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Abstract - This paper presents a new local texture 

descriptor, Local Quaternary Patterns (LQP) and its 

extension, Feature Local Quaternary Patterns (FLQP). The 

LQP, which encodes four relationships of local texture, 

includes more information of local texture than the Local 

Binary Patterns (LBP) and Local Ternary Patterns (LTP). 

The FLQP which encodes both local and feature 

information is expected to perform better than the LQP for 

texture description and pattern recognition. To reduce the 

size of feature dimensions and histograms of both LQP and 

FLQP, a new coding schema is proposed to split the LQP 

and FLQP into two binary codes: the upper and lower 

binary codes. As a result, the total possible values of split 

LQP and FLQP are reduced to 512. The feasibility of the 

proposed LQP and FLQP methods is demonstrated on an 

eye detection problem. Experimental results using the BioID 

database show that both the FLQP and the LQP methods 

archive better performance than the feature LTP, the LTP, 

the feature LBP and the LBP methods. Specifically, the 

FLQP method achieves the highest eye detection rate 

among all the competing methods.  

Keywords: Local Quaternary Patterns (LQP), Feature Local 

Quaternary Patterns (FLQP), Local Binary Patterns (LBP), 

Feature Local Binary Patterns (FLBP) and Local Ternary 

Patterns (LTP). 

 

 

1 Introduction 

 Local Binary Patterns (LBP) [1] has recently 

become a popular method in texture description for content 

based image search and feature extraction for pattern 

recognition and computer vision. The most important 

properties of the LBP operator are its tolerance against 

illumination and computational simplicity, which makes it 

possible to analyze images in real-world in real-time. The 

Local Binary Patterns (LBP) has been widely applied in 

many applications, such as face recognition [2-4], face 

detection [5], [6], and facial expression analysis [7-10]. 

 Tan and Triggs [2] argued that the original LBP 

tends to be sensitive to noise, especially in near-uniform 

image regions, because it thresholds exactly at the value of 

the central pixel.  To solve the problem, they proposed 3-

valued codes, called Local Ternary Patterns (LTP). In LTP, 

neighbor pixels are compared with an interval [-r, +r] 

around the value of the center pixel. A neighbor pixel is 

assigned 1, 0 or -1, if its value is above +r, in the interval [-

r, +r] or below –r, respectively. Because the radius r is not 

changed with the gray scale, the LTP is no longer a strictly 

gray-scale invariant texture description, and is less tolerance 

against illumination than LBP. The LTP has 6561 possible 

values, which not only poses a computational challenge but 

also leads to sparse histograms. To solve these problems, a 

coding scheme is introduced to split a LTP code into two 

binary codes, the positive one (PLTP) and the negative one 

(NLTP). Therefore the total number of possible values of 

two split binary codes is reduced to 512. Some of 

experiments in [2], [10] show that LTP and LBP achieved 

similar, although LTP doubles the size of feature 

dimensions and histograms, and has a higher computational 

cost than LBP. 

 To improve the performance of LTP, we present in 

this paper a new local texture descriptor, Local Quaternary 

Patterns (LQP) and its extension, Feature Local Quaternary 

Patterns (FLQP). The LQP encodes four relationships of 

local texture, and therefore it includes more information of 

local texture than the LBP and the LTP. To reduce the size 

of feature dimensions and histograms of LQP, a coding 

scheme is introduced to split each LQP code into two binary 

codes, the upper LQP (ULQP) and the lower LQP (LLQP). 

The possible LQP values are reduced to 512. We [11] have 

introduced a new Feature Local Binary Patterns (FLBP) 

method to improve upon the LBP approach. In this paper, 

we further extend LQP to FLQP, and demonstrate that 

FLQP improves upon LQP and other competing methods, 

such as LBP, FLBP, LTP, and Feature LTP (FLTP). The 

FLQP which encodes both local and feature information is 

expected to perform better than the LQP for texture 

description and pattern analysis. We further show that the 

FLQP code can be split into two binary codes as well, the 

upper FLQP (UFLQP) and the lower FLQP (LFLQP). To 

demonstrate the feasibility of the proposed LQP and FLQP 

methods, we apply them to eye detection on the BioID 

database. Experimental results show that both FLQP and 

LQP achieve better eye detection performance than FLTP, 

LTP, FLBP and LBP. The FLQP method has the best 

performance among all the methods. 



