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Abstract— In this paper, we propose a new denoising
method for Poisson noise corrupted images based on the
Anscombe variance stabilizing transformation (VST) with a
new inversion. The VST is used to approximately convert a
Poisson noise image into a Gaussian distributed image, so
that the denoising methods aiming at Gaussian noise can be
applied subsequently. The motivation for the new inversion
originates from a main drawback existing in the Anscombe
transformation: its efficiency degrades significantly when the
pixel intensities of the observed images are very low due to
the biased errors generated by its inverse transformation.
Thus, we introduce a polynomial regression model in the
sense of weighted least squares as an improvement for the
inverse Anscombe transformation. Moreover, we incorporate
our developed wavelet thresholding strategy for Gaussian
noise into the proposed method. It is shown in the experimen-
tal analysis that this method is very competitive for Poisson
denoising.

Keywords: Poisson noise, image denoising, Anscombe transfor-
mation, wavelet transform

1. Introduction
The intensity of a certain pixel in an observed image is

approximately proportional to the photon counts arrived in
it. These photons are obtained by a detection device like
CCD. Normally, noise will invariably be introduced by the
errors in the detection device itself due to its lack of infinite
precision. In addition, noise can also arise when photons
travel from the object to the detection device. Thus, it is
necessary to employ image restoration approaches so that
the noise on the obtained image can be suppressed such that
people can be provided with an improved observation of the
object of interest.

Low-intensity images, where relatively few photons are
observed or the counts of photons arrived on the detection
device are very limited, are common in many of the image
processing applications in the biomedical and astronomic
domains. In these situations, many well-established existing
image restoration methods designed for handling additive
white Gaussian noise (AWGN) become expectably unfitted
because the models are usually only appropriate when the
number of photon counts per pixel is relatively large. But
a reasonable assumption to make for low intensity images

due to limited photon counts is that the observed image
can be considered as a realization of a Poisson process
and the photon counts of pixels can be modeled as Poisson
distribution. Thus, a photon-limited image can be modeled as
a 2D matrix of Poisson variables. The modeling of Poisson
process is very different from that of the Gaussian process.
In Gaussian models, the variance of the noise is stationary,
whereas the variance of Poisson noise is non-stationary
throughout the whole image and the magnitude of the noise
is dependent on the pixel intensity that we want to restore
which makes removing noise of this type a more difficult
problem.

Fortunately, there exists a simple and intuitive, widely
used procedure for Poisson denoising in practice. The core
principle of this procedure is to transform the Poisson
variables into Gaussian variables thus the existing denoising
algorithms treating the AWGN can be applied. It has three
main steps: 1) a variance stabilizing transformation (VST)
is executed on the obtained Poisson noisy image so that
the noise variance is approximately stabilized through the
whole image; 2) an existing AWGN denoising algorithm
such as state-of-the-art approaches [1], [2] is then applied on
this transformed image; 3) an inverse transformation is used
on this transformed and processed image resulting in the
final recovered image. This Poisson noisy image denoising
procedure is illustrated in Figure 1.

Fig. 1: General Poisson noisy image denoising procedure

Other than the classical VST solution mentioned above,
major contributions are made under different frameworks.
Kolaczyk [3] has developed soft and hard thresholds for
Poisson intensities as an adapted version of the usual
Gaussian-based universal thresholds designed for AWGN
[4]. In [5], Mäkitalo and Foi introduce new inversions
including a maximum likelihood inversion and a minimum
mean square error inversion for the commonly used VST:
Anscombe transformation [6]. They combine these inver-
sions with BM3D technique, which is a state-of-the-art



denoiser for AWGN and consistently improved performances
are achieved. In [7], Zhang et al. present a modified VST to
efficiently stabilize the Poisson distributed data while incor-
porating some multi-resolution transforms such as ridgelets
and curvelets. Their algorithm especially aims at very low-
intensity signals. In [8], Luisier et al. propose a Poisson
denoising algorithm PURE-LET based on an unnormalized
Haar wavelet transform and the minimization of an unbiased
estimate of the MSE for Poisson noise. Their method is
very competitive in terms of denoising performance and
computational complexity. Willett and Nowak [9] employ
a Poisson intensity estimation approach involving a platelet-
based penalized likelihood estimation of a piecewise poly-
nomial on recursive dyadic partitions of the support of the
Poisson intensity. Its estimator does not require any a priori
knowledge of the clean signal’s smoothness.

