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Abstract - Seam carving has been widely used for content-

aware resizing of images and videos with little to no 

perceptible distortion. Unfortunately, for high-resolution 

videos and large images it becomes computationally 

unfeasible to do the resizing in real-time using small-scale 

CPU systems. In this paper, we exploit the highly parallel 

computational capabilities of CUDA-enabled Graphics 

Processing Units (GPUs) for accelerating the content-aware 

resizing of videos and images. The performance results show 

that our implementation of the seam carving algorithm 

achieves up to 100x and 14x speed-ups on the 

computationally-intensive part of the algorithm compared to 

the faster single-threaded and the faster multithreaded CPU 

implementations, respectively, on the systems tested. The 

overall resizing operation is over 6x and 2x faster than the 

best single-threaded and multithreaded CPU implementations, 

respectively, which demonstrates the potential to resize videos 

and large images in real-time. 

Keywords: Seam carving, GPU, CUDA, parallelization, 

heterogeneous system  

 

1 Introduction 

  One of the most popular uses of diverse mobile devices 

today is for browsing images and playing videos. However, 

different devices have different resolution capabilities, so it is 

necessary to resize images and videos efficiently and 

effectively to fit them into diverse displays (such as cell 

phones, PDAs, desktop displays, etc), preferably without 

distortion. 

 Cropping [1-5] has been one of the most popular 

approaches to resize images. However, cropping may lose an 

unacceptable amount of visual information when important 

structures lie at all edges of an image. In addition, it can only 

remove information, but it cannot add information to expand 

the image. Scaling methods, with or without interpolation, 

tend to produce distorted images, especially when an image is 

scaled in one direction.  

 Avidan and Shamir [6] recently provided a new approach 

to image and video resizing, called seam carving. Seam 

carving functions by establishing a number of seams (paths of 

least importance) in a digital media and automatically removes 

or inserts seams to resize the media. This content-aware 

resizing method has been shown to effectively resize images 

and videos with little to no perceptible distortion. Seam 

carving is a computationally-intensive operation. For high-

resolution images and videos, it could be difficult to perform 

the resizing in real-time by using the CPUs in a desktop-scale 

computer. 

 The advent of commodity massively parallel 

architectures, such as modern GPUs, is a compelling option 

for inexpensively removing the computationally-intensive 

operations from the CPU. In this paper, we exploit the data-

parallel execution model of GPUs for the implementation of 

content-aware image and video resizing. This paper makes the 

following contributions: 

1) We evaluate GPU-based seam carving algorithm on 

two CUDA-enabled NVIDIA GPUs. 

2) We compare single- and multi-threaded CPU 

versions of the algorithm with the GPU versions. 

3) We demonstrate that GPUs facilitate low-cost real-

time resizing of images and videos. 

2 Seam Carving 

 Seam carving [6] transforms the size of images and 

videos by carving-out pixels that form a path of low-energy. 

These low-energy connected paths, called seams, go from top 

to bottom or left to right for vertical or horizontal resizing, 

respectively. The seams are added to or removed from an 

image
1
 in order to increase or reduce its size with minimal 

observable distortion. Figure 1 shows the steps of horizontally 

resizing an example image. Since the majority of execution 

time is spent on the energy function and seam map 

computations (see section 5), in this paper, we focus on 

accelerating these two computationally-intensive parts.  

 
                   (a)                                (b)                              (c)                    (d) 

Figure 12: Seam Carving Steps. (a) The original image. (b) The energy of 

the image using gradient magnitude. (c) The low energy seams with the 

energy function. (d) Resized image after the seams are removed. 

2.1 Energy function 

  Seam Carving can utilize a variety of energy functions to 

generate seams [6]. The magnitude of the gradient approach 

uses equation (1) to compute the energy of each pixel relative 

                                                           
1 For most of the paper, we only discuss images.  However, a video is a set of 

images or frames displayed at the video rate of 30 frames per seconds. Seam 
carving is equally applicable to both images and videos. 
2 Image taken from Wikimedia Commons.  



to its surrounding pixels by quantifying the amount of change 

in color from one pixel to the next. 
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  The energy function computation exhibits vast data 

parallelism. However, attention must be given to memory 

access patterns, which may have a huge implication on 

performance. The need for accessing neighboring pixels to 

compute the energy function strongly influences the way we 

access memory on the GPU. 