2 Local Binary Patterns and Local 

Ternary Patterns 

 Before we introduce our Local Quaternary Patterns 

(LQP) and Feature Local Quaternary Patterns (FLQP), we 

briefly review LBP and LTP. LBP define a gray-scale 

invariant texture description by comparing a center pixel 

used as a threshold, with those pixels in its local 

neighborhood [1]. Specifically, for a 3 × 3 neighborhood of 

a pixel p = [x, y]
t
, each neighbor is labeled by a number 

from 0 to 7 shown in Fig.1. The neighbors of the pixel p 

thus may be defined as follows: 
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where i  is the number used to label a neighbor. The value of 

the LBP code of a pixel p(x, y) is calculated as follows: 
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where G(p) and G[N(p, i)] are the gray levels of the pixel p 

and its neighbor N(p, i), respectively. Slbp is a threshold 

function that is defined as follows: 
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Fig. 1 The 3 × 3 neighborhood of a pixel p and the label of 

its neighbors 

 Tan and Triggs proposed a Local Ternary Pattern 

or LTP operator [2]. In LTP the threshold function Sltp is 

defined as follows: 
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where r is the radius of the interval around the grey level of 

the central pixel. Fig. 2 shows an example of the 

computation of the LTP. The grey level of the central pixel 

is 40 and r is 5. A neighbor pixel is assigned to 1, 0 or -1, if 

its grey level is greater than or equal to 45, between 44 and 

36, or less than or equal to 35, respectively. The total 

number of the possible LTP codes is 3
8
 = 6561, which leads 

to a large size for the feature dimension and sparse 

histograms of the LTP codes. To solve the problem, an LTP 

code is split into two binary codes: the positive and negative 

halves as shown in Fig. 2. The positive half of LTP (PLTP) 

is obtained by replacing -1 with 0. The negative half of LTP 

(NLTP) is obtained by first replacing the 1 with 0 and then 

changing -1 to 1. Thus an LTP code can be represent by two 

binary codes. As a result, the total number of the split LTP 

codes is reduced to 512. 

 

Fig. 2 Computing the LTP and splitting it to two binary 

codes, PLTP and NLTP 

3 Local Quaternary Patterns 

 We now present our new Local Quaternary 

Patterns (LQP) which encodes four relationships of local 

texture, and therefore it includes more information of local 

texture than LBP and LTP. The threshold function of LQP 

is defined using two binary digits as follows: 
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where r is the radius of the interval around the value of the 

central pixel and may be defined as follows: 

       
  cr c g                                         (6)                                                                                                    

where c is a constant and τ is a parameter to control the 

contribution of gc to r. To reduce the total number of codes, 

an LQP code can be split into two binary codes, the upper 

and lower halves. The upper half of LQP (ULQP) is 

obtained by extracting the first digit of LQP code. The lower 

half of LTP (LLQP) is obtained by extracting the second 

digit of LQP code. Thus the total number of LQP codes is 

reduced to 512.  

 From Eq. 5 we can derive the threshold functions 

of ULQP and LLQP, Sulqp and Sllqp which may be formulated 

as follows: 
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The threshold function of ULQP, Sulqp is equal to the 

threshold function of LBP and is not depend on the r. The 

ULQP and LLQP are therefore defined as follows: 

   ULQP LBPp p                                            (9)                                                                                   
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Note that the ULQP is the same as the LBP. Fig 3 shows an 

example of the computation of the LQP. The grey level of 

the central pixel is 40 and r is 5. The ULQP code is 

1111001 which is the same as LBP code. For LLQP, a pixel 

is assigned 1 if it is greater than or equal to 45, or it is less 

than 40 and greater than or equal to 35, otherwise it is 

assigned 0.  