In this paper, we propose a new Poisson denoising ap-
proach adopting the aforementioned traditional VST solu-
tion, but with a more precise inverse transformation model.
The proposed inverse Anscombe transformation (IAT) cor-
rects the biased errors brought by the conventional inverse
Anscombe transformations in the sense of weighted least
squares. This whole approach guarantees a success of the
denoising process by incorporating our new competitive
denoising method [10] based on context modeling (CM)
and wavelet thresholding (WT) and is designed for AWGN,
hereafter termed CMWT-IAT. The performance of CMWT-
IAT method shown from the quantitative results reveals that
it is indeed a promising competitor for Poisson denoising.
Other main advantages of our approach include that it is
simple and easy to implement, requires minimum human
interaction and relatively low computational burden.

The rest of this paper is organized as follows. In Section
2, we briefly recall the Poisson distributed model and the
Anscombe transformation as well as its conventional inverse
transformations. In Section 3, we propose the CMWT-IAT
method with a new piecewise polynomial regression model
for inverse transformation. In Section 4, various experiments
are included to verify the efficiency of the CMWT-IAT
method. Finally, the conclusion is presented in Section 5.

2. Poisson Model and Anscombe Trans-
formation

Suppose y = (yi)i∈<2 is an image we obtained and each
pixel intensity yi can be modeled as a Poisson random
variable following this probability density function

Pxi
(yi) =

e−xixi
yi

yi!
, yi ≥ 0 (1)

where the Poisson parameter xi is not only the mean value
of yi, but also equals to its variance σ2

i .
We assume that the mean value xi of each observed

pixel intensity yi is its corresponding pixel intensity in

the clean image and the variability of the mean can be
interpreted as noise. Therefore, our goal is to restore the
original clean image x = (xi)i∈<2 by searching for an
estimate x̂ = (x̂i)i∈<2 which is as close as possible to x
given that observed noisy image y.

Usually, the closeness between the estimate and original
image is measured in terms of minimum mean square error

MSE =
1

N
||x̂− x||2 =

1

N

N∑
i=1

(x̂i − xi)2 (2)

where N is the total number of pixels in the image.
The denoising problem can also be stated as to estimate

the underlying mean value x = (xi)i∈<2 of each pixel from
a realization of the Poisson process.

The main obstacle for many existing Gaussian denoising
algorithms to be directly applied on noisy photon-limited
images is that they are unable to model the variance of
the Poisson noise as non-stationary and dependent on the
underlying intensity. Thus, several VST methods such as
those in [7], [11] are used to remove the dependence of
the noise variance on the underlying data. Among them, we
choose the classic Anscombe transformation [6] since it is
still widely used and considered to be a useful tool due to
its efficiency and simplicity. Its expression is as follows

Yi = T(yi) = 2

√
yi +

3

8
(3)

where yi is the observed intensity value of Poisson noisy
image and Yi is the transformed intensity value. From now
on, we use uppercase letters to represent the corresponding
transformed data.

After the Anscombe transformation T, the pixel intensities
throughout the whole image are approximately Gaussian
distributed with mean 0 and variance σ2 = 1. Thus its
variance is assumed to be stationary.

We suppose that there is a promising denoising operation
available which provides a successful transformed estimate
X̂ based on the observed y. In practice, after the denoising
operation is performed, it is necessary to apply an inverse
transformation in order to obtain the final estimate x̂ of
the original data. So the arithmetical inverse Anscombe
transformation f1 is naturally derived as

x̂i = f1(X̂i) = T−1(X̂i) =

(
X̂i

2

)2

− 3

8
(4)

Though very simple, it is emphasized in [5] that this
inverse transformation fails to be competent when being
applied to those variables with low values since the resulting
estimate x̂ inevitably generates biased errors due to the
nonlinearity of the forward Anscombe transformation T, so
that we have

E{T(y)|x} 6= T(E{y|x}) (5)



and thus
T−1(E{T(y)|x}) 6= (E{y|x}) (6)

Meanwhile, it is worth noting that we can also choose an
alternative to the arithmetical inverse Anscombe transforma-
tion, which relatively mitigates the biased error for smaller
valued Poisson parameters. It is called asymptotical inverse
Anscombe transformation f2 and its expression is as [6]

x̂i = f2(X̂i) =

(
X̂i

2

)2

− 1

8
(7)

Nevertheless, the main drawback of this inverse trans-
formation is similar to that of the arithmetical inverse
transformation, that is its performance on very low values
falls out of satisfaction. Thus, in order to minimize the bias
error in low-intensity images, in the next section we propose
a more precise inverse transformation.

