

Abstract - As reconfigurable logic devices see increasing use

in aerospace and terrestrial applications, fault tolerant

techniques are being developed to counter rising susceptibility

due to decreasing feature sizes. Applying fault-tolerance to an

entire circuit induces unacceptable area and time penalties,

thus some techniques trade area for fault tolerance. Area-

Constrained Partial Fault Tolerance (ACPFT) is a

methodology that explicitly accepts a device’s resources as an

input and attempts to find a maximally fault-tolerant subset,

but determining an optimal partition is still an open problem.

While ACPFT originally used heuristics for subset selection, a

modification called ACPFT-GA has been developed that uses

genetic evolution to provide significantly better fault coverage

in many applications. However, its running time is

substantially longer than standard ACPFT and may be

prohibitive. This paper presents a GPU-accelerated version of

ACPFT-GA that has executed over 27 times faster than CPU

versions, allowing ACPFT-GA to better scale to larger

circuits.

Keywords: Genetic algorithms, partial fault tolerance,

reconfigurable logic, GPU programming

1 Introduction

Two options for a system’s processing device are general

purpose processors (GPU) and application specific integrated

circuits (ASIC). The GPU offers great flexibility but low

relative computational power. An ASIC can be designed to

provide the greatest processing capability, however this

requires a lengthy and very expensive design process, and it is

extremely costly for small production runs. A reconfigurable

logic device such as a field-programmable gate array (FPGA)

offers an attractive third alternative. They provide high levels

of computational power like ASICs, yet their ability to be

reprogrammed gives flexibility like GPUs. They are off-the-

shelf devices and therefore do not have the lead times of

ASICs. These features make them common choices in the low

production runs of aerospace applications, and they are

increasingly used in terrestrial systems. However, they may

contain millions of bits to store configurations, and this makes

them more susceptible to faults caused by electromagnetic

radiation than GPUs and ASICs. Aerospace systems are

currently concerned with errors due to single event upsets

(SEUs), and as transistor feature sizes continue to shrink,

terrestrial systems are also becoming wary[1, 2].

Many applications using reconfigurable logic are not safety

critical. A failure can be tolerated by ignoring the error and

continuing, such as in video playback. In other cases, the

operation can be reattempted, such as retransmitting dropped

packets in network communication. However, a reduction of

faults would clearly improve the user experience. Since

systems implemented with reconfigurable logic invariably

leave a portion of the device unused, these extra device

resources can be leveraged to provide some level of partial-

fault tolerance and reduce the fault rate. The problem of

applying partial fault-tolerance can then be formulated as

follows. The logic cells contained with the original circuit

must be partitioned into a protected subset and non-protected

subset such that the fault-coverage is maximized given a set

amount of additional logic resources. With current logic

devices having hundreds of thousands of logic cells, this

presents a gigantic solutions space.

A method of partial fault tolerance called Area-Constrained

Partial Fault Tolerance (ACPFT) has been developed that

accepts a circuit’s available area as an input and finds a

maximally fault-tolerance version of the circuit. This initial

implementation utilizes difference heuristics to determine a

partition, and it generally executes very quickly. A second

version called ACPFT – Genetic Algorithm (ACPFT-GA) uses

genetic evolution to explore the solution space. It was found to

produce significantly more fault-tolerant circuits in expected

application spaces, but the running times of ACPFT-GA can

be two orders of magnitude larger than ACPFT’s. To provide

the fault coverage of ACPFT-GA with a more acceptable

execution time, the research presented here accelerates

ACPFT-GA using NVIDIA CUDA, which is a popular

programming extension for running scientific computations

directly on massively-parallel graphics processors. This results

in an average speed-up of around 17 to 18 times over standard

ACPFT-GA with some cases showing speedups of over 27

times.

This paper is organized as follows. Section 2 reviews the

key concepts of ACPFT-GA, other efforts to accelerate genetic

algorithms with CUDA, and the key considerations when

developing with CUDA. Section 3 describes the

implementation of ACPFT-GA, the tool chain, and the

particulars of casting it as a CUDA-based algorithm. Section 4

presents the experimental results, and Section 5 concludes the

paper.

