper is the first to

implement a real-time content-aware resizing method on

GPUs. Our implementation works very well on computing

the energy function (over 100x and 144x is possible), but the

other computationally-intensive part, seam map, is

implemented using dynamic programming which limits the

amount of data parallelism that can be exploited (only 4x

speedup over the Intel Xeon and no improvement over the

i7). A recent work [10] implemented a faster way to compute

the seam map by finding the optimal matches within a

weighted bipartite graph composed of the pixels in adjacent

rows or columns. In future work, we will adapt this method,

which we believe will improve our results greatly for the

seam map computation.

7 Conclusion and future work

 Seam carving is a powerful method for resizing images

and videos. This content-aware resizing method has been

shown to effectively resize images and videos with little to no

perceptible distortion. However, the seam carving algorithm is

computationally-intensive and for high-resolution images and

videos, it may become impossible to perform the resizing in

real-time by using the CPUs in a desktop-scale computer.

 In this paper, we exploit the highly parallel

computational capabilities of CUDA-capable GPUs in a

heterogeneous computer system for accelerating the resizing

of videos and images through seam carving. Out of the four

different GPU methods that we implemented, our results show

that the best is the locality-aware method using page-locked

memory, which achieved a performance improvement of 100x

over the best single-threaded execution time and 14x over the

best CPU multithreaded version of the energy function

executing on the Intel Core i7. Overall, our results show that

the GPU-based implementation has a significant impact on the

performance of seam carving and has the potential to resize

videos and large images in real-time.

 In the future, we are planning to vectorize the CPU

implementation to take advantage of the SIMD instructions on

the Intel CPUs. Another important part of our future work is

to find a better approach to parallelize the seam map

computation.

8 Acknowledgement

We would like to thank the anonymous reviewers for

their efforts. In addition, we would like to thank Harry Bock

for his contributions. This work was supported in part by US

National Science Foundation grant CCF-1117467.

9 References

[1] Itti L, Koch C, Niebur E, "A model of saliency-based visual

attention for rapid scene analysis," IEEE Trans Patt Anal Mach

Intell, 1998, Vol. 20, No. 11, pp. 1254–1259

[2] Sue B, Ling H, Bederson B, et al. "Automatic thumbnail

cropping and its effectiveness," In: Proc. of User Interface

Software and Tech., 2003, pp. 95–104

[3] Chen L, Xie X, Fan X, et al. "A visual attention model for

adapting images on small displays," Multimedia Syst, 2003,

Vol. 9 No. 4, pp. 353–364

[4] Ciocca G, Cusano C, Gasparini F, et al. "Self-adaptive image

cropping for small displays," IEEE Trans Consumer Electr,

2007, Vol. 53 No. 4 pp.1622–1627

[5] Santella A, Agrawala M, DeCarlo D, et al. "Gaze-based

interaction for semi-automatic photo cropping," Proc. of Human

Factors in Comp. Sys, 2006, pp. 771–780

[6] S. Avidan, A. Shamir, "Seam Carving for Content-Aware Image

Resizing," In SIGGRAPH '07 ACM SIGGRAPH, 2007.

[7] NVIDIA, "NVIDIA CUDA C Programming Guide 4.2," (2012).

[online]. Available: http://developer.download.nvidia.com/

compute/DevZone/docs/html/C/doc/CUDA_C_Programming_

Guide.pdf

[8] Intel, "2nd Generation Intel Core Processor Family Desktop,"

(2011). [online]. Available: http://www.intel.com/content/www/

us/en/processors/core/2nd-gen-core-desktop-vol-1-

datasheet.html

[9] Intel, "Quad-Core Intel Xeon Processor 5400 Series, Datasheet"

(2008). [Online]. Available: http://www.intel.com/assets/PDF/

datasheet/318589.pdf

[10] H. Hua, F. TianNan, R. Paul L, Q. Chun, "Real-time Content-

aware Image Resizing," Science in Chine Series F: Information

Sciences, 2009, Sci. in China Press.

0

20

40

60

80
Ti

m
e

(m
s)

900x450 Image
1200x900 Image
1920x1080 Image
2740x1830 Image

0

2

4

6

P
e

rf
o

rm
an

ce

Im
p

ro
ve

m
en

t 900x450 Image
1200x900 Image
1920x1080 Image
2740x1830 Image

