
 

 

Abstract - As reconfigurable logic devices see increasing use 

in aerospace and terrestrial applications, fault tolerant 

techniques are being developed to counter rising susceptibility 

due to decreasing feature sizes. Applying fault-tolerance to an 

entire circuit  induces unacceptable area and time penalties, 

thus some techniques trade area for fault tolerance. Area-

Constrained Partial Fault Tolerance (ACPFT) is a 

methodology that explicitly accepts a device’s resources as an 

input and attempts to find a maximally fault-tolerant subset, 

but determining an optimal partition is still an open problem. 

While ACPFT originally used heuristics for subset selection, a 

modification called ACPFT-GA has been developed that uses 

genetic evolution to provide significantly better fault coverage 

in many applications. However, its running time is 

substantially longer than standard ACPFT and may be 

prohibitive. This paper presents a GPU-accelerated version of 

ACPFT-GA that has executed over 27 times faster than CPU 

versions, allowing ACPFT-GA to better scale to larger 

circuits. 
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1 Introduction 

Two options for a system’s processing device are general 

purpose processors (GPU) and application specific integrated 

circuits (ASIC). The GPU offers great flexibility but low 

relative computational power. An ASIC can be designed to 

provide the greatest processing capability, however this 

requires a lengthy and very expensive design process, and it is 

extremely costly for small production runs. A reconfigurable 

logic device such as a field-programmable gate array (FPGA) 

offers an attractive third alternative. They provide high levels 

of computational power like ASICs, yet their ability to be 

reprogrammed gives flexibility like GPUs. They are off-the-

shelf devices and therefore do not have the lead times of 

ASICs. These features make them common choices in the low 

production runs of aerospace applications, and they are 

increasingly used in terrestrial systems. However, they may 

contain millions of bits to store configurations, and this makes 

them more susceptible to faults caused by electromagnetic 

radiation than GPUs and ASICs. Aerospace systems are 

currently concerned with errors due to single event upsets 

(SEUs), and as transistor feature sizes continue to shrink, 

terrestrial systems are also becoming wary[1, 2].  

Many applications using reconfigurable logic are not safety 

critical. A failure can be tolerated by ignoring the error and 

continuing, such as in video playback. In other cases, the 

operation can be reattempted, such as retransmitting dropped 

packets in network communication. However, a reduction of 

faults would clearly improve the user experience. Since 

systems implemented with reconfigurable logic invariably 

leave a portion of the device unused, these extra device 

resources can be leveraged to provide some level of partial-

fault tolerance and reduce the fault rate. The problem of 

applying partial fault-tolerance can then be formulated as 

follows. The logic cells contained with the original circuit 

must be partitioned into a protected subset and non-protected 

subset such that the fault-coverage is maximized given a set 

amount of additional logic resources. With current logic 

devices having hundreds of thousands of logic cells, this 

presents a gigantic solutions space.  

A method of partial fault tolerance called Area-Constrained 

Partial Fault Tolerance (ACPFT) has been developed that 

accepts a circuit’s available area as an input and finds a 

maximally fault-tolerance version of the circuit. This initial 

implementation utilizes difference heuristics to determine a 

partition, and it generally executes very quickly. A second 

version called ACPFT – Genetic Algorithm (ACPFT-GA) uses 

genetic evolution to explore the solution space. It was found to 

produce significantly more fault-tolerant circuits in expected 

application spaces, but the running times of ACPFT-GA can 

be two orders of magnitude larger than ACPFT’s. To provide 

the fault coverage of ACPFT-GA with a more acceptable 

execution time, the research presented here accelerates 

ACPFT-GA using NVIDIA CUDA, which is a popular 

programming extension for running scientific computations 

directly on massively-parallel graphics processors. This results 

in an average speed-up of around 17 to 18 times over standard 

ACPFT-GA with some cases showing speedups of over 27 

times.  