GPU Acceleration of Genetic Algorithms for Subset

Selection for Partial Fault Tolerance

D. Foster

Electrical and Computer Engineering Department, Kettering University, Flint, MI, USA

2 Background

2.1 Partial Fault Tolerance

Since this paper focuses on the acceleration of ACPFT-GA

and not the introduction of ACPFT-GA itself, readers are

referred to [3] and [4] for the justifications of partial fault

tolerance in reconfigurable logic. These summarize the

advances in partial fault tolerance along with alternatives to

ACPFT such as the BYU-LANL partial TMR tool [5], partial

error masking [6], selective TMR [7], and Automatic Insertion

of Partial TMR [8]

 Triple modular redundancy (TMR) remains the standard

fault-tolerance method for FPGAs [9]. It can be applied to

circuits regardless of the function and of the logic cells used,

and it often adds a minimal delay compared to other methods.

TMR almost completely protects a circuit against a single

fault, although voting logic may still be susceptible. However,

it more than triples the circuit's size with a corresponding

increase in power use. [10]. These advantages make TMR the

most common basis for partial fault-tolerance.

 Area-Constrained Partial Fault Tolerance is a technique that

uses partial TMR to reduce the circuit area susceptible to faults

even if the majority voters are not considered ideal, meaning

that they can suffer faults also [3]. Ideal voters is an

assumption often used for simplification in other methods

because when a large subset of the circuit is being protected,

the cross-sectional area of the majority voters is significantly

smaller than the tripled area, perhaps by several orders of

magnitude, and the rate of faults in the voters is considered to

be negligible. This assumption is invalid in a fine-grained

approach where the protected area and majority voters have

comparable areas. ACPFT was originally designed to use

several heuristics and metrics to determine a maximally fault-

tolerant partition of a circuit’s logic cells.

 ACPFT maps well to genetic algorithms since it is similar to

the familiar knapsack problem. In knapsack, there is a set of

items, each with a weight and a value, and a knapsack that can

hold a fixed weight. The optimization problem is to select a

subset of items that can be carried in the knapsack with the

maximum total value. The additional area of the FPGA relates

to the knapsack, and the logic cells with their areas and

sensitivities to faults relate to items with weight and value.

However, the fault-tolerance problem is more complicated

since the additional area required by each logic cell is not a

constant value. It is a function of the other cells being

protected. Previous research demonstrates that even simple

genetic algorithms can create more fault-tolerant partitions

than heuristic methods under common conditions, namely that

the amount of additional resources available for fault tolerance

is less than the size of the unprotected circuit [4].

2.2 Fundamentals of CUDA

CUDA is an extension to several common programming

languages, prominently C and C++, which requires an

NVIDIA-based graphics processor for execution. NVIDIA

GPUs are widely deployed and thus represent a very common

computing platform. For easy scalability, NVIDIA cards are

designed around a generalized processing unit called a

streaming multiprocessor (SM). This allows the performance

of CUDA applications to scale based on the number and

hardware implementation of the SMs contained on a given

card. Details of NVIDIA GPUs can be found at [11].

Since the underlying hardware architecture of a GPU is

drastically different than a CPU, algorithms must be crafted

using several critical concepts in order to make efficient use of

the GPUs computational power [12]. Since GPU-based cards

have either a small cache system or none at all, they rely on

massive thread parallelism to hide memory access latency by

executing a different group of threads when one group block

on a memory operation. Therefore, an algorithm must be able

to extract sufficient parallelism from a problem to occupy the

GPU’s thread slots and mask this latency. Second, main

memory accesses are efficient only when reading from

contiguous memory locations. Data structures and memory

accesses should be structured to use this coalesced pattern.

Third, a GPU offers several different types of physical

memory, such as the large global RAM, small local shared

memory, constant memory, per-thread registers, and so on.

Careful design should use the most appropriate memory type.