3. The CMWT-IAT Method to Poisson
Denoising

As previously mentioned, generally the efficiency of either
the arithmetical or asymptotical inverse Anscombe transfor-
mation only holds under the assumption that the underlying
mean value is large enough, but their reliability is invalid
for those Poisson variables with relatively small mean values
and their performances deteriorate quickly. Hence basically
we are interested to get a quantitative idea of how large the
biased errors become when the underlying Poisson variables
are small enough after the forward transformation.

Accordingly, for each integer i from 1 to 255, we generate
a data set consisting of a very large number of Poisson
variables with i being the underlying Poisson parameter.
We then calculate the variance of this data set for each i.
The results are shown in Figure 2a, from which we observe
that it follows the Poisson property that the variance is
approximately equal to the mean value. Then, we apply
the Anscombe transformation (3) on all the variables in
these data sets, calculate the variance of each transformed
data set, and illustrate the results in Figure 2b. The figure
reveals that the variances are almost equal to 1 with little
respect to the mean value i throughout the entire range of
the corresponding underlying Poisson parameters, with only
negligible oscillation.

We then explore the biased errors between the transformed
parameters and their estimated means and show them in
Figure 3. The x axis denotes the Poisson parameters, and y
axis denotes the mean values estimated from the Anscombe
transformed Poisson data for each parameter i, but with each
value divided by the mean value of the original Poisson
variables. By observing the figure, it is clearly seen that both
values are almost identical to each other from a practical
standpoint of view when the value of a Poisson parameter is

(a) (b)

Fig. 2: (a) Variance of Poisson distributed data sets, (b)
Variance of the transformed data sets

no less than 30. Thus, it is reasonable to consider that after
applying Anscombe transformation, the Poisson variables
are unbiased as long as the values are no less than 30. It
indicates that both the arithmetical and asymptotical inverse
Anscombe transformations still work effectively in such a
situation so that we can apply either of them directly.

Fig. 3: Biased errors between Poisson parameters and esti-
mated means

But for Poisson parameters with values less than 30, the
resulting values are severely underestimated especially when
they are below 10. Consequently, our main focus at this
stage is to develop a solution appropriately applicable to the
inversion of Poisson parameters with relatively small values.
Thus, it is intuitive for us to compensate the denoised results
before the arithmetical inversion by adaptively dividing a
predefined factor for each obtained Poisson estimate. This
factor can be derived by fitting the curve in Figure 3 in a
least squares sense using the linear polynomial regression
model

bi = P(a) = p1a
n
i + p2a

n−1
i + ...+ pnai + pn+1 (8)

where n+ 1 is called the order of the polynomial and n is
called the degree of this polynomial.



In order to calculate the estimated coefficients in the
polynomial, the minimization of the following summation
of the weighted squares is required.

minimize S =

K∑
i=1

wir
2
i =

K∑
i=1

wi(bi − b̂i)
2

(9)

where ri, the residual, is defined as the difference between
the measured value bi and the fitted value b̂i; K is the num-
ber of data points provided in the fit; wi is the weight which
determines how much each corresponding value influences
the final estimate. For simplicity, we set the weights as

wi =
1

σ2
i

(10)

where each σ2
i is derived from the variance of the trans-

formed Poisson data from Figure 2b.
When fitting the curve by polynomials, we also assume

that there exist random variations in the measured data and
the random variations are Gaussian distributed with a zero
mean and variance σ2. We add this error in the polynomial
expressed as

bi = P(a) = p1a
n
i + p2a

n−1
i + ...+ pnai + pn+1 + εi (11)

where εi ∼ N(0, σ2), ∀i and cov(εi, εj) = 0, ∀i, j
In matrix notation, the polynomial regression model is given
by

b = Ap+ ε (12)

The solution vector p can be obtained by solving

p = (ATWA)
−1

ATWb (13)

where W consists of the diagonal elements of the weight
matrix w.