 

Fig. 3 Computing the LQP and splitting it to two binary 

codes ULQP and LLQP 

4 Feature Local Quaternary Patterns 

 We [11] have introduced a new Feature Local 

Binary Patterns (FLBP) method. FLBP generalizes the LBP 

approach by introducing feature pixels, which may be 

broadly defined by, for example, the edge pixels, the 

intensity peaks or valleys in an image. FLBP which encodes 

both local and feature information, has been shown more 

effective than LBP for texture description and pattern 

recognition, such as eye detection. In this paper, we extend 

LQP to FLQP. Next we briefly review the concepts of 

distance vector [12] and FLBP method, and then introduce 

our FLQP method. 

 In a binary image, each pixel assumes one of two 

discrete values: 0 or 1. While pixels of value 0 are called the 

background pixels, pixels of 1 are called feature pixels. Let 

p and q represent a pixel and its nearest feature point in a 

binary image, respectively. The distance vector of p 

pointing to q is defined below: 
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where F is the set of feature pixels of the binary image. δ is 

a distance metric.  

 FLBP is defined on the concepts of True Center 

(TC) which is the center pixel of a given neighborhood, and 

Virtual Center (VC) which is a pixel used to replace the 

center pixel of a given neighborhood. The TC which may be 

any pixel on the path pointed by dv(p) from p to q, is 

defined below: 

      (  )t t C p p dv p
                              

(12)                                                                                       

where αt  [0, 1] is a parameter that controls the location of 

the TC. The VC which may be any pixel on the path pointed 

by dv(p) from p to q as well, is defined below: 

      ( )v v C p p dv p
                           

 (13)                                                                                        

where αv  [0, 1] is a parameter that controls the location of 

the VC. The general form of FLBP is defined below: 
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where N(Ct(p), i) defined by Eq. 1 represents the  neighbors 

of the TC. G[Cv(p)] and G[N(Ct(p), i)] are the gray levels of 

the VC and the neighbors of the TC, respectively.  

 Next, we use the grayscale image shown in Fig. 

4(a) to illustrate how to compute the FLBP code. We 

assume that the upper left pixel is at location (1, 1) in the 

Cartesian coordinate system with the horizontal axis 

pointing to the right and the vertical axis pointing 

downwards. As discussed before, feature pixels are broadly 

defined. Here we define the feature pixels in Fig. 4(a) to be 

those with gray level greater than 80. Because the pixel at 

the coordinates (6, 6) in Fig. 4(a) is the only pixel whose 

gray level is greater than 80, As a result the pixel becomes 

the only feature pixel in the binary image shown in Fig. 

4(b). And this feature pixel becomes the nearest one for all 

the pixels in Fig. 4(a). 

                                                              

                         (a)                                         (b) 

Fig. 4 (a) a grayscale image used in the examples of FLBP 

computation. (b) The binary feature image derived by 

extracting feature pixel with gray level greater than 80 from 

the grayscale image. 

 We select the pixel p at coordinates (2, 2) in Fig. 

4(a) as an example to compute the FLBP code. We first 

compute the dv(p). Given p = [2, 2]
t
, and q = [6, 6]

t
, we 



have dv(p)  = q − p = [4, 4]
t
. Then we determine the 

locations of TC and VC which are controlled by the 

parameters αt and αv respectively. Fig. 5 shows two 

examples of the computation of FLBP with different 

locations of TC and VC. In Fig. 4(a) given αt = 0.75 and αv 

= 0.25, we have Ct(p) = p + αt dv(p) = [5, 5]
t
, and Cv(p) = p 

+ dv(p) = [3, 3]
t
. Therefore, the TC is the pixel at location 

(5, 5) and the VC is the pixel at location (3, 3). According to 

Eq. 14 we replace the gray level 60 of TC at location (5, 5) 

by the gray level 30 of VC at location (3, 3), and threshed 

the neighbors of the TC. We have the binary FLBP code: 

FLBP(2, 2) = 10101001. Fig. 5(b) shows another example 

of the FLBP(2, 2) computation when αt = 0.25, and αv = 

0.75. Similarly, we locate the TC is the pixel at location (3, 

3) and the VC is the pixel at location (5, 5). The binary 

FLBP code becomes: FLBP(2, 2) = 00111100 when αt = 

0.25, and αv = 0.75.  