Finally, an NVIDIA GPU executes threads in groups called

warps. For each clock cycle, all of the threads in a warp or

half-warp must either execute the same instruction or do

nothing. When threads within a warp execute different code,

called divergence, more and more threads will remain idle per

clock cycle, and the processing power of the GPU is under-

utilized.

With well-crafted algorithms designed with the above

considerations, GPUs can potentially execute algorithms

significantly faster than CPUs. GPUs can also solve problems

using an estimated one tenth to one twentieth of the power

required by traditional supercomputing systems [13], thereby

reducing costs.

2.3 CUDA as a Platform for Evolutionary

Algorithms

CUDA is already established as a popular platform for

evolutionary computing. Examples can be found for simple

genetic evolution [14] and differential evolution [15]. Ant

colony optimization has also been explored [16-18] as well as

particle swarm optimization [19-21].

In many evolutionary techniques, the execution time to

evaluate the fitness function is a significant fraction of the

algorithm’s overall time, as is the case with ACPFT. Thus,

even though there have been many implementations of

evolutionary algorithms using CUDA, and the common

operations are becoming well-understood, it is still crucial to

explore efficient implementations of new, unique fitness

functions and common evolutionary operators that support

them.

3 Implementation

3.1 Genetic Algorithm Structure

The solution to the partial fault tolerance partitioning

problem is coded as an ordered array of bytes in which each

byte corresponds to a specific logic cell in the circuit. The

byte’s value is ‘0’ if it is in the non-protected partition and ‘1’

if it is in the protected partition. One byte is used per gene in

the chromosome instead of one bit since other values are used

temporarily during the constraint satisfaction check described

later.

The algorithm randomly selects some chromosomes for

mutation, choosing those with higher fitness functions

proportionally more often. Each gene is examined for random

mutation. Mutation results in the binary value being flipped.

For crossover, chromosomes are selected in pairs. One gene is

randomly selected as the location for single point crossover.

Two new chromosomes are created from each pair selected.

Mutation is not performed on chromosomes created by

crossover.

The fitness function is simply the number of 1’s in the

chromosome, representing the number of logic cells that are in

the protected subset. Previous research has shown that this

correlates very highly with the actual amount of fault coverage

provided. However, the complexity in ACPFT-GA is that the

chromosome must represent a circuit that can fit within the

available logic resources. Therefore, the chromosome is

processed such that it represents a circuit with ACPFT

correctly applied. In this format, a gene is ‘0’ if it is

unprotected, ‘1’ if it is a protected and tripled cell, and ‘2’ if

the cell is tripled and connected to a majority voter. With this

format, the amount of logic resources can be calculated and

compared to those available. If the resulting circuit violates the

constraints, the chromosome’s fitness is set to a value lower

than any possible valid chromosome. It is not culled since

further evolution may result in a valid chromosome again.

3.2 Tool Chain

Each circuit is represented in a net list in the common EDIF

format. ACPFT was written in Perl to accommodate reading

and processing this input file and altering it for the partially

protected output file. When using heuristics, the partitioning is

processed with the Perl script. If the genetic evolution is

selected, the ACPFT Perl script parses the EDIF net list

outputs a condensed version of the net list in a text file. A C++

program then imports this formatted net list, performs the

genetic evolution with or without using a GPU, and outputs the

best chromosome. The ACPFT in turn uses this chromosome

to partition the circuit and creates the proper modifications of

the EDIF net list that can then be implemented on an FPGA.

The script also generates a user constraint file to prevent the

FPGA tools from removing the redundant logic cells.

Currently, the ACPFT tools are run manually, but they are

designed such that they could be easily inserted into the

standard FPGA design flow and automated.

3.3 CUDA Implementation

The chromosomes are stored in a 2-dimenional array of

characters in which each row corresponds to a complete

solution. The array contains enough rows to hold all the

members of the current generation and those created by

mutation and crossover for the next. Once this entire array has

been scanned to determine which chromosomes should be

carried into the next generation in order of decreasing fitness

function, the appropriate chromosomes are copied into a

second identical array, and this second array is then the source

of members for the next loop.

