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Abstract - This paper presents a new Feature Local Binary 

Patterns (FLBP) that encodes the information of both local 

texture and features. The features are broadly defined by, for 

example, the edges, the Gabor wavelet features, the color 

features, etc. Specifically, a binary image is first derived by 

extracting feature pixels from a given image I, and then a 

distance vector field is obtained by computing the distance 

vector between each pixel and its nearest feature pixel 

defined in the binary image. Based on the distance vector 

field and the FLBP parameters, a FLBP representation of the 

given image I can be formed. Rather than the traditional LBP 

which only compares a pixel with the pixels in its own 

neighborhood, the FLBP can compare a pixel with the pixels 

in its own neighborhood as well as in other neighborhoods. 

We apply the FLBP to eye detection. The experimental results 

using the BioID database show that the FLBP method 

significantly improves upon the LBP method. The FLBP 

method displays superior representational power and 

flexibility to the LBP method due to the introduction of 

feature pixels as well as its parameters. 

Keywords: Feature Local Binary Pattern (FLBP), Local 

Binary Pattern (LBP), Distance Vector. 

1 Introduction 

 The Local Binary Patterns (LBP) method [1], which 

defines a gray-scale invariant texture description by 

comparing a center pixel with its neighbors, is a popular 

method for texture analysis. In recent years, the LBP method 

has been applied in many pattern recognition tasks, such as 

face detection and recognition, scene and image texture 

classification [2 -6]. 

 While we are inspired by the achievement of LBP, 

two problems occurred to us. First, LBP only compares a 

pixel with the pixels in its own neighborhood. We believe 

more information could be revealed if we can compare a pixel 

with the pixels in other neighborhoods. However arbitrarily 

comparing a pixel with any other neighborhoods might not 

provide useful information. Our first problem is how to locate 

a pixel and a neighborhood which will provide useful 

information after comparing them each other. Second, LBP  

encodes a little information about the relationship of local 

texture with the features, such as edges, peaks and valleys. 

Our second problem is how to design a texture descriptor 

which encodes more information of the relationship of local 

texture with the features. These two problems motivated us to 

this study. The goal of our study is to find a new texture 

descriptor which can solve the two problems. 

 We present in this paper a new Feature Local Binary 

Patterns (FLBP) method that encodes the information of both 

local texture and features. The features are broadly defined by 

any features which meet the requirements of specific 

applications, such as the edges, the intensity peaks or valleys, 

the Gabor wavelet features, the color features. The 

contributions of the paper are as follows. 

 A new FLBP method is presented. The FLBP encodes 

both local and feature information. Rather than the 

traditional LBP which only compares a pixel with the 

pixels in its own neighborhood, the FLBP can compare a 

pixel with the pixels in its own neighborhood as well as 

in other neighborhoods. The FLBP generalize the LBP 

which can be considered as a special case of the FLBP. 

The FLBP is expected to perform better than the LBP 

approach for texture description and pattern recognition. 

 As the FLBP method encodes both local and feature 

information, the performance of FLBP depends on the 

extraction of the feature pixels. To improve FLBP 

performance, we present a new feature pixel extraction 

method, the LBP with Relative Bias Thresholding 

(LRBT) method. 

 For the application of FLBP on eye detection, 

experimental results using the BioID show that (i) the 

FLBP method significantly improves upon the LBP 

method; (ii) the new LRBT feature pixel extraction 

method helps improve the FLBP eye detection 

performance when compared with the Canny edge 

detection method; and (iii) the FLBP method displays 

superior representational power and flexibility to the 

LBP method due to the introduction of feature pixels as 

well as its parameters. 

2 Feature Local Binary Patterns 

Our FLBP method generalizes the LBP approach by 

introducing feature pixels that may be broadly defined by any 

features which meet the requirements of specific 

applications, such as the edges, the intensity peaks or valleys, 

the Gabor wavelet features, the color features.  