This paper is organized as follows. Section 2 reviews the 

key concepts of ACPFT-GA, other efforts to accelerate genetic 

algorithms with CUDA, and the key considerations when 

developing with CUDA. Section 3 describes the 

implementation of ACPFT-GA, the tool chain, and the 

particulars of casting it as a CUDA-based algorithm. Section 4 

presents the experimental results, and Section 5 concludes the 

paper. 
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2 Background 

2.1 Partial Fault Tolerance 

Since this paper focuses on the acceleration of ACPFT-GA 

and not the introduction of ACPFT-GA itself, readers are 

referred to [3] and [4] for the justifications of partial fault 

tolerance in reconfigurable logic. These summarize the 

advances in partial fault tolerance along with alternatives to 

ACPFT such as the BYU-LANL partial TMR tool [5], partial 

error masking [6], selective TMR [7], and Automatic Insertion 

of Partial TMR [8] 

 Triple modular redundancy (TMR) remains the standard 

fault-tolerance method for FPGAs [9]. It can be applied to 

circuits regardless of the function and of the logic cells used, 

and it often adds a minimal delay compared to other methods. 

TMR almost completely protects a circuit against a single 

fault, although voting logic may still be susceptible. However, 

it more than triples the circuit's size with a corresponding 

increase in power use. [10].  These advantages make TMR the 

most common basis for partial fault-tolerance.  

 Area-Constrained Partial Fault Tolerance is a technique that 

uses partial TMR to reduce the circuit area susceptible to faults 

even if the majority voters are not considered ideal, meaning 

that they can suffer faults also [3]. Ideal voters is an 

assumption often used for simplification in other methods 

because when a large subset of the circuit is being protected, 

the cross-sectional area of the majority voters is significantly 

smaller than the tripled area, perhaps by several orders of 

magnitude, and the rate of faults in the voters is considered to 

be negligible. This assumption is invalid in a fine-grained 

approach where the protected area and majority voters have 

comparable areas. ACPFT was originally designed to use 

several heuristics and metrics to determine a maximally fault-

tolerant partition of a circuit’s logic cells. 

 ACPFT maps well to genetic algorithms since it is similar to 

the familiar knapsack problem. In knapsack, there is a set of 

items, each with a weight and a value, and a knapsack that can 

hold a fixed weight. The optimization problem is to select a 

subset of items that can be carried in the knapsack with the 

maximum total value. The additional area of the FPGA relates 

to the knapsack, and the logic cells with their areas and 

sensitivities to faults relate to items with weight and value. 

However, the fault-tolerance problem is more complicated 

since the additional area required by each logic cell is not a 

constant value. It is a function of the other cells being 

protected. Previous research demonstrates that even simple 

genetic algorithms can create more fault-tolerant partitions 

than heuristic methods under common conditions, namely that 

the amount of additional resources available for fault tolerance 

is less than the size of the unprotected circuit [4]. 

2.2 Fundamentals of CUDA 

CUDA is an extension to several common programming 

languages, prominently C and C++, which requires an 

NVIDIA-based graphics processor for execution. NVIDIA 

GPUs are widely deployed and thus represent a very common 

computing platform. For easy scalability, NVIDIA cards are 

designed around a generalized processing unit called a 

streaming multiprocessor (SM). This allows the performance 

of CUDA applications to scale based on the number and 

hardware implementation of the SMs contained on a given 

card. Details of NVIDIA GPUs can be found at [11]. 

Since the underlying hardware architecture of a GPU is 

drastically different than a CPU, algorithms must be crafted 

using several critical concepts in order to make efficient use of 

the GPUs computational power [12]. Since GPU-based cards 

have either a small cache system or none at all, they rely on 

massive thread parallelism to hide memory access latency by 

executing a different group of threads when one group block 

on a memory operation. Therefore, an algorithm must be able 

to extract sufficient parallelism from a problem to occupy the 

GPU’s thread slots and mask this latency. Second, main 

memory accesses are efficient only when reading from 

contiguous memory locations. Data structures and memory 

accesses should be structured to use this coalesced pattern. 

Third, a GPU offers several different types of physical 

memory, such as the large global RAM, small local shared 

memory, constant memory, per-thread registers, and so on. 

Careful design should use the most appropriate memory type. 