 

                                          (a) 

 

                                          (b) 

Fig. 5 The computation of FLBP for the pixel at (2, 2). (a) 

An example when TC (αt = 0.75) is at (5, 5) and VC (αv = 

0.25) is at (3, 3) (b) An example when TC (αt = 0.25) is at 

(3, 3) and VC (αv = 0.75) is at (5, 5)   

 In [11] we present a new feature pixel extraction 

method, the LBP with Relative Bias Thresholding (LRBT) 

method. The LRBT method first computes the LBP 

representation using the relative bias threshold function 

defined below: 

1  ,                 (1 ) ;
( ,  )     

0,                     
,

    .

i c
i c

if g g
S g g

otherwise




 



           (15)                                             

where β is a parameter that controls the contribution of gc to 

the bias. Then the LRBT method derives the binary LRBT 

feature image by converting the LBP image to a binary 

image, whose feature pixels correspond to those whose LBP 

code is greater than 0, and the background pixels correspond 

to the pixels in the LBP image with the LBP code 0. 

 Fig. 6 shows an example of the FLBP 

representations of a face image. Fig. 6(a) and (b) display a 

face image and its binary feature image. The feature pixel of 

the binary image is derived using our LRBT method when β 

= 0.1. Fig. 6(c) shows the LBP image of the face image in 

Fig. 6(a). Fig. 6(d) - (g) exhibit the FLBP images when αt = 

0.25, 0.5, 0.75, 1, respectively, and αv = 0. Fig. 6(h)–(k) 

exhibit the FLBP images when αv = 0.25, 0.5, 0.75, 1, 

respectively, and αt = 0. 

   

                        (a)                  (b)                   (c)                          

    

           (d)                    (e)                   (f)                  (g) 

    

            (h)                    (i)                    (j)                 (k)                             

Fig. 6 (a) A face image (b) The binary LRBT feature image 

of (a) (c) The LBP representation of the face image of (a) 

(d)–(g) The FLBP image when αv = 0 and αt = 0.25, 0.5, 

0.75, 1 respectively (h)–(k) The FLBP image when αt = 0 

and αv = 0.25, 0.5, 0.75, 1 respectively 

 Our new feature local quaternary patterns or FLQP 

can be split into two binary codes, the upper half of FLQP 

(UFLQP) and the lower half of FLQP (LFLQP) using the 

threshold functions defined in Eqs. 7 and 8, respectively. 

The UFLQP is equivalent to FLBP. The general form of the 

UFLQP and the LFLQP is defined below: 

    UFLQP FLBPp p                         (16) 
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 Fig. 7 shows the computation of FLQP when r = 5. 

The gray level image and the feature pixel are the same as 

those in Fig. 4. We use the same pixel p at (2, 2) and the 

same values of αv and αt as those in Fig. 5 to compute 



FLQP. Therefore the computation of dv(p), TC and VC are 

the same as the examples in Fig. 5. Fig. 7(a) shows the 

FLQP computation of the pixel p at (2, 2), when αv = 0.25, 

and αt = 0.75. Because the UFLQP is the same as the FLBP 

shown in Fig 5(a), only the LFLQP is shown in Fig. 7(a). 

First the grey level 60 of TC at (5, 5) is replaced by the grey 

level 30 of VC at (3, 3). For LFLQP, a neighborhood pixel 

is assigned 1 if it is greater than or equal to 35, or it is less 

than 30 and greater than or equal to 25, and is assigned 0 

otherwise. Then we have LFLQP(2, 2) = 10011100.  Fig. 

7(b) shows another example of the FLQP computation when 

αv = 0.75, and αt = 0.25. The UFLQP is the same as FLBP 

shown in Fig 5(b) and not shown in Fig. 7(b). First the grey 

level 30 of TC at (3, 3) is replaced by the grey level 60 of 

VC at (5, 5). For LFLQP, a neighborhood pixel is assigned 

1 if it is greater than or equal to 65, or it is less than 60 and 

greater than or equal to 55, and is assigned 0 otherwise. 

Then we have the LFLQP(2, 2) = 00110011. 