 First we briefly review the Local binary patterns, or 

LBP. LBP defines a gray-scale invariant texture description 

by comparing a center pixel, which is used as a threshold, 

with those pixels in its local neighborhood. Specifically, for a 

3×3 neighborhood of a pixel p = [x, y]
t
 , each neighbor is 



 

labeled by a number from 0 to 7 as shown in Fig. 1. The 

neighbors of the pixel p may be defined below:  
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where i is the number used to label the neighbors. The value 

of the LBP code of a pixel p(x, y) is calculated below: 
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where G(p) and G[N(p,i)] are the gray levels of the pixel p 

and its neighbor N(p,i), respectively. S is a threshold function 

that is defined as follows:  
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Fig. 1 The 3 × 3 neighborhood of a pixel p and the label of its 

neighbors 

Next we review the concepts of distance transform 

and distance vector field. In a binary image, each pixel 

assumes one of two discrete values: 0 or 1. While pixels of 

value 0 are called the background pixels, pixels of 1 are called 

feature pixels. For a given metric δ, the distance transform of 

an image is an assignment to each pixel p of the distance 

between p and the nearest feature pixel q. The distance map 

can be defined as follows: 
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where F is the set of feature pixels of the binary image, and 

the distance map D is called the distance transform. Since the 

Euclidean distance is widely used in many image 

applications, an algorithm with linear time complexity have 

been developed for the fast computation of the Euclidean 

distance transform [7]. One shortcoming of the distance 

transform is that it does not contain the exact location of the 

nearest feature pixels. To overcome this shortcoming, a new 

concept of Distance Vector Field (DVF) is presented by 

assigning to each pixel p of a vector dv that points to its 

nearest feature point q [8]. Specifically, for a given distance 

metric δ, the DVF of an image may be defined as follows: 

  ( )                                            ( ) 

Fig. 2 shows an example of a binary image, its 

Distance Vector Field (DVF), and the Euclidean distance 

transform. Note that the upper left pixel has coordinates (1, 1) 

in a Cartesian coordinate system with a horizontal axis 

pointing to the right and a vertical axis pointing downwards. 

In particular, the binary image in Fig. 2(a) has only one 

feature pixel at the location (2, 2). Fig. 2(b) displays the DVF 

where the numbers are derived using Eq. 6, and Fig. 2(c) 

shows the Euclidean distance transform where the numbers 

are calculated using  Eqs. 4 and 5. 

 

(a) 

  

(b)                       (c) 

Fig. 2 (a) An example of a binary image with only one feature 

pixel at the location (2, 2). (b) Distance Vector Field (DVF) 

(c) Euclidean distance transform 

2.1 Feature Local Binary Patterns - the 

General Form (FLBP) 

In order to define the general form of FLBP, we first 

introduce the concepts of True Center (TC) and Virtual 

Center (VC).  

Definition 1: True Center (TC) is the center pixel of a given 

neighborhood. 

Definition 2: Virtual Center (VC) is a pixel used to replace 

the center pixel of a given neighborhood. 

Let p and q represent a pixel and its nearest feature 

point, respectively. Let dv be the distance vector of p 

pointing to q as defined by Eq. 6. Note that we use dv to 

replace dv(p) for simplicity. The TC, which may be any pixel 

on the path from p to q, is defined below:  

  ( )                                             ( ) 

where          is a parameter that controls the location of 

the TC. Round() is  When αt = 0, the TC is p; when αt = 1, the 

TC is q; and when 0 < αt < 1, the TC is a pixel on the path 

between p and q. Similarly, the VC, which may be any pixel 

on the path from p to q as well, is defined as follows: 

  ( )                                          ( ) 

where          is a parameter that controls the location 

of the VC. 

 The general form of FLBP is defined as follows: 
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where N(Ct(p), i) defined by Eq. 1 represent the neighbors of 

the TC. G[Cv(p)] and G[N(Ct(p), i)] are the gray levels of the 

VC and the neighbor of the TC, respectively. S is a threshold 

function. Eq. 3 provides one definition of the S function. 

Another definition of the threshold function introduces a 

fixed bias b [9]: 
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To increase flexibility, we present a threshold function using 

a relative bias:  

 (     )    {
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where β is a parameter that controls the contribution of xc to 

the bias.  

 Next, we use the grayscale image shown in Fig. 3(a) 

to illustrate how to compute the FLBP code. We assume that 

the upper left pixel is at location (1, 1) in the Cartesian 

coordinate system with the horizontal axis pointing to the 

right and the vertical axis pointing downwards. As discussed 

before, feature pixels are broadly defined by any features 

which meet the requirements of specific applications. In order 

to make the examples easier to understand, here we define the 

feature pixels in Fig. 3(a) to be those with gray level greater 

than 98. Because the pixel at the coordinates (6, 6) in Fig. 3(a) 

is the only pixel whose gray level is greater than 98, the pixel 

becomes the only feature pixel in the binary image shown in 

Fig. 3(b). And this feature pixel becomes the nearest one for 

all the pixels in Fig. 3(a). 