The GPU’s constant memory was used to store many

invariants of the net list, such as logic cell type, numbers of

destination cells, and lists of destinations cells. It was also used

to hold many kernel parameters that are fixed for a given

evolution. None of these values are required to be in constant

memory for the algorithm to function, so they could be moved

to global memory if the circuit is too large for constant

memory.

The pseudo code below shows the basic steps that are

performed per generation by ACPFT-GA.

1. Generate array of pseudo-random values

2. Randomly select chromosomes for mutation and

crossover

3. Create new chromosomes by mutation

4. Create new chromosomes by crossover

5. Calculate fitness function and validate constraints

6. Reorder the array of chromosomes.

CUDA has a random number library called cuRAND that

has a CPU-only version. It is used in the CPU implementation

so that both the CPU and GPU versions use the same pseudo-

random sequences and generate identical output. Also, the

cuRAND number generator is effective when generating large

batches of values, so it is called once at the beginning of the

loop to create all random values for that iteration.

In step 2, some random values are used to select

chromosomes for steps 3 and 4. The fitness values of the

chromosomes are summed, and each chromosome is assigned

a range of values equal to its fitness. Each random number is

scaled to the sum of fitness values, and then it is compared to

the chromosomes’ ranges to determine which is selected. In

the GPU version, this operation is performed on the GPU. The

kernel is written so that each block is 256 threads, each one

converting one floating point random number to an integer

corresponding to a chromosome. The number of blocks

required is the ceiling of the number of chromosomes needed

in the next two steps divided by 256. With the values tested,

there were far too few blocks to fully occupy the card, but it is

more efficient than transferring data to the CPU for

computation.

 In step 3, the algorithm selects a chromosome based on the

indices from step 2, and it checks each gene for a mutation

using random values still remaining from step 1. On the GPU

implementation, one block is launched for each chromosome

being mutated. The block size is set to 256, with each thread

checking every 256
th

 gene for mutation. This allows the SM of

a revision 2.0 GPU to hold 6 blocks, and the number of

blocks/chromosomes needed to fully utilize the card is only a

few dozen to a couple hundred.

 The crossover step is similar to the mutation step, using

indices from step 2 and the remaining random values from step

1. A pair of chromosomes is handled by one block, and each

block uses 256 threads, again with each thread processing

every 256
th

 gene. Twice the number of chromosomes is needed

to occupy the GPU than in step 3, but this number was easily

reached.

 Step 5 is by far the most complex. At this point, a

chromosome contains only 1’s and 0’s representing the

protected and non-protected subsets of logic cells. In ACPFT,

each protected cell must be tripled, requiring three of that type

of logic cell. For each tripled cell, all of the cells that use its

output and are still classified as non-protected must be tripled

and then combined with a majority voter. This step is

performed first and is designed for as many coalesced accesses

as possible, although some are unavoidable when examining a

cell’s destinations.

 Once cells have been promoted to tripled and voted, each

cell with a voter is examined to see if all destination are tripled

or voted. If so, the logic cell can be converted to a tripled cell,

increasing the size of the protected subset and actually freeing

some resources used for voters. This step also has coalesced

and non-coalesced accesses.

 After this step, the fitness function is calculated with a

reduction from the CUDA thrust library. The sum consists of

the sensitivities for all cells that are in the protected subset,

ignoring cells that are single or tripled. Next, the constraint

condition is checked. Each logic cell adds a count to the logic

cells used based on its state. Single cells add one to the like

type, tripled cells add three to the like type, and voted cells add

three to the like type and one to the type used for voters. These

counts are contained in shared memory and require atomic

addition instructions to avoid races.

 Once all of the logic cells are accounted for, one thread

compares the needed resources to the available resources. If

the constraints aren’t met, the fitness value is adjusted to 1.0,

so that the invalid chromosome still has a small chance of

being selected in the next generation. Further mutation and

crossover may again result in a valid cell.