 

 (a) 

 

(b) 

Fig. 7 The computation of FLQP for the pixel at (2, 2). (a) 

An example when TC (αt = 0.75) is at (5, 5) and VC (αv = 

0.25) is at (3, 3) (b) An example when TC (αt = 0.25) is at 

(3, 3) and VC (αv = 0.75) is at (5, 5)   

 Fig. 8 shows an example of the FLQP 

representations when r = 0.1gc. The face image and the 

binary LRBT feature image are the same as Fig. 6(a) and 

Fig. 6(b). Fig 8(a) shows the LLQP image. The ULQP 

image is the same as LBP image in Fig. 6(c). Fig. 8(b) - (e) 

show LFLQP images when αt = 0.25, 0.5, 0.75, 1, 

respectively, and αv = 0. Their corresponding UFLQP are 

the same as Fig. 6(d) – (g). Fig. 8(f) - (i) show LFLQP 

images when αv = 0.25, 0.5, 0.75, 1, respectively, and αt = 0. 

Their corresponding UFLQP are the same as Fig. 6(h) – (k). 

 

 

(a) 

    

           (b)                   (c)                  (d)                   (e) 

    

           (f)                   (g)                   (h)                  (i) 

Fig. 8 (a) The LLQP image when r = 0.1gc (b) - (e) The 

LFLQP images when r = 0.1gc, αt = 0.25, 0.5, 0.75, 1, 

respectively, and αv = 0 (f) - (i) The LFLQP images when 

0.1gc, αv = 0.25, 0.5, 0.75, 1, respectively, and αt = 0 

5 Experiments 

 We apply the FLQP methods on eye detection. Fig. 

9 shows the system architecture of our FLQP-based eye 

detection method which is similar to the FLBP method on 

eye detection introduced in [11]. Fig. 9 consists of three 

major steps. In first step, a binary image, which contains the 

feature pixels of the grayscale face image, is derived by 

applying LRBT feature pixel extraction method. In the 

second step the FLQP representation of the face image is 

formed based on the grayscale image and a distance vector 

field or DVF, which is obtained by computing the distance 

vector between each pixel and its nearest feature pixel 

defined in the binary image. The FLQP code is then split to 

two binary codes, from which two images, UFLQP and 

LFLQP images are formed. In the finally step, each eye 

candidate is compared with the eye template based on the 

UFLQP and LFLQP histograms and similarity measures. 

  An eye template is constructed from a number of 

training eye samples. Each eye sample is divided into a grid 

of u × v cells. The occurrences of the UFLQP codes in a cell 

are collected into a UFLQP histogram. The occurrences of 

the LFLQP codes in a cell are collected into a LFLQP 

histogram. The eye template is thus defined by uv UFLQP 

mean histograms and uv LFLQP mean histograms of the 

training eye samples. The similarity measure to compare the 



UFLQP and LFLQP histograms of an eye template T and an 

eye candidate C is defined as follows: 
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where Ci,j represents the j-th bin of the histogram of the i-th 

cell of the eye candidate window, Ti,j represents the j-th bin 

of the histogram of the i-th cell of the eye template, g = uv is 

the total number of cells of the u × v grid, and b is the 

number of bins of a histogram. The final similarity measure 

is the sum of similarity values of the UFLQP and LFLQP 

histograms. The eye candidate has the largest similarity 

value with the eye template is the location of the detected 

eye. We have used a fast algorithm in histogram and 

similarity measure computation in [11]. The idea of the fast 

algorithm is to update only two columns or two rows 

corresponding to the two consecutive eye candidate 

windows for the histogram and similarity computation 

instead of repeating the computation for the whole new 

window. As a result, the fast algorithm significantly 

improves the computational efficiency of the eye detection 

method. 

 

Fig. 8 The system architecture of our FLQP-based eye 

detection method 

 We assess the eye detection performance of FLQP 

and LQP method using the BioID databases which 
contains 1,521 grayscale frontal face images with spatial 

resolution of 384 × 286. All facial images in our 

experiments are cropped and normalized to the size of 132 × 

178. To construct the eye template, we collected 70 pairs of 

eye samples that are not from the BioID database. Eye 

samples are cropped to 37 × 17. Eye detection performance 

is determined by a relative distance error and is defined as 

follows: 

               γ = d1 / d2                                   (19)                                                                                  

where d1 is the Euclidean distance between the detected eye 

center and the ground truth eye center, and d2 is the 

intraocular distance between the two ground truth eye 

centers. 