Finally, an NVIDIA GPU executes threads in groups called 

warps. For each clock cycle, all of the threads in a warp or 

half-warp must either execute the same instruction or do 

nothing. When threads within a warp execute different code, 

called divergence, more and more threads will remain idle per 

clock cycle, and the processing power of the GPU is under-

utilized. 

With well-crafted algorithms designed with the above 

considerations, GPUs can potentially execute algorithms 

significantly faster than CPUs. GPUs can also solve problems 

using an estimated one tenth to one twentieth of the power 

required by traditional supercomputing systems [13], thereby 

reducing costs.  

2.3 CUDA as a Platform for Evolutionary 

Algorithms 

CUDA is already established as a popular platform for 

evolutionary computing. Examples can be found for simple 

genetic evolution [14] and differential evolution [15]. Ant 

colony optimization has also been explored [16-18] as well as 

particle swarm optimization [19-21].  

In many evolutionary techniques, the execution time to 

evaluate the fitness function is a significant fraction of the 

algorithm’s overall time, as is the case with ACPFT. Thus, 

even though there have been many implementations of 

evolutionary algorithms using CUDA, and the common 

operations are becoming well-understood, it is still crucial to 

explore efficient implementations of new, unique fitness 

functions and common evolutionary operators that support 

them.  



 

 

3 Implementation 

3.1 Genetic Algorithm Structure 

The solution to the partial fault tolerance partitioning 

problem is coded as an ordered array of bytes in which each 

byte corresponds to a specific logic cell in the circuit. The 

byte’s value is ‘0’ if it is in the non-protected partition and ‘1’ 

if it is in the protected partition. One byte is used per gene in 

the chromosome instead of one bit since other values are used 

temporarily during the constraint satisfaction check described 

later.  

The algorithm randomly selects some chromosomes for 

mutation, choosing those with higher fitness functions 

proportionally more often. Each gene is examined for random 

mutation. Mutation results in the binary value being flipped. 

For crossover, chromosomes are selected in pairs. One gene is 

randomly selected as the location for single point crossover. 

Two new chromosomes are created from each pair selected. 

Mutation is not performed on chromosomes created by 

crossover. 

The fitness function is simply the number of 1’s in the 

chromosome, representing the number of logic cells that are in 

the protected subset. Previous research has shown that this 

correlates very highly with the actual amount of fault coverage 

provided. However, the complexity in ACPFT-GA is that the 

chromosome must represent a circuit that can fit within the 

available logic resources. Therefore, the chromosome is 

processed such that it represents a circuit with ACPFT 

correctly applied. In this format, a gene is ‘0’ if it is 

unprotected, ‘1’ if it is a protected and tripled cell, and ‘2’ if 

the cell is tripled and connected to a majority voter. With this 

format, the amount of logic resources can be calculated and 

compared to those available. If the resulting circuit violates the 

constraints, the chromosome’s fitness is set to a value lower 

than any possible valid chromosome. It is not culled since 

further evolution may result in a valid chromosome again.  

3.2 Tool Chain 

Each circuit is represented in a net list in the common EDIF 

format. ACPFT was written in Perl to accommodate reading 

and processing this input file and altering it for the partially 

protected output file. When using heuristics, the partitioning is 

processed with the Perl script. If the genetic evolution is 

selected, the ACPFT Perl script parses the EDIF net list 

outputs a condensed version of the net list in a text file. A C++ 

program then imports this formatted net list, performs the 

genetic evolution with or without using a GPU, and outputs the 

best chromosome. The ACPFT in turn uses this chromosome 

to partition the circuit and creates the proper modifications of 

the EDIF net list that can then be implemented on an FPGA. 

The script also generates a user constraint file to prevent the 

FPGA tools from removing the redundant logic cells. 

Currently, the ACPFT tools are run manually, but they are 

designed such that they could be easily inserted into the 

standard FPGA design flow and automated. 