 The CUDA thrust library is used in step 6. The fitness

values are sorted and the new chromosome order is determined

using these optimized sorting functions. Another thrust

function calculates the prefix sum used for the chromosomes

ranges. Finally, a kernel uses the new order to copy the best

chromosomes from the current chromosome array into the

second array, and the pointers to these arrays are swapped in

preparation for the next generation.

4 Testing and Results

ACPFT-GA was tested using the alu4, apex2, and pdc

circuits from the ACM/SIGDA "Big 20" benchmarks. These

circuits were chosen since they show a range of circuit sizes

with 597, 1056, and 1328 logic cells respectively. They have

also been used in previous research, and data exists for

comparisons.

As with previous ACPFT experiments, the performance

given different amounts of available resources is accomplished

by creating an array of theoretical FPGAs of varying sizes.

The number of logic cells in each circuit is used as a “perfect-

fit” FPGA. Larger devices are emulated by increasing the

number of each resource by a constant multiplier and rounding

down. This method created up to 23 theoretical FPGAs, from

10% to 230% in increments of 10%. Between 210% and

230% depending on the test circuit, there were sufficient

resource for full TMR, and partial fault-tolerance would no

longer be necessary.

The genetic algorithm parameters were selected to match

those used in [4]. The test used a set of 4096 chromosomes.

For each circuit, the mutation factor was the reciprocal of the

number of logic cells. In each generation, the top 256

chromosomes were carried over into the next generation. 1920

were selected using elitism for mutation, and each gene was

checked for a mutation. The remaining 1920 chromosomes

were generated by crossover. Mutations were not applied to

chromosomes created through crossover. Like the previous

work, each initial chromosome was initialized to a string of

"0"s, representing a fully unprotected circuit. Three more

experiments were performed using the output of a heuristic

method from previous research to initialize the chromosomes.

The fanout method was chosen since it yielded very good

results and had a low execution time. For the second

experimental setup, all additional resources were supplied to

the fanout method, and then the result was refined with the

genetic algorithm. In the third and fourth setups, the fanout

method was supplied 10% fewer and 20% fewer resources

than available respectively. In these cases, there were still

some unallocated logic cells when the genetic algorithm was

applied.

 The test computer used a Core i7 processor at 2.8 GHz, 6

GB of RAM, a GTX 480 graphics card, and CUDA SDK 4.0.

ACPFT-GA was run ten times on each simulated FPGA using

just a CPU and then using the GPU. Each test was allowed to

run for 1000 generations. The times required for mutation,

crossing, and calculating the fitness functions and constraint

conditions were logged for all runs.

The mutation time, crossover time, fitness function and

constraint checking time, and total execution time are shown in

the following tables. Times are shown for the CPU-only

version, the GPU accelerated version, and the speedup of the

GPU version relative to the CPU version. The data for alu4,

apex2, and pdc are shown in Table 1, Table 2, and Table 3

respectively for the tests that begin with no initialization, i.e.

all available resources are unused and selected only by the

genetic algorithm. The data for tests in which 20% of the

resources are left unused, and the chromosomes are initialized

with the output of ACPFT using fanout are shown in Table 4,

Table 5, and Table 6 for alu4, apex2, and pdc respectively.

The data for the other two tests are not shown due to space

limitations, but the results are very comparable to the 20%

used tests. These tables show results from 10% additional

resources to 230% additional resources.

 The data shows several patterns. First, the amount of time

required for mutation and crossover remains fairly fixed for

each circuit over the range of additional resources. This is

expected, since the work performed for the mutation and

crossover steps depends on the number of genes and the

number of chromosomes. From circuit to circuit, the

differences in mutation times and crossover times for both

versions were smaller than the difference in circuit sizes. This

indicates that these steps are communication bound, as is

expected.

 The fitness and constraints checking execution time shows

much more variation. The pattern of this variation is shown in

Figure 1 for the pdc circuit with no initialization accelerated

with the GPU, and it is representative of graphs of other tests.

This graph demonstrates that the amount of time required for

the fitness function is very dependent on the amount of

additional resources made available. This pattern is logical. To

evaluate the fitness function, each cell that is within the

protected subset must be examined to triple and vote its output

cells, followed by examing voters to see if they can be

removed. As the amount of available resources increases, the

number of cells within the protected partition increases, and

thus the execution time required also increases.