2.2 Seam map 

  After finding the energy of each pixel, the result is used to 

locate the lowest-energy paths or seams. We focus on the 

implementation of the seams required for horizontal resizing, 

i.e. the vertical seams. The first row of the seam map is 

directly obtained from the first row of the energy function. 

Starting from the second row of the image, we use a dynamic 

programming approach (2) to compute the seam map value at 

every pixel. 
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  In equation (2), S is the seam map table, E is the energy 

function table, and i and j are the rows and columns indices of 

the tables. This dynamic programming approach produces the 

optimal seam/s [6]. The values in the final row of the seam 

map table correspond to the cumulative energy of the seams. 

The most important point to note about equation (2) is that the 

computation for each element is entirely dependent on the 

result of the three elements directly above it, as shown in 

Figure 2. Therefore, unlike the energy function, the data in the 

seam map computation is not 100% separable. This makes 

parallelizing the seam computation much more difficult than 

the energy function. 

3 Hardware resources 

 All of the implementations presented in this paper were 

executed on two different heterogeneous computer systems. 

The First system is a Mac Pro running the Mac OS X 10.6 

operating system powered by two 2.8GHz quad-core Intel 

Xeon E5462s CPUs. The Mac pro has an NVIDIA 8800GT 

GPU (G80 architecture) with 112 cores and 512MB of 

GDDR3 memory.  

 The second system is a newer machine running the 

Ubuntu Linux 10.04 operating system, powered by a single 

3.4 GHz quad-core Intel Core i7 2600k CPU. The GPU on the 

Linux machine is the NVIDIA GTX580 Featuring the Fermi 

architecture with 16 SMs (32 cores per SM) for a total of 512 

SPs. The GTX580 has 1.5GB of GDDR5 memory, 768KB L2 

cache, and 64KB configurable L1 cache/shared memory per 

SM. The Intel Core i7 supports simultaneous multithreading 

(SMT) while the Intel Xeon does not support SMT [8, 9]. 

 The parallelization tool for the CPU implementation is 

POSIX threads (pthread). Both of the CPU implementations 

were optimized and compiled with gcc -O2 optimization level. 

Finally, the heterogeneous implementations were compiled 

with the NVIDIA nvcc compiler, which uses gcc and the -O2 

flag to compile the CPU code 

4 Implementation 

4.1 CPU implementation  

4.1.1 Energy function 

 The single threaded CPU implementation of the energy 

function utilizes a set of nested for-loops to compute each of 

the partial derivatives (Algorithm 1, lines 1-7), and utilizes the 

result to compute the magnitude of the gradient (Algorithm 1, 

lines 8-9). The one-half is factor out of the derivatives and 

applied after the sum in order to save one multiplication 

operation per pixel. Instead of directly storing a 2D image in a 

2D array, we store the 2D image in a 1D array and map the 1D 

to a 2D array. This minimizes the allocation time, and the data 

is stored in a more suitable manner to take advantage of spatial 

locality. Note that the derivative of each pixel is computed 

once, the purpose of the nester loops is to ease the 

computation, but each derivative has O(n) time complexity.   

 Given that there are no data dependencies in the 

computation of the energy function, we are able to divide the 

computation into as many threads as the operating system 

supports. However, the performance is dictated by the 

hardware and the CPUs’ ability to execute threads 

simultaneously. We divide the input image into tiles consisting 

of consecutive rows. The height of each tile is computed based 

on the number of threads and the height of the image. Figure 3 

illustrates the decomposition of the input image for an 

execution configuration of eight threads. The Algorithm for 

the multithreaded version is very similar to Algorithm1 with 

the exception that each thread only loops through its 

corresponding portion of the image. 

     
 Figure 2. Seam map example.    Figure 3: Division of work for the CPU. 