3.3 CUDA Implementation 

The chromosomes are stored in a 2-dimenional array of 

characters in which each row corresponds to a complete 

solution. The array contains enough rows to hold all the 

members of the current generation and those created by 

mutation and crossover for the next. Once this entire array has 

been scanned to determine which chromosomes should be 

carried into the next generation in order of decreasing fitness 

function, the appropriate chromosomes are copied into a 

second identical array, and this second array is then the source 

of members for the next loop. 

The GPU’s constant memory was used to store many 

invariants of the net list, such as logic cell type, numbers of 

destination cells, and lists of destinations cells. It was also used 

to hold many kernel parameters that are fixed for a given 

evolution. None of these values are required to be in constant 

memory for the algorithm to function, so they could be moved 

to global memory if the circuit is too large for constant 

memory. 

The pseudo code below shows the basic steps that are 

performed per generation by ACPFT-GA.  

 

1. Generate array of pseudo-random values 

2. Randomly select chromosomes for mutation and 

crossover 

3. Create new chromosomes by mutation 

4. Create new chromosomes by crossover 

5. Calculate fitness function and validate constraints 

6. Reorder the array of chromosomes. 

 

CUDA has a random number library called cuRAND that 

has a CPU-only version. It is used in the CPU implementation 

so that both the CPU and GPU versions use the same pseudo-

random sequences and generate identical output.  Also, the 

cuRAND number generator is effective when generating large 

batches of values, so it is called once at the beginning of the 

loop to create all random values for that iteration. 

In step 2, some random values are used to select 

chromosomes for steps 3 and 4. The fitness values of the 

chromosomes are summed, and each chromosome is assigned 

a range of values equal to its fitness. Each random number is 

scaled to the sum of fitness values, and then it is compared to 

the chromosomes’ ranges to determine which is selected. In 

the GPU version, this operation is performed on the GPU. The 

kernel is written so that each block is 256 threads, each one 

converting one floating point random number to an integer 

corresponding to a chromosome. The number of blocks 

required is the ceiling of the number of chromosomes needed 

in the next two steps divided by 256. With the values tested, 

there were far too few blocks to fully occupy the card, but it is 

more efficient than transferring data to the CPU for 

computation. 

 In step 3, the algorithm selects a chromosome based on the 

indices from step 2, and it checks each gene for a mutation 

using random values still remaining from step 1. On the GPU 

implementation, one block is launched for each chromosome 

being mutated. The block size is set to 256, with each thread 



 

 

checking every 256
th

 gene for mutation. This allows the SM of 

a revision 2.0 GPU to hold 6 blocks, and the number of 

blocks/chromosomes needed to fully utilize the card is only a 

few dozen to a couple hundred. 

 The crossover step is similar to the mutation step, using 

indices from step 2 and the remaining random values from step 

1. A pair of chromosomes is handled by one block, and each 

block uses 256 threads, again with each thread processing 

every 256
th

 gene. Twice the number of chromosomes is needed 

to occupy the GPU than in step 3, but this number was easily 

reached.  

 Step 5 is by far the most complex. At this point, a 

chromosome contains only 1’s and 0’s representing the 

protected and non-protected subsets of logic cells. In ACPFT, 

each protected cell must be tripled, requiring three of that type 

of logic cell. For each tripled cell, all of the cells that use its 

output and are still classified as non-protected must be tripled 

and then combined with a majority voter. This step is 

performed first and is designed for as many coalesced accesses 

as possible, although some are unavoidable when examining a 

cell’s destinations. 

 Once cells have been promoted to tripled and voted, each 

cell with a voter is examined to see if all destination are tripled 

or voted. If so, the logic cell can be converted to a tripled cell, 

increasing the size of the protected subset and actually freeing 

some resources used for voters. This step also has coalesced 

and non-coalesced accesses. 

 After this step, the fitness function is calculated with a 

reduction from the CUDA thrust library. The sum consists of 

the sensitivities for all cells that are in the protected subset, 

ignoring cells that are single or tripled. Next, the constraint 

condition is checked. Each logic cell adds a count to the logic 

cells used based on its state. Single cells add one to the like 

type, tripled cells add three to the like type, and voted cells add 

three to the like type and one to the type used for voters. These 

counts are contained in shared memory and require atomic 

addition instructions to avoid races. 