The data shows that the mutation and crossover speedups are

comparable between circuits. The tables also demonstrate that

the crossover time consumes a few percent of the total time,

the mutation time is usually within 10% to 20% of the

execution time (with lower percentages as more resources are

made available), and the fitness function consumes the

majority of the processing time. Therefore, the total speedup

depends largely on the speedup of the fitness function. The

speedups between circuit is also very similar. All three circuits

were implemented with the same time of logical device and

had about the same average fanout. Therefore, the amount of

work per logic cell in the protected subset was roughly the

same for all three circuits.

Figure 1 Per Generation Execution Time for the pdc Circuit

using a GTX 480 and 20% Unused Additional Resources

Table 1 Performance of alu4 with no initialization

 Mutation Crossover Fitness and

Constraints

Total

Min. time w/CPU 15,874.2 ms 5,874.8 ms 55,103.7 ms 77,068.7 ms

Max. time w/CPU 17,267.5 ms 7,044.1 ms 89,340.1 ms 113,767.3 ms

Ave. time w/CPU 16,641.1 ms 6,478.9 ms 76,733.0 ms 99,968.7 ms

Min. time w/GPU 856.4 ms 123.7 ms 3,011.3 ms 5,081.7 ms

Max. time w/GPU 1,134.8 ms 185.1 ms 7,093.1 ms 19,412.1 ms

Ave. time w/GPU 1,068.7 ms 153.9 ms 5,504.3 ms 12,742.3 ms

Min. Speedup 14.0 32.1 12.4 13.4

Max. Speedup 20.0 54.1 17.3 17.5

Ave. Speedup 15.6 42.5 14.3 15.1

Table 2 Performance of apex2with no initialization

 Mutation Crossover Fitness and

Constraints

Total

Min. time w/CPU 25,186.7 ms 7,774.0 ms 108,212.6 ms 144,558.5 ms

Max. time w/CPU 26,760.9 ms 8,917.8 ms 158,688.5 ms 194,473.5 ms

Ave. time w/CPU 27,102.6 ms 8,420.2 ms 142,759.2 ms 179,140.1 ms

Min. time w/GPU 1,158.2 ms 154.6 ms 4,481.6 ms 8,743.7 ms

Max. time w/GPU 1,340.5 ms 232.3 ms 11,750.8 ms 47,051.5 ms

Ave. time w/GPU 1,243.5 ms 194.2 ms 8,850.8 ms 29,703.4 ms

Min. Speedup 19.5 36.8 12.9 14.0

Max. Speedup 22.4 56.4 23.3 24.2

Ave. Speedup 21.8 43.8 17.1 18.2

0

2000

4000

6000

8000

10000

12000

14000

10 30 50 70 90 110 130 150 170 190 210 230
T

im
e

p
er

 g
en

er
at

io
n
 (

m
s)