   

                   (a)                          (b) 

Fig. 3 (a) A grayscale image used in the examples of FLBP 

computation. (b) The binary feature image derived by 

extracting feature pixel with gray level greater than 98 from 

the grayscale image. 

 We select the pixel p at coordinates (2, 2) in Fig. 

3(a) as an example to compute the FLBP code. We first 

compute the dv. Given p = [2, 2]
t
, and q = [6, 6]

t
, we have dv 

= q − p = [4, 4]
t
. On the path pointed by the dv, we can 

determine the locations of TC and VC which are controlled 

by the parameters αt and αv. After TC and VC are located, we 

can computer the FLBP. Fig. 4 shows two examples of the 

computation of FLBP with different locations of TC and VC. 

In Fig. 4(a) given αt = 0.75 and αv = 0.25, we have Ct(p) = p + 

αtdv = [5, 5]
t
, and Cv(p) = p + αvdv = [3, 3]

t
. Therefore, the 

TC is the pixel at location (5, 5) and the VC is the pixel at 

location (3, 3). According to Eq. 9 we replace the gray level 

70 of TC at location (5, 5) by the gray level 30 of VC at 

location (3, 3), and threshed the neighbors of the TC. We 

have the binary FLBP code: FLBP(2, 2) = 10001010. Fig. 

4(b) shows another example of the FLBP(2, 2) computation 

when αt = 0.25, and αv = 0.75. Similarly, we locate the TC is 

the pixel at location (3, 3) and the VC is the pixel at location 

(5, 5). The binary FLBP code becomes: FLBP(2,2) = 

00010111 . 

 

(a) 

 

 

(b)   

Fig. 4 The computation of FLBP for the pixel at (2, 2) (a) An 

example when TC (αt = 0.75) is at (5, 5) and VC (αv = 0.25) is 

at (3, 3) (b) An example when TC (αt = 0.25) is at (3, 3) and 

VC (αv = 0.75) is at (5, 5)   

   FLBP has the following special cases: 

 FLBP Form 1 — FLBP1 

When αv = 0, pixel p becomes the VC, and the TC may be 

any pixel on the distance vector dv. FLBP1 compares the 

center pixel p which is used as the threshold, with the 

neighbors of the TC.  

 FLBP Form 2 — FLBP2 

When αt = 0, pixel p becomes the TC, and the VC may be 

any pixel on the distance vector dv. FLBP2 compares the 

VC which is used as the threshold, with the neighbors of 

the center pixel p.  

 LBP is a special case of FLBP 

When αv = αt = 0, the VC and TC coincide with the center 

pixel p, and FLBP becomes LBP, where no feature 

pixels are involved. LBP compares the center pixel p, 

with its own neighbors. 

 

2.2 Feature Local Binary Patterns - Form 1 

(FLBP1) and Form 2 (FLBP2) 

 FLBP1, which is a special case of FLBP, when αv = 

0, may be defined as follows: 
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where G(p) and G[N(Ct(p), i)] are the gray levels of the 

center pixel p and the neighbors of the TC, respectively. Eq. 

12 shows that FLBP1 compares the center pixel p with the 

neighbors of the TC, which may be any pixel on the distance 

vector dv. 

 FLBP2, which is another special case of FLBP, 

when αt = 0, may be defined as follows: 

     ( )  ∑        (   )       ( )  
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where G[Cv(p)] and G[N(p, i)] are the gray levels of the VC 

and the neighbors of the center pixel p, respectively. Eq. 13 

shows that FLBP2 compares the VC, which may be any pixel 

on the distance vector dv, with the neighbors of the center 

pixel p. 

 

   
               (a)           (b)            (c)  

    
     (d)            (e)            (f)           (g)  

    
     (h)             (i)            (j)           (k) 

Fig. 5 (a) A face image. (b) The binary feature image of the 

face image derived using the Canny edge detector. (c) The 

LBP representation of the face image (d) - (g) The FLBP1 

representation when αt = 0.25, 0.5, 0.75 1, respectively. (h) - 

(k) The FLBP2 representation when αv = 0.25, 0.5, 0.75 1, 

respectively.  

 Fig. 5 shows an example of the FLBP representation 

of a face image, where the traditional LBP representation is 

also included for comparison. Specifically, Fig. 5(a) and (b) 

display a face image and its binary feature image derived 

using the Canny edge detector. Fig. 5(c) shows the LBP 

representation of the face image of Fig. 5(a). Fig. 5(d), (e), 

(f), and (g) exhibit the FLBP1 representations when αt = 0.25, 

0.5, 0.75, 1, respectively. Fig. 5(h), (i), (j), and (k) show the 

FLBP2 representations when αv = 0.25, 0.5, 0.75, 1, 

respectively. 