With the polynomial regression model, the flexibility for
the data is desirably achieved. However, if the degree of the
polynomial is high, the fitting model becomes dramatically
unstable. We should also note that the polynomial regression
model is expected to work only within a certain range, and
divergence can be caused significantly out of this range. Thus

(a) (b)

Fig. 4: (a) Curve fitting for Poisson parameter under 10, (b)
Curve fitting for Poisson parameter from 10 to 30

the suitable range has to be selected carefully. For this con-
sideration, we suggest the polynomials for our application
be piecewise and quadratic or cubic.

We hereby separate the curve in Figure 3 into three
segments before using the polynomial regression model to
fit: 1) Poisson parameters with values under 10, 2) those with
values from 10 to 30 and 3) those with values larger than
30. For the first two groups, illustrated in Figure 4a and 4b,
with the coefficient vector p known from (13) for the fitting
polynomial and denoised transformed estimate X̂i, the final
desired value of x̂i can be obtained by

ˆ̂
Xi =

X̂i
m∑
j=1

pjX̂
m−j
i + εi

(14)

x̂i =

(
ˆ̂
Xi

2

)2

− 3

8
(15)

where m is the order of the polynomial, ˆ̂
Xi is the corrected

denoised estimate in the transformed domain.
Furthermore, if the value of a Poisson variable is larger

than 30, the asymptotical inverse Anscombe transformation
(7) is adopted.

So far, we have provided detailed explanations for the first
and third steps in the Poisson denoising procedure stated in
Section 1. For the second step–the denoising part, we apply
our developed wavelet based denoising method for AWGN
[10], which yields very competitive performances. For the
readers’ convenience, its brief procedure is summarized here:
1) Perform multilevel discrete wavelet transform (DWT) on

the input noisy image y to produce its wavelet represen-
tation Y .

2) Estimate a smoothed version Z from Y using Zi = wtui
where the weight w is calculated in terms of minimizing
mean squared error, and ui is a vector consisting of Yi’s
relevant coefficients.

3) Estimate the additive white Gaussian noise standard de-
viation of noisy image y.

4) Add portion of noisy Y to Z to form a newer version Z ′

adaptively for different subbands and noise levels.
5) Determine the parameters of the optimized soft thresh-

olding operation on Z ′ and compute the estimate X̂ by
adding offsets adaptively to a close formed solution.

6) Apply inverse DWT on X̂ to obtain the denoised image
x̂.
Furthermore, in order to suppress the unpleasant Pseudo-

Gibbs phenomena in the area such as edges and ridge
discontinuities in images after standard wavelet denoising,
we carry out an overcomplete expansion process called
cycle spinning originally proposed in [12]. The basic
procedure of it is to circularly shift the input image to
generate a set of images as its overcomplete representations,



then do the same denoising operation on each of them, and
shift back before averaging all the denoised representations
to obtain the final desired image. By applying this strategy,
we can remove some disturbing visual artifacts so that the
denoised image’s quality is notably improved.

4. Experiments
The proposed denoising method CMWT-IAT on Poisson

noise corrupted images shows theoretical reliability and we
conduct three groups of experiments to confirm its actual
performance. In our experiments, we take the commonly fa-
vored peak signal-to-noise ratio (PSNR) as our measurement
of the denoising performance, which is defined as

PSNR = 10log10(
I2max

MSE
) (16)

where MSE is defined in (2) and Imax is the largest intensity
of the noise-free image.

Since Poisson modeled denoising methods are specifi-
cally applicable on the photon-limited images, it is more
reasonable to conduct our empirical experiments in a low-
intensity setting. For this reason, the intensities of pixels on
six standard testing images are scaled down proportionally
with the maximum intensity Imax being 60, 30, 20, 10 and
5 respectively and Poisson noise is added to each of them.
A.Experiment 1

In this experiment, we verify the advantage of our pro-
posed inverse transformation over both the arithmetical and
asymptotical inverse Anscombe transformations in (4,7). In
all three methods, we denoise the transformed images using
our method presented in [10] with the overcomplete repre-
sentation. The only difference is the inverse transformations
used after the denoising.