Percentage of Extra Resources Available

Fitness

Crossover

Mutation

Table 3 Performance of pdc with no initialization

 Mutation Crossover Fitness and

Constraints

Total

Min. time w/CPU 31,728.3 ms 8,887.0 ms 131,546.4 ms 172,293.0 ms

Max. time w/CPU 32,522.6 ms 9,804.8 ms 194,660.3 ms 236,821.8 ms

Ave. time w/CPU 32,185.7 ms 9,396.8 ms 174,245.2 ms 215,949.1 ms

Min. time w/GPU 1,243.5 ms 177.4 ms 4,865.0 ms 10,802.9 ms

Max. time w/GPU 1,398.7 ms 245.9 ms 16,053.1 ms 70,709.3 ms

Ave. time w/GPU 1,340.3 ms 206.6 ms 12,231.8 ms 42,948.1 ms

Min. Speedup 23.0 38.5 12.0 13.3

Max. Speedup 25.7 53.9 27.0 27.1

Ave. Speedup 24.0 45.9 15.1 16.4

Table 4 Performance of alu4 initialized with fanout heuristic and 20% area free

 Mutation Crossover Fitness and

Constraints

Total

Min. time w/CPU 16,219.7 ms 6,019.2 ms 60,460.7 ms 82,970.3 ms

Max. time w/CPU 20,661.1 ms 9,091.9 ms 93,772.2 ms 123,792.7 ms

Ave. time w/CPU 19,772.6 ms 8,386.4 ms 84,708.5 ms 113,263.4 ms

Min. time w/GPU 1,039.0 ms 132.1 ms 3,554.2 ms 6,502.0 ms

Max. time w/GPU 1,052.8 ms 154.2 ms 6,799.4 ms 11,178.7 ms

Ave. time w/GPU 1,044.1 ms 139.3 ms 5,438.7 ms 8,500.5 ms

Min. Speedup 15.5 43.4 13.6 15.2

Max. Speedup 19.7 66.0 19.2 20.3

Ave. Speedup 18.9 60.2 16.0 17.3

Table 5 Performance of apex2 initialized with fanout heuristic and 20% area free

 Mutation Crossover Fitness and

Constraints

Total

Min. time w/CPU 25,970.9 ms 8,020.1 ms 120,902.6 ms 156,958.0 ms

Max. time w/CPU 28,001.2 ms 9,104.0 ms 146,805.2 ms 182,581.4 ms

Ave. time w/CPU 26,439.2 ms 8,570.1 ms 137,966.6 ms 173,902.9 ms

Min. time w/GPU 1,109.1 ms 111.0 ms 5,639.5 ms 13,036.7 ms

Max. time w/GPU 1,298.5 ms 158.0 ms 11,483.9 ms 22,720.0 ms

Ave. time w/GPU 1,164.5 ms 135.2 ms 8,901.9 ms 15,913.5 ms

Min. Speedup 20.5 55.9 12.5 14.0

Max. Speedup 23.9 78.6 21.6 22.9

Ave. Speedup 22.7 63.9 16.1 17.6

Table 6 Performance of pdc initialized with fanout heuristic and 20% area free

 Mutation Crossover Fitness and

Constraints

Total

Min. time w/CPU 31,476.9 ms 8,633.9 ms 145,464.6 ms 187,116.4 ms

Max. time w/CPU 32,764.1 ms 9,961.1 ms 186,007.6 ms 228,721.8 ms

Ave. time w/CPU 32,211.5 ms 9,339.5 ms 172,327.6 ms 214,013.6 ms

Min. time w/GPU 1,277.9 ms 145.2 ms 8,104.6 ms 14,250.6 ms

Max. time w/GPU 1,325.3 ms 197.7 ms 15,348.0 ms 29,715.3 ms

Ave. time w/GPU 1,296.7 ms 173.9 ms 12,094.0 ms 22,916.1 ms

Min. Speedup 23.9 43.7 12.1 13.6

Max. Speedup 25.5 65.8 17.9 19.6

Ave. Speedup 24.8 54.2 14.7 16.1

5 Conclusions

This research presents a significant acceleration of the

partial fault tolerance method area-constrained partial fault

tolerance using genetic evolution by employing NVIDIA

CUDA to execute the algorithm on massively parallel

graphical processing units. This speed up allows this method

to be much more efficiently applied to larger circuits, and it

will benefit from additional acceleration as the processing

power of graphics processors tracks that of reconfigurable

logic devices.

6 References

[1] J. Lach, et al., "Efficiently Supporting Fault Tolerance

in FPGAs," presented at the ACM International Symposium

on FPGAs, 1998.

[2] F. L. Kastensmidt, et al., "On the optimal design of

triple modular redundancy logic for SRAM-based FPGAs,"

in Design, Automation and Test in Europe, 2005, pp. 1290-

1295.

[3] D. L. Foster and D. M. Hanna, "Maximizing Area-

Constrained Partial Fault Tolerance in Reconfigurable

Logic," presented at the Proceedings of the 18th annual

ACM/SIGDA International Symposium on Field

Programmable Gate Arrays, Monterey, California, USA,

2010.