3 LBP with Relative Bias Thresholding 

for Feature Pixel Extraction 

 As FLBP encodes both local and feature 

information, the performance of FLBP depends on the 

extraction of the feature pixels. We present a new feature 

pixel extraction method, the LBP with Relative Bias 

Thresholding (LRBT) method. The LRBT method first 

computes the LBP representation of an input grayscale image 

using the relative bias threshold function of Eq. 11 with a 

given β. An LBP image is then defined by the LBP 

representation. The LRBT method converts the LBP image to 

a binary LRBT feature image, whose feature pixels 

correspond to those whose LBP code is greater than 0, and the 

background pixels correspond to the pixels in the LBP image 

with the LBP code 0. Note that different binary LRBT feature 

images can be generated with different β values. Fig. 6 shows 

the LBP images and the corresponding binary LRBT feature 

images of a face image shown in Fig. 5(a) 

      

            (a)             (b)           (c) 

   
             (d)            (e)            (f) 

Fig. 6 LBP images and the corresponding binary LRBT 

feature images of a face image. (a)–(c) The LBP images when 

β = 0.05, 0.1, 0.2, respectively. (d)–(f) The binary LRBT 

feature images when β = 0.05, 0.1, 0.2, respectively. 

 Fig. 7 shows the FLBP1 and FLBP2 representations 

of the face image that applies the binary LRBT feature image 

shown in Fig. 6(e). Specifically, Fig. 7(a), (b), (c), and (d) 

display the FLBP1 representations when αt = 0.25, 0.5, 0.75, 

1, respectively. Fig. 7(e), (f), (g), and (h) exhibit the FLBP2 

representations when αv = 0.25, 0.5, 0.75, 1, respectively. 

 Note that in our experiments on eye detection in 

Sect. 5 we apply both the edge feature pixels from the Canny 

edge detector and the LRBT feature pixels from the LRBT 

feature pixel extraction method. The experimental results 

show that the FLBP-based eye detection method achieves 



 

better performance when applying the LRBT feature pixel 

extraction method than the Canny edge detector. 

       

         (a)           (b)            (c)           (d) 

    

      (e)           (f)            (g)            (h)   

Fig. 7 The FLBP1 and FLBP2 images that uses the binary 

LRBT feature image of Fig. 6(e) when β = 0.1. (a)–(d) The 

FLBP1 images when αt = 0.25, 0.5, 0.75, 1, respectively. (e)–

(h) The FLBP2 images when αv = 0.25, 0.5, 0.75, 1, 

respectively 

 Fig. 5 and Fig. 7 show that different parameter 

values lead to different FLBP representations. The feature 

pixels used in the FLBP are broadly defined. Different feature 

pixels also lead to different FLBP representations. Different 

FLBP representations can serve different purposes for texture 

description and pattern recognition. The FLBP method 

encodes much richer information than the LBP method does. 

Not only does the FLBP encode both local and feature 

information, but it also enhances its representational power 

and flexibility by incorporating a number of parameters, such 

as the CT parameter αt, the VT parameter αv, as well as the 

relative bias parameter β. 

4 Application of FLBP to Eye Detection 

 We apply the FLBP method on eye detection. Fig. 8 

shows the system architecture of our FLBP-based eye 

detection method that consists of three major steps. First, a 

binary image, which contains the feature pixels is derived by 

applying the new LRBT feature pixel extraction method. 

Second, the FLBP representation of the face image is formed 

based on the grayscale image and a distance vector field or 

DVF, which is obtained by computing the distance vector 

between each pixel and its nearest feature pixel defined in the 

binary image. Finally, for eye detection, an eye template is 

first constructed from a number of training eye samples, and 

each eye candidate is then compared with the eye template 

based on the FLBP histogram and a similarity measure, 

whose computation is implemented by a fast algorithm.  

 

Fig. 8 The system architecture of our FLBP-based eye 

detection method 

4.1 A Fast Algorithm for FLBP Histogram 

and Similarity Computation 

 We present in this section a fast algorithm for FLBP 

histogram and similarity computation. Let the eye template 

and an eye candidate window be divided into a grid of r × c 

cells. A FLBP histogram of a cell is formed by the FLBP 

codes of the pixels in the cell. The eye template is defined by 

the r × c mean FLBP histograms of the training eye samples. 