In Table 1, we present the PSNR comparisons between
these three different transformations. From the table, we can
notice that our proposed inverse method apparently yields
significant improvements than the other two when the peak
intensity is low.
B.Experiment 2

We illustrate the efficiency of our developed denoising
method [10] when being applied on the transformed Poisson
data in this experiment. We compare it with a state-of-the-art
Gaussian denoising algorithm SURE-LET [13] under non-
overcomplete wavelet transform. For both methods, we apply
our proposed inverse transformation. Here the PSNR values
of our method are also obtained by using non-overcomplete
wavelet transform. These numerical results are presented in
Table 2.

In Figure 5, we show visual results of both denoising
methods applied on Image Man. We can notice that the
delicate details such as the man’s hair and feathers on the
image obtained by CMWT-IAT are less over-smoothed and
better restored.

From the numerical results and visual comparison, it is

convinced that our denoising method originally designed
for AWGN is still a very viable and effective approach
when applying on the variance stabilized Poisson data and
it generates significantly superior results than SURE-LET in
a low-intensity setting.

C.Experiment 3
In this group of experiments, we compare the following

denoising methods on their performances of denoising low-
intensity images and list the PSNR results in Table 3 for
different images and peak intensities.
• SURE-LET

A combination of an overcomplete wavelet transform
denoising approach [14] derived from their state-of-the-art
method [13] and our proposed inverse transformation applied
after the denoising. It consists of a denoising estimator
derived from a series of weighted and optimized thresholding
functions.
• PURE-LET

A competitive Poisson intensity restoration technique [7].
It minimizes an unbiased estimate of the MSE for Poisson
noise and the denoising process is a linear combination of
optimized thresholding functions. The denoising results of
this approach are obtained by applying 10 cycle spins in our
simulations.
• BM3D

Table 1: PSNR (dB) comparison of the arithmetical, asymp-
totical inverse Anscombe transformations and the proposed
inverse transformation

Image Peak Arithmetical Asymptotical Proposed
5 23.11 25.30 25.98
10 25.91 27.20 27.23

Lena 20 28.43 28.98 28.99
30 29.68 29.95 29.95
60 31.32 31.45 31.46
5 23.27 25.72 26.11
10 25.85 26.88 26.92

Goldhill 20 27.77 28.29 28.29
30 28.61 28.86 28.86
60 30.16 30.26 30.26
5 22.76 24.80 25.18
10 25.45 26.53 26.64

Boat 20 27.69 27.72 27.73
30 28.26 28.48 28.50
60 30.05 30.15 30.15
5 21.68 23.26 23.55
10 23.81 24.51 24.61

Barbara 20 25.62 25.96 25.97
30 26.66 28.85 28.85
60 29.04 29.12 29.13
5 22.60 24.81 25.10
10 25.15 26.07 26.28

Couple 20 27.18 27.61 27.63
30 28.13 28.39 28.40
60 29.91 30.01 30.03
5 22.96 25.16 25.53
10 25.71 26.83 26.89

Man 20 27.37 27.84 27.84
30 28.31 28.54 28.54
60 29.95 30.04 30.04



A combination of non-wavelet denoising method BM3D
and their inverse transformation [5]. BM3D is a state-of-the-
art denoising algorithm using sparse 3D transform domain
collaborative filtering [2]. In addition, their unbiased inverse
transformation is based on minimum likelihood (ML) and
minimum mean square error (MMSE).
• CMWT-IAT

A combination of applying the overcomplete representa-
tion of our wavelet based denoising method [10] for AWGN
and the proposed inverse transformation presented in this
paper.

From Table 3, in general, CMWT-IAT’s performance is
very competitive in terms of PSNR. In particular, it out-
performs SURE-LET and PURE-LET with an improvement
up to 1.5 dB. Meanwhile, it is interesting to mention
that by using the proposed inverse transformation, SURE-
LET essentially produces better results than the specified
Poisson denoiser PURE-LET. Besides, CMWT-IAT can yield
comparable or even improved results to the state-of-the-art
BM3D approach, especially for the Images Goldhill and
Man. We found out that for the Images Lena and Barbara,
our algorithm is not able to yield a similar performance
to BM3D. We analyze that it is due to the limitation of
our wavelet modeling in estimating the dominated recurrent
textures such as Lena’s hat and Barbara’s pants in these