[4] D. L. Foster, "Using Genetic Algorithms for Subset

Selection for Partial Fault Tolerance in Reconfigurable

Logic," in The 2011 International Conference on Genetic

and Evolutionary Methods, Las Vegas, NV, 2011.

[5] B. Pratt, et al., "Improving FPGA Design Robustness

with Partial TMR," presented at the 12th NASA Symposium

on VLSI Design, Coeur d’Alene, Idaho, 2005.

[6] K. Mohanram and N. A. Touba, "Cost-effective

approach for reducing soft error failure rate in logic

circuits," in Test Conference, 2003. Proceedings. ITC 2003.

International, 2003, pp. 893-901.

[7] P. K. Samudrala, et al., "Selective triple Modular

redundancy (STMR) based single-event upset (SEU) tolerant

synthesis for FPGAs," Nuclear Science, IEEE Transactions

on, vol. 51, pp. 2957-2969, 2004.

[8] O. Ruano, et al., "A Methodology for Automatic

Insertion of Selective TMR in Digital Circuits Affected by

SEUs," IEEE Transactions on Nuclear Science, vol. 56, pp.

2091-2102, August 2009 2009.

[9] H. Quinn, et al., "Domain Crossing Errors: Limitations

on Single Device Triple-Modular Redundancy Circuits in

Xilinx FPGAs," IEEE Transactions on Nuclear Science, vol.

54, pp. 2037-2043, 2007.

[10] F. Lima, et al., "Designing fault tolerant systems into

SRAM-based FPGAs," presented at the Design Automation

Conference, 2003.

[11] NVIDIA Corp. (2011, Mar. 8). NVIDIA CUDA C

Programming Guide Version 4.1. Available:

http://developer.download.nvidia.com/compute/DevZone/do

cs/html/C/doc/CUDA_C_Programming_Guide.pdf

[12] D. B. Kirk and W.-M. W. Hwu, Programming

Massively Parallel Processors: a Hands-On Approach:

Morgan Kaufmann Publishers, 2010.

[13] NVIDIA. (2010, Nov. 23). Tesla C2050/C2070 GPU

Computing Processor Overview.

[14] A. Munawar, et al., "Hybrid of genetic algorithm and

local search to solve MAX-SAT problem using nVidia

CUDA framework," Genetic Programming and Evolvable

Machines, vol. 10, pp. 391-415, 2009.

[15] P. Krömer, et al., "Many-threaded implementation of

differential evolution for the CUDA platform," presented at

the Proceedings of the 13th annual conference on Genetic

and evolutionary computation, Dublin, Ireland, 2011.

[16] J. M. Cecilia, et al., "Parallelization Strategies for Ant

Colony Optimisation on GPUs," in 14th International

Workshop on Nature Inspired Distributed Computing,

Anchorage, AK, USA, 2011.

[17] S. Tsutsui and N. Fujimoto, "ACO with tabu search on

a GPU for solving QAPs using move-cost adjusted thread

assignment," presented at the Proceedings of the 13th annual

conference on Genetic and evolutionary computation,

Dublin, Ireland, 2011.

[18] H. Bai, et al., "MAX-MIN Ant System on GPU with

CUDA," presented at the Proceedings of the 2009 Fourth

International Conference on Innovative Computing,

Information and Control, 2009.

[19] L. Mussi, et al., "GPU-based asynchronous particle

swarm optimization," presented at the Proceedings of the

13th annual conference on Genetic and evolutionary

computation, Dublin, Ireland, 2011.

[20] H. Zhu, et al., "Paralleling Euclidean Particle Swarm

Optimization in CUDA," presented at the Proceedings of the

2011 4th International Conference on Intelligent Networks

and Intelligent Systems, 2011.

[21] B. Rymut and B. Kwolek, "GPU-supported object

tracking using adaptive appearance models and particle

swarm optimization," presented at the Proceedings of the

2010 international conference on Computer vision and

graphics: Part II, Warsaw, Poland, 2010.