 

 

 

 

 

 

 

 

Alg. 1 Single threaded Energy function  

1: Set all elements of Ix and Iy to 0 

2: for i ← 0 to height ‒ 1 

3:  for j ← 1 to width ‒ 2 

4:   Ix(i, j) ← I(i,  j+1) ‒ I(i,  j-1) 

5: for i ← 1 to height ‒ 2 

6:  for j ← 0 to width ‒ 1 

7:   Iy(i, j) ← I(i+1,  j) ‒ I(i-1,  j) 

8: for all pixel in the image  

9:  energy = 0.5   (|Ix| + |Iy|) 

 

Alg. 2 multithreaded Seam map  

1: for i ← 1 to height ‒ 1 

2:    for j ← t_start to t_end 

3:    if (j-1 < t_start) 

4:      wait for S(i, j-1) to be unlock  

5:     if (j+1 > t_end) 

6:      wait for S(i, j+1) to be unlock 

7:     S(i, j) ← Min(S(i-1, j-1),           

     S(i-1, j), S(i-1, j+1))+energy(i, j)  

8:     Unlock S(i, j)   //initially locked  

   



4.1.2 Seam map 

 Unlike the energy function, the seam map computation 

uses a dynamic programming approach that is not 

parallelization-friendly (see section 2.2). Therefore, we have 

to perform a row-by-row computation of the seam map, 

which serializes the execution of rows. We achieve 

parallelism by dividing each row into fixed-width tiles and 

computing these tiles in parallel. We synchronize all threads 

after the execution of each row. This method does not yield 

any significant benefit over the single-threaded version; in 

fact, with more than two threads, the program spends more 

time synchronizing than performing the computations.  

 In an attempt to optimize the seam map 

implementation, we used locks to create local barriers in 

place of global barriers. Instead of stalling threads until every 

thread finishes its part, each thread is only concerned with the 

execution of its neighboring threads. We therefore use an 

array of locks to allow each thread to manage the availability 

of the seam map results of its boundary element on every 

row. This approach is illustrated in Algorithm 2 where t_start 

and t_end are computed by dividing the width of the image 

by the number of threads and assigning each thread their 

respective areas.  

4.2 Energy function on the GPU 

4.2.1 Naive implementation 

 The first GPU method presented in this paper is the 

naive-non-aligned implementation. In this implementation, 

the image was partitioned into 16x16 tiles containing 256 

pixels as illustrated in Figure 4a. In addition to loading the 

corresponding data into shared memory, the kernel also needs 

to load the pixels immediately adjacent to the tile. These 

outer pixels are known as the tile apron, shown in white in 

Figure 4b. Each tile utilizes one 2D block of 324 threads 

(18x18), thus assigning one thread per pixel load.  

 All CUDA threads in the Naive kernel execute 

Algorithm 3. First, each thread calculates the necessary pixel 

indices to copy a pixel from the global to the shared memory 

(lines 1-4). Line 6 caches the pixels in shared memory and 

line 8 ensure that all data transfer completes before 

performing the computation. Finally, we use 256 out of 324 

threads to compute the gradient and store result (lines 10-12). 

 At first, we used a three-byte data structure to store the 

RGB components of each pixel. A three-byte data structure 

causes unaligned memory accesses, which reduces 

performance.  We solved this problem by aligning pixels to 

word length (4 bytes). This implementation waste 25% of the 

total memory. However, if the memory size is sufficient, this 

is an excellent tradeoff. In addition, there are times when we 

are interested in preserving the alpha component of all pixels; 

this implementation guarantees that all pixels retain the 

original alpha value. Another optimization technique is to 

allocate memory on the device using the cudaMallocPitch 

function [7]. Using the two-dimensional allocation and copy 

functions (cudaMemcpy2D), we guarantee that each row of 

the image starts on a 64- or 128-bytes boundary in global 

memory depending on the device architecture. 

 

 

 

 

 

 

 

 

 

 

 

 

                  
(a)                                                         (b) 

Figure 4: (a) Division of work between threads in the naive GPU 

implementations; the white area represents idle threads. (b) Partition of 

block; the tile apron is shown in white and the writable pixels in blue. 