 Once all of the logic cells are accounted for, one thread 

compares the needed resources to the available resources. If 

the constraints aren’t met, the fitness value is adjusted to 1.0, 

so that the invalid chromosome still has a small chance of 

being selected in the next generation. Further mutation and 

crossover may again result in a valid cell. 

 The CUDA thrust library is used in step 6. The fitness 

values are sorted and the new chromosome order is determined 

using these optimized sorting functions. Another thrust 

function calculates the prefix sum used for the chromosomes 

ranges. Finally, a kernel uses the new order to copy the best 

chromosomes from the current chromosome array into the 

second array, and the pointers to these arrays are swapped in 

preparation for the next generation. 

4 Testing and Results 

ACPFT-GA was tested using the alu4, apex2, and pdc 

circuits from the ACM/SIGDA "Big 20" benchmarks. These 

circuits were chosen since they show a range of circuit sizes 

with 597, 1056, and 1328 logic cells respectively. They have 

also been used in previous research, and data exists for 

comparisons. 

As with previous ACPFT experiments, the performance 

given different amounts of available resources is accomplished 

by creating an array of theoretical FPGAs of varying sizes. 

The number of logic cells in each circuit is used as a “perfect-

fit” FPGA. Larger devices are emulated by increasing the 

number of each resource by a constant multiplier and rounding 

down. This method created up to 23 theoretical FPGAs, from 

10% to 230% in increments of 10%.  Between 210% and 

230% depending on the test circuit, there were sufficient 

resource for full TMR, and partial fault-tolerance would no 

longer be necessary.  

The genetic algorithm parameters were selected to match 

those used in [4]. The test used a set of 4096 chromosomes. 

For each circuit, the mutation factor was the reciprocal of the 

number of logic cells. In each generation, the top 256 

chromosomes were carried over into the next generation. 1920 

were selected using elitism for mutation, and each gene was 

checked for a mutation. The remaining 1920 chromosomes 

were generated by crossover. Mutations were not applied to 

chromosomes created through crossover. Like the previous 

work, each initial chromosome was initialized to a string of 

"0"s, representing a fully unprotected circuit. Three more 

experiments were performed using the output of a heuristic 

method from previous research to initialize the chromosomes. 

The fanout method was chosen since it yielded very good 

results and had a low execution time. For the second 

experimental setup, all additional resources were supplied to 

the fanout method, and then the result was refined with the 

genetic algorithm. In the third and fourth setups, the fanout 

method was supplied 10% fewer and 20% fewer resources 

than available respectively. In these cases, there were still 

some unallocated logic cells when the genetic algorithm was 

applied.  

 The test computer used a Core i7 processor at 2.8 GHz, 6 

GB of RAM, a GTX 480 graphics card, and CUDA SDK 4.0. 

ACPFT-GA was run ten times on each simulated FPGA using 

just a CPU and then using the GPU. Each test was allowed to 

run for 1000 generations. The times required for mutation, 

crossing, and calculating the fitness functions and constraint 

conditions were logged for all runs. 

The mutation time, crossover time, fitness function and 

constraint checking time, and total execution time are shown in 

the following tables. Times are shown for the CPU-only 

version, the GPU accelerated version, and the speedup of the 

GPU version relative to the CPU version. The data for alu4, 

apex2, and pdc are shown in Table 1, Table 2, and Table 3 

respectively for the tests that begin with no initialization, i.e. 

all available resources are unused and selected only by the 

genetic algorithm. The data for tests in which 20% of the 

resources are left unused, and the chromosomes are initialized 

with the output of ACPFT using fanout are shown in Table 4, 

Table 5, and Table 6 for alu4, apex2, and pdc respectively. 

The data for the other two tests are not shown due to space 

limitations, but the results are very comparable to the 20% 



 

 

used tests. These tables show results from 10% additional 

resources to 230% additional resources. 