Let T and C represent the eye template and eye candidate 

windows, respectively. We apply the following similarity 

measure M(C, T) to compare T and C: 
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where Ci,j represents the j-th bin of the FLBP histogram of the 

i-th cell of the eye candidate window, Ti,j represents the j-th 

bin of the FLBP histogram of the i-th cell of the eye template, 

g = rc is the total number of cells of the r × c grid, and b is the 

number of bins of a histogram. 

 An exhaustive search of eye location may compare 

an eye candidate window centered at every pixel in a face 

image with the eye template. The pixel whose eye candidate 

window has the largest similarity value with the eye template 

is the location of the detected eye. Let the spatial resolution of 

the face image and the eye template be m × n and w × h, 

respectively. The computational complexity of deriving the 

DVF and FLBP is O(mn), and the complexity of computing 

the FLBP histogram and similarity for an eye candidate 

window is O(wh) and O(gb), respectively. As a result, the 

total time for searching a face image is O(whmn) and 

O(gbmn) for FLBP histogram and similarity computation, 

respectively. 

 We now present a fast algorithm that can reduce the 

computational complexity of FLBP histogram and similarity 

computation. Fig. 9 shows a search region, which contains an 

eye candidate window with a spatial resolution of w × h, the 

top left pixel at (x1, y1), and the lower right pixel at (xw, yh). 

For simplicity, let us use the upper left pixel to represent an 

eye candidate window. Suppose we have computed the FLBP 

histogram and similarity for window at (x1, y1). We move the 

eye template to the next column to compare the next eye 



 

candidate window at (x1 + 1, y1) with the eye template. Now 

the difference between these two eye candidate windows 

resides in column x1 and column xw + 1. If we remove column 

x1 from window (x1, y1).and add column xw + 1, the new 

window is window (x1 + 1, y1). Since we have already 

computed the FLBP histogram and similarity for window (x1, 

y1), we can obtain the new results for window (x1 + 1, y1) by 

examining the difference between columns x1 and xw +1. 

 

Fig.9 A search region that contains an eye candidate window 

with a spatial resolution of w × h, the top left pixel at (x1, y1), 

and the lower right pixel at (xw, yh) 

 The fast algorithm works as follows. 

 First, assign the FLBP histogram and similarity of 

window (x1, y1) to window (x1 + 1, y1). 

 Second, update the FLBP histogram for window (x1 

+ 1, y1) as follows: (i) for each pixel in column x1, reduce 1 

from the histogram bin corresponding to its FLBP code; and 

(ii) for each pixel in column x1 + 1, add 1 to the histogram bin 

corresponding to its FLBP code. The computational 

complexity for FLBP histogram computation is now reduced 

to O(h) from O(wh). 

 Third, update the similarity for window (x1 + 1, y1) 

as follows: (i) save the similarity values for every histogram 

bin of window (x1, y1); (ii) for every histogram bin that has 

been updated, subtract the old similarity value, recalculate the 

similarity value, and add the new value to the similarity. The 

computational complexity for similarity computation is now 

reduced to O(h) from O(b), as h, which is the height of the eye 

candidate window, is much smaller than b, which is the 

number of bins of the histogram. Note that the reduced 

computational complexity is independent of b. The 

significance of the fast algorithm is that it runs equally fast no 

matter it is applied to the three-level texture analysis method 

with 6561 histogram bins or the LBP method with 256 

histogram bins. 

 Fig. 9 shows that the eye candidate window moves 

horizontally to the next column. If the eye candidate window 

moves vertically, the fast algorithm works as well by 

examining the difference between the rows y1 and yh + 1. The 

computational complexity for FLBP histogram and similarity 

computation is O(w), where w is usually not equal to h. If w is 

greater than h, moving the window row by row is faster, 

otherwise, moving the window column by column is faster. 

5 Experimental Results 

 We assess the eye detection performance of FLBP 

and LBP methods using the public BioID databases which 

contains 1,521 grayscale frontal face images with spatial 

resolution of 384 × 286. All facial images in our experiments 

are cropped and normalized to the size of 132 × 178. To 

construct the eye template, we collected 70 pairs of eye 

samples that are not from the BioID database. As only the 

right eye template is constructed due to the symmetry 

between right and left eyes, the 70 left eyes are flipped 

horizontally to double the number of the right eye samples. 

To detect the left eye, we first flip the face image 

horizontally, and then detect eye in the flipped image by 

comparing it with the right eye template. Eye samples are 

cropped to 37 × 17.  