 
                                (a)      

Figure 5: Partition of the image. (a) Vertical tiles. (b) Horizontal tiles. 

White represents the apron pixels and blue/dark the workable pixels 

4.2.2 Split-aligned implementation 

 To achieve nearly full coalesced memory access, we 

decided to separate the energy function calculation into two 

separate kernels, a horizontal and a vertical gradient kernel, 

and combine the results of the two. This allows us to 

reorganize the thread grid to suit the kind of memory accesses 

expected for each direction of the derivatives. Both the apron 

pixels and workable pixels in the vertical direction are always 

aligned to 16 pixels as shown in Figure 5a, allowing coalesced 

accesses of 64 bytes. 

 For the horizontal calculation, it is not possible with this 

approach to avoid uncoalesced memory accesses because the 

apron pixels lie outside the alignment boundary. However, by 

increasing the tile width to 128 pixels (Figure 5b), some of the 

wasted bandwidth due to uncoalesced memory accesses is 

hidden. This improves the memory efficiency allowing only 

two uncoalesced loads per every eight coalesced loads, and 

thus increasing bandwidth usage. Algorithm 4 and 5 show the 

implementation of the split-aligned method to compute the 

energy function.  

(b) 

Alg. 3 Naive implementation of the energy function in CUDA  

1: col ← block_x   tile_width + x ‒ 1      // x : thread_x 

2: row ← block_y   tile_height + y ‒1    // y : thread_y 

3: k ← row * image_width + col 

4: i ← y   bw + x                                   // bw : block_width 

5: Ix ← 0,   Iy ← 0 

6: if (k is an index within the image)   SMEM (i) ← image(k)   

7: else  SMEM (i) ← 0 

8:  Synchronize_threads 

9:  if (x >  0 and x ≤ tile_width and  y >  0 and y ≤ tile_height)  

10:  Ix ← SMEM(i + 1) ‒ SMEM (i ‒ 1) 

11:   Iy ← SMEM (i + bw) ‒ SMEM (i ‒ bw)  

12:  ENERGY (k) ← 0.5   (|Ix| + |Iy|) 

 



 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2.3 Locality-aware implementation 

 The split-aligned method has the potential to reduce the 

number of uncoalesced memory accesses by a significant 

amount, but it does not make the best use of locality. 

Therefore, when porting the implementation to the newer 

heterogeneous system, we decided to revise the split-aligned 

method in order to take advantage of locality and the new 

capabilities provided by the Fermi architecture. The GTX580 

offers approximately 4.5X more SPs than the 8800GT. It also 

supports memory accesses of up to 128-bytes on a single 

coalesce load.    

 Apart from the two outermost pixels that surround the 

entire image, all pixels are utilized four times in the energy 

function computation; twice for each of derivatives. Even 

when these pixels are cached in shared memory, which saves 

one global load per derivative, the split-aligned method 

requires that each pixel be loaded twice. Therefore, we 

decided to go back to implementing the energy computation 

using a single kernel to compute both partial derivatives.  

 The locality-aware method breaks the image into 2D 

blocks of 512 threads. Each tile contains 64 columns and 8 

rows. With a 64x8-block configuration, two warps are 

assigned per row. All 32 threads in a warp are able to cache 

their corresponding pixel on a single coalesce load of 128-

bytes for 16 fully coalesce loads. Loading the top and bottom 

aprons also results in fully coalesce loads. The uncoalesce  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

loads are introduced by the left and right aprons of the tile. 

Increasing the number of rows in a tile improves locality, but 

increases the number of uncoalesce loads. Increasing the block 

width minimizes the number of uncoalesce loads, but reduces 

locality. After careful analysis and performance tests, we 

found that 8 rows and 64 columns generate the best 

performance. Algorithm 6 gives an in-depth description of the 

locality-aware implementation of the energy function. 