 The data shows several patterns. First, the amount of time 

required for mutation and crossover remains fairly fixed for 

each circuit over the range of additional resources. This is 

expected, since the work performed for the mutation and 

crossover steps depends on the number of genes and the 

number of chromosomes. From circuit to circuit, the  

differences in mutation times and crossover times for both 

versions were smaller than the difference in circuit sizes. This 

indicates that these steps are communication bound, as is 

expected. 

 The fitness and constraints checking execution time shows 

much more variation. The pattern of this variation is shown in 

Figure 1 for the pdc circuit with no initialization accelerated 

with the GPU, and it is representative of graphs of other tests.  

This graph demonstrates that the amount of time required for 

the fitness function is very dependent on the amount of 

additional resources made available. This pattern is logical. To 

evaluate the fitness function, each cell that is within the 

protected subset must be examined to triple and vote its output 

cells, followed by examing voters to see if they can be 

removed. As the amount of available resources increases, the 

number of cells within the protected partition increases, and 

thus the execution time required also increases. 

The data shows that the mutation and crossover speedups are 

comparable between circuits. The tables also demonstrate that 

the crossover time consumes a few percent of the total time, 

the mutation time is usually within 10% to 20% of the 

execution time (with lower percentages as more resources are 

made available), and the fitness function consumes the 

majority of the processing time. Therefore, the total speedup 

depends largely on the speedup of the fitness function. The 

speedups between circuit is also very similar. All three circuits 

were implemented with the same time of logical device and 

had about the same average fanout. Therefore, the amount of 

work per logic cell in the protected subset was roughly the 

same for all three circuits. 

 

 
Figure 1 Per Generation Execution Time for the pdc Circuit 

using a GTX 480 and 20% Unused Additional Resources 

 

Table 1 Performance of alu4 with no initialization 

 Mutation Crossover Fitness and 

Constraints 

Total 

Min. time w/CPU 15,874.2 ms 5,874.8 ms 55,103.7 ms 77,068.7 ms 

Max. time w/CPU 17,267.5 ms 7,044.1 ms 89,340.1 ms 113,767.3 ms 

Ave. time w/CPU 16,641.1 ms 6,478.9 ms 76,733.0 ms 99,968.7 ms 

Min. time w/GPU 856.4 ms 123.7 ms 3,011.3 ms 5,081.7 ms 

Max. time w/GPU 1,134.8 ms 185.1 ms 7,093.1 ms 19,412.1 ms 

Ave. time w/GPU 1,068.7 ms 153.9 ms 5,504.3 ms 12,742.3 ms 

Min. Speedup 14.0 32.1 12.4 13.4  

Max. Speedup 20.0 54.1 17.3 17.5 

Ave. Speedup 15.6 42.5 14.3 15.1 

 

Table 2 Performance of apex2with no initialization 

 Mutation Crossover Fitness and 

Constraints 

Total 

Min. time w/CPU 25,186.7 ms 7,774.0 ms 108,212.6 ms 144,558.5 ms 

Max. time w/CPU 26,760.9 ms 8,917.8 ms 158,688.5 ms 194,473.5 ms 

Ave. time w/CPU 27,102.6 ms 8,420.2 ms 142,759.2 ms 179,140.1 ms 

Min. time w/GPU 1,158.2 ms 154.6 ms 4,481.6 ms 8,743.7 ms 

Max. time w/GPU 1,340.5 ms 232.3 ms 11,750.8 ms 47,051.5 ms 

Ave. time w/GPU 1,243.5 ms 194.2 ms 8,850.8 ms 29,703.4 ms 

Min. Speedup 19.5 36.8 12.9 14.0 

Max. Speedup 22.4 56.4 23.3 24.2 

Ave. Speedup 21.8 43.8 17.1 18.2 
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Table 3 Performance of pdc with no initialization 