  Table 1 compares the performance of the FLQP-

based, the LQP-based, the FLTP-based, the LTP-based, the 

FLBP-based, and the LBP-based eye detection methods. 

The best experiments are selected from each method to 

make the comparison. The eye detection success rate when γ 

≤ 0.25, 0.1 and 0.05 and the average γ are shown in Table 1. 

In [11] the experiments show that the 5×5 neighborhood 

size is better than the 3×3 neighborhood size, and 3 × 4 grid 

size of eye candidate window yields the best eye detection 

performance. We apply 5×5 neighborhood size and 3 × 4 

grid size in all experiments in Table 1. The experimental 

results lead to the following findings. 

 LQP performs better than LTP and LBP. FLQP perform 

better than FLTP and FLBP. These results demonstrate 

that the proposed LQP and FLQP, which encode four 

relationships of local texture, are more effective than 

the LTP, FLTP, LBP, and FLBP for texture description 

and pattern recognition, such as eye detection. 

 FLQP achieves the best eye detection performance. 

Specifically, the average γ of the LQP, FLTP, LTP, 

FLBP, and LBP-based eye detection methods are 6.1%, 

7.5%, 9.7%, 6.9%, and 125.6% higher than the average 

γ of the FLQP-based eye detection method. The results 

indicate that FLQP improves upon FLTP, LTP, FLBP, 

and LBP for eye detection. 

 FLQP and FLBP perform better than LQP and LBP 

methods, respectively. FLTP methods archive better 

results than LTP methods except LTP obtains higher 

success rate than FLTP when γ ≤ 0.1. The results 

illustrate that the feature local methods (FLQP, FLTP, 

and FLBP), which encode both local and feature 

information, perform better than the local methods 

(LQP, LTP, and LBP) which do not encode feature 

information. 

 Our experiments show that LTP methods improve upon 

the LBP methods. However the FLBP methods archive 

better results than FLTP except FLTP is better for 

success rates when γ ≤ 0.05. The FLTP method does not 

outperform the FLBP method. Our results are consistent 

with the experimental results reported in [2], [10] which 

showed that LTP and LBP achieved similar results for 

face and facial expression recognition, although LTP 

has a higher computational cost than LBP. 

 

 

 

 

 

 

 

 

 

 



Table 1 The eye detection success rates when γ ≤ 0.25, 0.1 and 0.05 and average γ using the FLQP-based, the LQP-based, the 

FLTP-based, the LTP-based, the FLBP-based and the LBP-based eye detection methods 

Method γ  ≤ 0.25 γ  ≤ 0.1 γ  ≤ 0.05 Average γ 

FLQP, β = 0.2, αv = 0.25, αt = 0, r = 0.18gc 98.75 96.19 89.71 0.0360 

LQP, r = 0.07gc 
98.39 95.63 89.38 0.0382 

FLTP, β=0.2, αv = 0.25, αt = 0, r = 3 98.29 95.17 89.12 0.0387 

LTP, r = 4 98.03 95.50 88.95 0.0395 

FLBP, β = 0.2, αv = 0.25, αt = 0, 98.65 95.23 87.84 0.0385 

LBP 92.34 90.34 83.14 0.0812 

 

 

6 Conclusions 

 We present in this paper Local Quaternary Patterns 

(LQP) and Feature Local Quaternary Patterns (FLQP). The 

FLQP and LQP which encodes four relationships of the 

local texture include more information of the local texture 

than the local binary patterns or LBP and the local ternary 

patterns or LTP. The FLQP, which encodes both local and 

feature information, is expected to perform better than the 

LQP for texture description and pattern recognition. To 

reduce the feature dimension of LQP and FLQP, a new 

coding scheme is proposed to split the LQP into two binary 

codes: the Upper LQP (ULQP) and the Lower LQP (LLQP), 

and the FLQP into two binary codes: the Upper FLQP 

(UFLQP) and the Lower FLQP (LFLQP). Experimental 

results using the BioID database show that (i) LQP and 

FLQP perform better than LTP, FLTP, LBP, and FLBP for 

eye detection. (ii) FLQP achieves the best eye detection 

performance. (iii) FLQP, FLTP, and FLBP perform better 

than LQP, LTP, and LBP, respectively. 
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