4.3 Seam map on the GPU 

 The GPU implementation of the seam map computation 

is very similar to the multithreaded CPU implementation, 

which is described in Section 4.1.2. Each row of the image is 

broken into horizontal tiles, whose width is carefully selected 

in order to maximize the occupancy of the GPU. Given that, 

blocks are not scheduled deterministically and that there is no 

synchronization among threads on different blocks, we must 

resort to calling the kernel once per row and synchronize in 

between calls. For this implementation, wider images should 

perform much better than narrow images. Similar to the 

multithreaded CPU implementation, a significant amount of 

the data is not separable. This limits the amount of parallel 

execution per kernel launch.  

4.4 Page-Locked Memory  

 The CUDA runtime environment has functionalities to 

allocate and use page-locked memory in place of regular 

pageable host memory [7]. We included this feature in our 

heterogeneous implementation to optimize the memory 

transfer. In the performance evaluation, we demonstrate that 

page-locked memory does not affect the performance or 

results of individual kernels, but it improves the execution 

time of the memory transfer between the host and device.  

Alg. 5 Split-aligned implementation of energy in CUDA  

1: col ← block_x   block_width + thread_x 

2: row ← block_y   block_height + thread_y  

3:  k ← row   image_pitch + col  

4:  x ← thread_x + 1,   y ← thread_y,  Ix ← 0 

5: i ← y   HORIZ _WIDTH + x  

6: if  (k is an index within the image)    SMEM (i) ← image(k) 

7: if  (thread_x == 0 and row < image_ height)  

8:  pbase  ← col * image_pitch 

9:  SMEM (y * HORIZ _WIDTH) ← image(pbase + block_width  * block_x ‒ 1 ) 

10:  SMEM (y * 2 * HORIZ_WIDTH ‒ 1) ← image(pbase + (block_width+1) * block_x) 

11: Synchronize_threads 

12: if  (col < image_width)  

13:  k ← row   energy_pitch + col 

14:      Ix ← SMEM (y * HORIZ_WIDTH + x + 1) ‒ SMEM (y * HORIZ_WIDTH + x  ‒  1)  

15:      ENERGY(k)← 0.5   (|Ix| + ENERGY(k))   

 

Alg. 4 Vertical implementation of the gradient in CUDA  

1: col ← block_x   bw + x   // x/y : thread_x/y,  bw : block_width 

2: row ← block_y   tile_height + y ‒1   

3: k ← row * image_pitch + col 

4: i ← y   bw + x,   Ix ← 0,   Iy ← 0        

5: if  (k is an index within the image )   SMEM (i) ← image(k)  

6: else  SMEM (i) ← 0 

7:  Synchronize_threads 

8:  if ( y < tile_height ) 

9:  row ← row + 1,  i ← i + bw 

10:  k ← row * energy_pitch + col 

11:  if  (row < image_height) 

12:    Iy ← SMEM (i + bw) ‒ SMEM (i ‒ bw)  

13:   ENERGY (k)  ← |Iy| 

 

Alg. 6 Locality-aware implementation of the energy in CUDA  

1: col ← block_x   block_width + thread_x        // We ensure col 

2: row ← block_y   block_height + thread_y     // and row are within  

3:  k ← row   image_pitch + col         // the image width  

4:  j ← thread_x + 1,  i ← thread_y + 1      // and height 

5: SMEM (i, j) ← image(k)   

6: if  (thread_x == 0 and col ≠ 0)   SMEM (i, 0) ← image(k ‒ 1) 

7: if  (thread_x == block_width‒1 and col ≠ image_width‒1)  

8:  SMEM (i, block_width + 1) ← image(k +1) 

9: if thread_y == 0 and row ≠ 0  

10:  SMEM (0, j) ← image(k ‒ image_pitch) 

11: if thread_y == block_height‒1 and row ≠ image_height‒1  

12:  SMEM (block_height + 1, j) ← image(k + image_pitch) 

13: Synchronize_threads 

14: Ix ← 0,   Iy ← 0,   k ← row   energy_pitch + col  

15: if pixel are not on the edge of the image 

16:  Ix ← SMEM (i,  j + 1) ‒ SMEM (i,  j ‒1) 

17:  Iy ← SMEM (i + 1,  j) ‒ SMEM (i ‒ 1,  j) 

