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Abstract - Dimensionality reduction is a big challenge in 

many areas. In this research we address the problem of high-

dimensional hyperspectral images in which we are aiming to 

preserve its information quality. This paper introduces a 

study similarity of the non parametric and unsupervised 

methods of projection and of bands selection used in 

dimensionality reduction of different noise levels determined 

with different numbers of data points. The quality criteria 

based on the norm and correlation is employed obtaining a 

good preservation of these hyperspectral image's vectors in 

the reduced dimensions. The added value of these criteria 

can be illustrated in the evaluation of the reduction's 

performance, when considering the similarity of two 

categories of bands selection methods and projection 

methods. A classification of the methods of projection and  

bands selection is ranked of three categories (good, average 

and bad) presenting the performances of the application in 

comparison with the similarity criterion observed.. 

Keywords: Dimensionality reduction; manifold learning; 

similarity spectral criteria; hyperspectral data.  

 

1 Introduction 

      Hyperspectral imaging has become an active research 

topic in recent years due to its wide-spread applications in 

areas such as resource management, agriculture, mineral 

exploration, and environmental monitoring. With the number 

of channels in the hundreds instead of in the tens, 

hyperspectral imagery possesses much richer spectral 

information than multispectral imagery [1]. However, 

identifying the material reflecting specific spectral signature 

remains a challenge for realizing the full potential of 

hyperspectral technology. It is clear that more effective data 

processing techniques are needed to deal with hyperspectral 

cubes. Because it is necessary to have a minimum ratio of 

training pixels to the number of spectral bands [2], dimension 

reduction has become a significant part of hyperspectral 

image interpretation. Dimension reduction is the 

transformation that brings data from a high order dimension 

to a low one, thus conquering the curse of dimensionality [3]. 

Similar to a lossy compression method [4], dimension 

reduction reduces the size of the data, but unlike 

compression, dimension reduction is application-driven. 

Mathematically, given n points x1,…,xn in a high 

dimensional subspace of RD the goal of dimensionality 

reduction is to find a mapping: F: , = F 

(  Where yi ∈ Rd, i=1… n and d is the 

dimensionality of the embedding space. Here, in 

mathematical terms, intrinsic dimensionality means that the 

points in dataset X are lying on or near a manifold with 

dimensionality d that is embedded in the D-dimensional 

space. Dimensionality reduction techniques transform dataset 

X with dimensionality D into a new dataset Y with 

dimensionality d, while retaining the geometry of the data as 

much as possible. Ideally, the reduced representation should 

have a dimensionality that corresponds to the intrinsic 

dimensionality of the data. Which is the minimum number of 

parameters needed to take into account for the observed 

properties of the data [5]? As a result, dimensionality 

reduction facilitates, among others methods, classification, 

visualization, and compression of high-dimensional data. 

Several local approaches of dimension reduction methods 

were used to address this problem. Chang and al. have 

proposed a robust modification of Locally Linear Embedding 

(LLE), Robust LLE [6]. They provided an efficient algorithm 

to detect and remove the large noises, namely, the outliers. 

However, RLLE would also fail when the data have some 

small noises. Pan and Ge have generated a multiple weights 

LLE, NLLE [7]. This method uses the (k–d) linear 

independent combination weights to represent the local 

structure. Chen et al. have also proposed an effective 

preprocessing procedure for current manifold learning 

algorithms [8]. They analyzed the input data statistically and 

then detected the noises. Ridder et al. have also solved the 

robustness problem of LLE [9] by introducing a weighted 

reformulation in the embedding step. Hou and Zhang have 

been developed a large number of local approaches, 

stemming from statistics or geometry [10]. In practice, these 

local approaches are often in lack of robustness, since in 

contrast to maximum variance unfolding (MVU), which 

explicitly unfolds the manifold; they merely characterize 



local geometry structure. Moreover, the eigenproblems 

encountered are hard to solve. These methods try to tackle 

this problem through a unified framework that explicitly 

unfolds the manifold and reformulate local approaches as 

semi-definite programs instead of the above-mentioned 

eigenproblems. Three well known local approaches (LLE-LE-

LTSA) are interpreted and improved within this framework. 

These methods proposed several experiments on both 

synthetic and real datasets. These results have shown that the 

dimensionality reduction techniques SLLE-SLTSA-SLE also 

have some troubles are not stable, so sensitive in the presence 

of noises levels and more stable the parameter k. Tsai studied 

current linear and nonlinear dimensionality reduction 

techniques in the context of data visualization [11]. 

Experiments were conducted on varying the neighborhood, 

density and needed noise levels of data taken into account. He 

used the manifold metric based on the correlation coefficient 

that computes the pair wise geodesic distance vector between 

the original manifold and the lower-dimensional embedding 

results used. The calculation of the metric is similar to the 

correlation used by Geng et al [12], but the pair wise geodesic 

distance vector is calculated for the original data instead of 

the Euclidean distance vector. A previous study carried out by 

Tsai and Chan [13] showed that this metric was more suitable 

for representing the visualization results if the original data 

lies on a manifold.  

  A new approach we used to measure the similarity of these 

linear and nonlinear techniques to reduce the size of a 

disturbance in the data set is based on the noise variance at 

different scales. Similarity criteria, as defined in section 3 are 

used. These criteria take into account the intrinsic structure 

of the original hyperspectral and disturbed images. This 

comparative study focuses on the influence of noise variance 

in the data set with respect to the spectral dimension.  

    The outline of the remainder of this paper is as follows. 

Section 2 describes the methodology of the approaches used. 