 Mutation Crossover Fitness and 

Constraints 

Total 

Min. time w/CPU 31,728.3 ms 8,887.0 ms 131,546.4 ms 172,293.0 ms 

Max. time w/CPU 32,522.6 ms 9,804.8 ms 194,660.3 ms 236,821.8 ms 

Ave. time w/CPU 32,185.7 ms 9,396.8 ms 174,245.2 ms 215,949.1 ms 

Min. time w/GPU 1,243.5 ms 177.4 ms 4,865.0 ms 10,802.9 ms 

Max. time w/GPU 1,398.7 ms 245.9 ms 16,053.1 ms 70,709.3 ms 

Ave. time w/GPU 1,340.3 ms 206.6 ms 12,231.8 ms 42,948.1 ms 

Min. Speedup 23.0 38.5 12.0 13.3 

Max. Speedup 25.7 53.9 27.0 27.1 

Ave. Speedup 24.0 45.9 15.1 16.4 

 

 

Table 4 Performance of alu4 initialized with fanout heuristic and 20% area free 

 Mutation Crossover Fitness and 

Constraints 

Total 

Min. time w/CPU 16,219.7 ms 6,019.2 ms 60,460.7 ms 82,970.3 ms 

Max. time w/CPU 20,661.1 ms 9,091.9 ms 93,772.2 ms 123,792.7 ms 

Ave. time w/CPU 19,772.6 ms 8,386.4 ms 84,708.5 ms 113,263.4 ms 

Min. time w/GPU 1,039.0 ms 132.1 ms 3,554.2 ms 6,502.0 ms 

Max. time w/GPU 1,052.8 ms 154.2 ms 6,799.4 ms 11,178.7 ms 

Ave. time w/GPU 1,044.1 ms 139.3 ms 5,438.7 ms 8,500.5 ms 

Min. Speedup 15.5 43.4 13.6 15.2 

Max. Speedup 19.7 66.0 19.2 20.3 

Ave. Speedup 18.9 60.2 16.0 17.3 

 

 

Table 5 Performance of apex2 initialized with fanout heuristic and 20% area free 

 Mutation Crossover Fitness and 

Constraints 

Total 

Min. time w/CPU 25,970.9 ms 8,020.1 ms 120,902.6 ms 156,958.0 ms 

Max. time w/CPU 28,001.2 ms 9,104.0 ms 146,805.2 ms 182,581.4 ms 

Ave. time w/CPU 26,439.2 ms 8,570.1 ms 137,966.6 ms 173,902.9 ms 

Min. time w/GPU 1,109.1 ms 111.0 ms 5,639.5 ms 13,036.7 ms 

Max. time w/GPU 1,298.5 ms 158.0 ms 11,483.9 ms 22,720.0 ms 

Ave. time w/GPU 1,164.5 ms 135.2 ms 8,901.9 ms 15,913.5 ms 

Min. Speedup 20.5 55.9 12.5 14.0 

Max. Speedup 23.9 78.6 21.6 22.9 

Ave. Speedup 22.7 63.9 16.1 17.6 

 

 

Table 6 Performance of pdc initialized with fanout heuristic and 20% area free 

 Mutation Crossover Fitness and 

Constraints 

Total 

Min. time w/CPU 31,476.9 ms 8,633.9 ms 145,464.6 ms 187,116.4 ms 

Max. time w/CPU 32,764.1 ms 9,961.1 ms 186,007.6 ms 228,721.8 ms 

Ave. time w/CPU 32,211.5 ms 9,339.5 ms 172,327.6 ms 214,013.6 ms 

Min. time w/GPU 1,277.9 ms 145.2 ms 8,104.6 ms 14,250.6 ms 

Max. time w/GPU 1,325.3 ms 197.7 ms 15,348.0 ms 29,715.3 ms 

Ave. time w/GPU 1,296.7 ms 173.9 ms 12,094.0 ms 22,916.1 ms 

Min. Speedup 23.9 43.7 12.1 13.6 

Max. Speedup 25.5 65.8 17.9 19.6 

Ave. Speedup 24.8 54.2 14.7 16.1 



 

 

5  Conclusions 

This research presents a significant acceleration of the 

partial fault tolerance method area-constrained partial fault 

tolerance using genetic evolution by employing NVIDIA 

CUDA to execute the algorithm on massively parallel 

graphical processing units. This speed up allows this method 

to be much more efficiently applied to larger circuits, and it 

will benefit from additional acceleration as the processing 

power of graphics processors tracks that of reconfigurable 

logic devices. 
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