18: else if pixel is in the first or last rows 

19:  Ix ← SMEM(i,  j + 1) ‒ SMEM (i,  j ‒ 1) 

20: else if pixel is on the first or last columns  

21:  Iy ← SMEM (i + 1,  j) ‒ SMEM (i ‒ 1, j) 

22: ENERGY(k)← 0.5   (|Ix| + |Iy|) 

 



5 Performance evaluation 

 The overall time that it takes to remove a single seam of 

an image depends highly on the size of the image. The 

energy function takes the largest fraction of the total 

execution time, followed by the seam computation. Hence, in 

this paper, we focus on improving the energy function and 

the seam map computations. However, we also compare and 

discuss the total execution times.  

5.1 CPU evaluation and results 

5.1.1 Energy function 

 Figure 6 illustrates the performance gained by 

multithreading the energy function computation and 

executing the implementation on the Intel Core i7 (4-cores 

each with SMT) and Xeon CPUs (8-cores, no SMT). The 

execution of the energy function single-threaded 

implementation takes 31.5 ms to complete on the Intel Xeon 

CPU. This is the base system in Figure 6. Results show that 

the newer Intel Core i7 CPU outperforms the Intel Xeon 

processor for all of the thread configurations. The best CPU 

performance for the energy function computation of a 

1200x900 image is with the Intel Core i7 and 16 threads. 

Overall, the energy function computation scales well on 

multi-core CPUs. With eight cores, the Intel Xeon achieves 

7x performance improvement. With four cores and eight 

hardware threads, the Intel Core i7 achieves 7x speedup over 

its single-threaded execution. In addition, the Intel Core i7 

achieves a 10x performance improvement over the Intel 

Xeon single-threaded execution. Finally, as the number of 

threads launched increase beyond the number of hardware 

threads in the system, the performance gain becomes smaller 

due to the thread switching overheads. The only exception is 

the 16-thread execution of the Intel Core i7, which needs 

further research and it is left as future work. 

 

5.1.2 Seam map 

  In section 4.1.2, we discussed the implementation of 

the seam map on the CPU and the dependability among rows 

of pixels. We emphasized how dependability due to the 

dynamic programming approach serialized the execution of 

rows. However, the results exposed another problem that 

significantly affects the parallelization of the seam map 

computation. Figure 7 illustrates the performance results of 

the seam map. The Figure shows that barriers impose a 

substantial overhead, resulting in a zero gain in performance. 

 

 
Figure 6: Improvement of the energy function over the single-threaded 

executing of the Intel Xeon for a 1200x900 image. 

In the multithreaded implementation, the performance is 

worse than that of the single-threaded implementation.  

  As mentioned in section 4.1.2, a more efficient approach 

is to synchronize locally instead of at the global level. This 

implementation performs better because locks inflict less 

overhead. However, we are only able to achieve 26% and 60% 

improvement with 2 threads on the Intel Xeon and Intel Core 

i7, respectively. This speedup is minor in comparison to the 

speedups achieved for the energy function. Beyond two 

threads, we see a large drop in performance even though both 

systems have eight hardware threads. 

 

5.2 GPU performance evaluation  

5.2.1 Naive-non-aligned energy function 

 On the 8800GT, the naive-non-aligned method achieves 

5.7x and 8x performance improvement over the single-

threaded CPU implementation executing on the Intel Xeon 

and Core i7, respectively, as shown in Figure 8. This 

performance improvement is similar to that of the 

multithreaded CPU implementations. However, this 

implementation does not take advantage of the GPU's wide 

memory bus. Its memory access patterns are not coalesced due 

to the data not being aligned. Since the naive-non-aligned 

method only utilizes three bytes per pixel, a warp will only 

load 96 bytes and a half of a warp will load 48 bytes. Such 

memory access pattern is not aligned. The naive-non-aligned 

method was initially designed with the G80 architecture in 

mind. However, with minimum modifications, this 

implementation yields 89.7x and 62x performance 

improvement on the Fermi GTX580, over the single-threaded 

implementation running on Intel Xeon and Intel Core i7, 

respectively (see Figure 9).  