Table 2: PSNR (dB) comparison of SURE-LET [13] and
CMWT-IAT for different images and peak intensities

Image Peak Noisy SURE-LET CMWT-IAT
5 9.93 24.42 25.31

10 12.95 26.73 26.56
Lena 20 15.98 28.21 28.42

30 17.72 29.07 29.38
60 20.74 30.69 30.87
5 10.22 23.16 25.52

10 13.23 25.23 26.41
Goldhill 20 16.24 26.52 27.86

30 17.99 27.29 28.47
60 20.99 28.66 29.80
5 9.93 22.82 24.60

10 12.94 25.02 25.80
Boat 20 15.96 26.53 27.25

30 17.73 27.33 28.03
60 20.70 28.88 29.55
5 10.20 21.23 23.15

10 13.21 23.10 24.21
Barbara 20 16.24 24.38 25.56

30 17.98 25.36 26.47
60 20.99 27.08 28.56
5 10.20 22.72 24.55

10 13.23 24.75 25.75
Couple 20 16.24 26.15 27.18

30 17.99 27.03 27.96
60 21.03 28.55 29.48
5 10.32 22.80 24.95

10 13.33 25.08 26.01
Man 20 16.36 26.41 27.39

30 18.14 27.24 28.14
60 20.11 28.74 29.59

images.
We also provide a set of Image Goldhill obtained by

different denoising methods for visual comparison in Figure
6. We can point out that the proposed denoising method
CMWT-IAT which combines our wavelet based denoising
method and the proposed inverse transformation yields very
few disturbing artifacts and keeps more useful features like
the grids on the windows compared to the other methods.

5. Conclusion
In this paper, we have presented a new denoising method

called CMWT-IAT for Poisson noise corrupted images. The
method uses the Anscombe variance stabilizing transforma-
tion and combines our previously developed wavelet-based
Gaussian denoising method with a new proposed inverse
transformation based on a polynomial regression model.
By applying this method, the biased errors produced by
conventional inversions have been significantly corrected.
Though simple and easy to implement, it is considered to
be very effective on photon-limited images. In empirical
experiments, we have shown that it outperforms two widely
used Anscombe inverse transformations as well as some
leading image restoration methods. The quantitative and

Fig. 5: (a) Part of the original Image Man at peak intensity
30. (b) Poisson noise corrupted image. (c) Image denoised
with non-overcomplete SURE-LET [13] and the proposed
inversion. (d) Image denoised with the proposed method
CMWT-IAT.



Table 3: PSNR (dB) comparison of some of the best denois-
ing methods for different images and peak intensities

Image Peak SURE-LET PURE-LET BM3D CMWT-IAT
5 25.84 24.74 26.56 25.98
10 27.55 26.68 28.31 27.23

Lena 20 29.08 27.81 29.99 28.99
30 29.97 29.16 30.96 29.95
60 31.42 30.94 32.43 31.46
5 24.54 23.48 24.92 26.11
10 26.04 25.59 26.33 26.92

Goldhill 20 27.25 26.38 27.75 28.29
30 28.04 27.42 28.55 28.86
60 29.36 28.92 29.92 30.26
5 24.07 23.68 24.77 25.18
10 25.75 25.33 26.28 26.64

Boat 20 27.22 26.41 27.83 27.73
30 28.05 27.51 28.74 28.50
60 29.64 29.15 30.29 30.15
5 22.16 22.61 24.48 23.55
10 23.50 23.56 26.35 24.61

Barbara 20 24.76 24.80 28.18 25.97
30 28.05 27.51 29.19 28.50
60 27.52 27.52 30.91 29.13
5 23.99 23.35 24.46 25.10
10 25.53 25.01 26.14 26.28

Couple 20 27.05 26.24 27.74 27.63
30 27.97 27.19 28.77 28.40
60 29.53 28.94 30.37 30.03
5 24.06 23.65 24.77 25.53
10 25.71 25.57 26.13 26.89

Man 20 27.00 26.13 27.54 27.84
30 27.83 27.32 28.35 28.54
60 29.30 28.91 29.83 30.04

visual results both verify that it is very competitive with
the existing methods in denoising Poisson noise corrupted
images.
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