 Eye detection performance is determined by a 

relative distance error and is defined as follows: 

             γ = d1 / d2                         (15) 

where d1 is the Euclidean distance between the detected eye 

center and the ground truth eye center, and d2 is the 

interocular distance between the two ground truth eye 

centers. The detected eye center is considered inside the eye 

region, inside the iris, and inside the pupil, when γ ≤ 0.25, 0.1, 

0.05, respectively. We use the success rate for γ ≤ 0.25, 0.1, 

0.05, to assess the performance of the FLBP-based eye 

detection method. 

 As the FLBP method may apply a neighborhood of 

different size, we assess the effect of 3 × 3 and 5 × 5 

neighborhood on eye detection performance. Our 

experimental results show that the 5×5 neighborhood shown 

in Fig. 10 is better than the 3×3 neighborhood shown in Fig. 

1. 

 

Fig.10 The 5 × 5 neighborhood where only the labeled 

neighbors with numbers from 0 to 7 are used to compute the 

FLBP code and the center pixel with a label 8 is used as the 

threshold 

 We also assess the effect of the grid size of the eye 

candidate window on eye detection performance on BioID 

database. We divide the eye candidate window into three 

different grids which are 3 × 3, 3 × 4, and 4 × 4 grids shown in 

Fig. 11. Our experimental results show that 3 × 4 grid yields 

the best overall eye detection performance. 



 

     

             (a)              (b)             (c) 

Fig. 11 The eye window grids (a) The 3 × 3 grid (b) The 3 × 4 

grid. (c) The 4 × 4 grid 

 After determining the best neighborhood size and 

grid size, we assess the eye detection performance of FLBP 

and LBP methods comparatively on the BioID database. We 

apply the 5×5 neighborhood size and divide the eye template 

and candidate windows to 3 × 4 grid in all experiments. The 

feature pixels for the FLBP method are derived by either the 

LRBT method or the Canny edge detector in our experiments.  

 Table 1 shows the eye detection success rates of the 

FLBP1, FLBP2, and LBP methods. The results show that the 

success rates of both FLBP1 and FLBP2 when γ = 0.25, 0.1 

and 0.05 are around 98%, 95% and 87%, respectively. In 

comparison, the success rates of LBP are about 92%, 90% 

and 83%. Therefore, the results show that our FLBP method 

significantly improves the eye detection performance upon 

the LBP method. Table 1 also shows the success rates of the 

FLBP method using the features extracted by LRBT method 

are higher than the success rates of the FLBP method using 

the features extracted by Canny edge detector. This finding 

indicates that the new LRBT feature pixel extraction method 

helps improve the FLBP eye detection performance when 

compared with the Canny edge detection method. 

Table 1 The eye detection success rates of the FLBP1, 

FLBP2, and LBP methods 

Method 
γ ≤ 

0.25 

γ ≤ 

0.1 

γ ≤ 

0.05 

FLBP

1 
 

LRBT, β = 0.2, αt = 0.12 97.86 95.10 87.41 

LRBT, β = 0.1, αt = 0.25 98.03 94.74 87.21 

LRBT, β = 0.15, αt = 0.12 98.03 95.00 87.15 

Canny Edge Pixels, αt = 

0.12 
97.80 94.67 86.65 

FLBP

2 

LRBT, β = 0.2, αv = 0.25 98.65 95.23 87.84 

LRBT, β = 0.15, αv =0.25 98.55 95.04 87.51 

LRBT, β = 0.1, αv = 0.25 97.90 94.67 86.88 

Canny Edge Pixels, αv = 

0.12 
97.63 94.48 86.46 

LBP 92.34 90.34 83.14 

 

6 Conclusion 

 We present in this paper a new Feature Local Binary 

Patterns (FLBP) method which encodes both local and 

feature information. The features are broadly defined by any 

features which meet the requirements of specific 

applications. The FLBP generalizes the LBP which can be 

considered as a special case of the FLBP. The FLBP method 

displays superior representational power and flexibility to the 

LBP method due to the introduction of feature pixels as well 

as its parameters. We assess the FLBP method on eye 

detection using the BioID database. The experimental results 

show that the FLBP method significantly improves upon the 

LBP method. We present a new feature pixel extraction 

method, the LBP with Relative Bias Thresholding (LRBT) 

method. The experimental results show that the new LRBT 

feature pixel extraction method helps improve the FLBP eye 

detection performance when compared with the Canny edge 

detection method. 
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