5.2.2 Naive-aligned energy function 

 The changes to transform the naive method from a non-

aligned to an aligned implementation (see Section 4.2.1) 

improve the performance relative to the single-threaded 

version from 8x to 18x and 5.7x to 12.4x on their respective 

systems as shown in Figure 8. Utilizing the CUDA profiler, 

we were able to determine the remaining source of our 

performance problems, uncoalesced accesses. The first naive 

version incurred over 500,000 uncoalesced loads and 300,000 

uncoalesced stores for a 1200x900 image (≈ 1 megapixel); the 

improved aligned version incurred only 100,000 uncoalesced 

loads and 50,000 uncoalesced stores. This is still significantly 

more than one would expect, as an image with  

 
Figure 7: Performance of multi-threaded implementations of Seam map 
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 Figure 8: speedup of the energy function over the single threaded CPU  

this amount of pixels should only need 16,875 loads 

assuming the GPU can bring in 64 bytes per coalesced loads. 

The naive-aligned method was also designed for the 8800GT. 

When executed on the GTX580, this implementation shows a 

performance improvement of 100x and 69x over the 

respective Intel Xeon and Core i7 single-thread CPU 

implementations (see Figure 9). 

5.2.3 Split-aligned energy function 

 The split-aligned method described in Section 4.2.2 

achieves an average of 850 megapixels per second 

throughput, a 24x and a 16.5x improvement over the single-

threaded CPU version on the Intel Xeon and Core i7, 

respectively, as shown in Figure 8. As expected, the CUDA 

profiler reveals that for a 1200x900 image, approximately, 

only 31,000 loads and 15,000 stores were needed (each pixel 

must be loaded from global memory twice; once for each 

directional kernel), reducing the total memory access latency 

by an order of magnitude. On the GTX580, the split-aligned 

achieves 108.6x improvement over the Intel Xeon CPU and 

75x over the Intel Core i7 as shown in Figure 9.  

5.2.4 Merging the split-aligned method 

 The locality-aware method described in section 4.2.3 

achieves the highest performance improvement on both 

GPUs for the energy function computation. By merging the 

computation of the two derivatives in a way that the number 

of coalesce loads remains close, and by further taking 

advantage of locality of accesses, we manage to improve the 

performance of the energy function by 144.5x and 100x over 

the single-threaded CPU version on the Intel Xeon and Core 

i7, respectively, as shown in Figure 9. In addition, when 

executed on the 8800GT, this method shows a performance 

improvement of 30x and 21x over the Xeon and Core i7 

single-threaded version (Figure 8). 

5.2.5 Seam map 

 The seam map GPU implementation exhibits 

approximately 4x performance improvement over the single-

threaded CPU implementation on the Intel Xeon and no 

improvement over the Intel Core i7 single-threaded 

implementation (figure not shown). This performance gain is 

relatively small in comparison to the energy function 

speedup. The performance is heavily impacted by the 

profound dependability among rows in the image. This limits 

the amount of parallel computation by serializing the 

execution of rows. Another significant performance impact is 

the lacking of optimal methods for synchronizing threads  

 
Figure 9: Improvement of the energy function on the GTX580 (Fermi) 

over the single threaded CPU implementations 

among different blocks. Launching the kernel 899 times for a 

1200x900 image imposes a significant overhead. 

Approximately 57% of the seam map execution time is due to 

kernel launch overhead. Minimizing the launch overhead 

could potentially improve the performance by a factor of two.  

5.3 Evaluation of total execution time of the 

resizing operation on the GTX580 

 As previously stated, the energy function and seam map 

computations account for the largest fraction of the execution 

time of seam carving. Therefore, by improving these two 

parts, one would normally achieve a high overall performance 

improvement. However, there is a penalty when performing 

computation on the GPU device. The data must be copy from 

the host memory to the device memory. Once the computation 

is performed, we must copy the results back to the host 

memory; if we care to use the results on the CPU side. Both of 

these operations introduce additional overhead. For extensive 

GPU computation, the overhead is easily hidden. However, 

this is not the case for seam carving given that the 

computations are in the order of micro and milliseconds. 

 In order to use this GPU implementation of the seam 

carving in a real word application, we need to utilize the 

operation described above. Therefore, we need to incorporate 

the total time that it takes to copy the image from the host to 

the device, compute both the energy function and the seam 

map, and copy the result back to the host memory. Figure 10 

illustrates the total time that the entire operation takes on the 

Intel Core i7 and on the GTX580, respectively. This 

heterogeneous system is selected because it performs the best 

for both the CPU and the GPU. Figure 11 shows the 

performance improvement for the entire operation.  

 Figures 10 and 11 illustrate that the GPU methods 

perform better than the CPU methods, especially when the 

size of the image increases. Overall, Figure 11 shows that the 

total execution time of the best resizing implementation on the 

GTX580 is about 6x faster than the best single-threaded CPU 

implementation and over 2x faster than the best multithreaded 

CPU implementation. The best execution time on entire 

operation is achieved with the locality-aware method using 

page-locked memory. The reason is that the CUDA run-time 

environment can optimize the host to device and device to 

host memory copy if the CPU memory is allocated as non-

pageable memory (see [7]). We therefore modified our fastest 

implementation, locality-aware, to take advantage of page-

locked memory, which yields the best overall performance as 

shown in Figures 10 and 11. 
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Figure 10: Total time to copy to and from the device, compute the energy 

function and seam map on the GTX580 and Core i7  

 
Figure 11: Total time to copy to and from the device, compute the energy 

function and seam map on the GTX580 and Core i7 

6 Related work 

 Resizing images and videos have been studied 

extensively in the literature. One of the most popular 

approaches is to perform cropping [1-5], which involves 

finding the best rectangular sub-window in the image. 

However, cropping may lose an unacceptable amount of 

visual information when important structures lie at all edges 

of an image. Scaling methods, with or without interpolation, 

tend to produce distorted images, especially when an image 

is scaled in one direction.  

 Avidan and Shamir [6] recently provided a new 

approach to image and video resizing, called seam carving. 

Seam carving is an algorithm for content-aware resizing of 

images and videos with little to no perceptible distortion. 

Seam carving is a computationally-intensive method, which 

makes it difficult to perform on large images or videos in 

real-time.  

 To the best of our knowledge, this paper is the first to 

implement a real-time content-aware resizing method on 

GPUs. Our implementation works very well on computing 

the energy function (over 100x and 144x is possible), but the 

other computationally-intensive part, seam map, is 

implemented using dynamic programming which limits the 

amount of data parallelism that can be exploited (only 4x 

speedup over the Intel Xeon and no improvement over the 

i7). A recent work [10] implemented a faster way to compute 

the seam map by finding the optimal matches within a 

weighted bipartite graph composed of the pixels in adjacent 

rows or columns. In future work, we will adapt this method, 

which we believe will improve our results greatly for the 

seam map computation. 

7 Conclusion and future work 

 Seam carving is a powerful method for resizing images 

and videos. This content-aware resizing method has been 

shown to effectively resize images and videos with little to no 

perceptible distortion. However, the seam carving algorithm is 

computationally-intensive and for high-resolution images and 

videos, it may become impossible to perform the resizing in 

real-time by using the CPUs in a desktop-scale computer.  

 In this paper, we exploit the highly parallel 

computational capabilities of CUDA-capable GPUs in a 

heterogeneous computer system for accelerating the resizing 

of videos and images through seam carving. Out of the four 

different GPU methods that we implemented, our results show 

that the best is the locality-aware method using page-locked 

memory, which achieved a performance improvement of 100x 

over the best single-threaded execution time and 14x over the 

best CPU multithreaded version of the energy function 

executing on the Intel Core i7. Overall, our results show that 

the GPU-based implementation has a significant impact on the 

performance of seam carving and has the potential to resize 

videos and large images in real-time.  

 In the future, we are planning to vectorize the CPU 

implementation to take advantage of the SIMD instructions on 

the Intel CPUs.  Another important part of our future work is 

to find a better approach to parallelize the seam map 

computation.  
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