We give a formal definition of linear techniques for 

dimensionality reduction and subdivide the dimensionality 

reduction techniques into three linear and fifteen non-linear 

techniques. Moreover, in Section 3, we define the quality 

criteria and present the results of the experiments in Section 

4.  Section 5, discusses the influence of the rate disturbance 

in the phenomenon of reduction allowing us to conclude 

about the main contributions of this paper. 

2 Methodology approach 

 Regards to methodology when considering the stability of 

two categories of selection bands BandClust and projection 

methods (linear and non linear). There are mainly two kinds 

of dimensionality reduction approaches [14]: linear and non 

linear. Linear methods may mainly include Principal 

Component Analysis (PCA) [15], LLTSA and non linear 

techniques: Kernel PCA [16], Isomap [6], MDS [17], LTSA 

[18], Diffusion maps [19], Sammon mapping [20], SymSNE 

[21], SNE[23], LLE [22], LPP [5], Neighborhood Preserving 

embedding (NPE) [24], HLLE [25], Laplacian Eigenmaps 

[26], Landmark Isomap [32], Kernel LDA [31]. An 

unsupervised approach to band reduction in hyperspectral 

remote sensing imagery [27]. The band selection involves 

selecting a minimal subset of M bands S=(S1,S2,…,SM) from 

the original set F = (F1,F2,…,FN), where (M<<N) and (S⊆ F). 

Hyperspectral imaging offers high richness of information 

which is often necessary to achieve good classification 

performance at the pixel level. Hyperspectral images 

generally show a high amount of correlation between 

adjacent spectral bands. Therefore, removing this redundancy 

would reduce the amount of data that are relevant to further 

classification and interpretation stages. This selects an 

appropriate subset of image bands to ful fill the same 

applications the full image can, to some extent The 

BandClust method using mutual information between two 

bands as selection criterion provides a rather increased 

stability is presented in [28].  

 

Fig. 1. Proposed Method for Similarity Study applied on 
Hyperspectral Images.  

Although, our comparative review study for stability includes 

the most important nonlinear techniques for dimensionality 

reduction, our aim is to identify an demonstrate an efficient 

algorithm to detect and remove the large noises. The 

approaches of this framework that we propose deal with 

reduction for high-dimensional noisy signals. The problem of 

nonlinear dimensionality reduction can be defined as follows. 

Assume we have dataset represented in n × D matrix X 

consisting of n data vectors xi for i = {1, 2... n} with 

dimensionality; assume further that this dataset has intrinsic 

dimensionality d where d < D.  In practice, the signal-

subspace perturbation ξi from observed vectors has to satisfy 

the following general model: ξi = xi + zi , i=1… n . Where xi∈ 

RD is the observed random vector zi ∈RD is the data-

acquisition or/and model noise; finally, the stability test will 



be used on a set data and data perturbed. The approached is 

illustrated in the figure 1. 

3 Performances And quality criteria 

   Before beginning the study of the Dimensionality 

Reduction of images (DR), it is necessary to define several 

normalized quality criteria derived from classical statistical 

measures for the reduction. These unsupervised stability 

criteria will allow comparing and evaluated the performances 

of reduction and the stability of these methods of reduction in 

the analysis of image and in particular to measure the 

different types of degradations (loss of information, etc.) 

caused by the various methods DR. An approach is then 

proposed to appreciate the appropriateness of these criteria, to 

applications of a Hyperspectral images. Every value 

individually is considered according to the spatial and 

dimensions spectral. The artificial image is represented as a 

three-dimensional matrix I(x,y,λ), with x is the position of 

the pixel in the line, y there is the number of the line and λ 

the spectral considered band. nx ,ny,, nλ are respectively the 

number of pixels by line, the number of lines and the number 

of spectral bands. Note also equally 

 by . 

3.1 Similarity Criteria (SS) 

 The similarity criteria was appeared in  [29] and  tries to 

measure the resemblance between two vectors, seen as vectors 

 dimensional, v and  defined by :  

SS (v,v,) =             (1) 

With RMSE =   ,  

Corr =  

3.2 Fidelity (F) 

 This criterion was developed by Eskhicioglu [29].We 

define fidelity by a ratio of the spectral density (DSP) of the 

error image and reference. U and V two sets of values 

(initially pixels of two images) of which we wants to evaluate 

the difference. Defines by:  

                         F (U, V) = 1-                               (2) 

Either for hyperspectral images, spatial fidelity define by :   

                      F ( = 1-               (3) 

The fidelity is equal to one, when the output image is equal to 

the input image. Due to the quadratic action, the small errors 

will be minimized.        

4 Experiments and results  

   A selection of the curves obtained for the tested criteria of 

the Similarity Criteria and the fidelity are presented above. In 

the following, we explain the influence rate of disturbance of 

a pixel introduced to the data observation in the reduction 

phenomenon and the results obtained from simulations. 

Fig.2. Similarity percentage obtained for the different 

reduction methods          
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4.1 Projection methods Structural Similarity 

Criteria (SS) 

 Similarity Criteria numerically values the stability of 

the methods, the more this value is close to the unit, and the 

more the method is stable. We disturb numerically the 

original image, and then we calculate the value of this 

criterion proportionally to the noise degradation on a scale 

[0%; 10%]. These NCC curves tested on 15 reduction 

methods show the following facts: We notice many similar 

performances for the methods: PCA, MDS, NPE LTSA, 

Laplacian, KernelPCA, LPP and Sammon. Also, we notice 

many similar performances for the other categories of 

nonlinear techniques like: Diffusion Maps, LLTSA, LLE, 

and KernelLDA. The similarity criterion tested on NPE, 

MDS and PCA reflects a good performance compared to 

other methods in the same category. In reality, the SS value 

that varies around the unit, offers a well increased stability 

under a noise scale [0%, 10%] followed by a small 

deformation of the original image.  The quantity of 

information stored in diffusion Maps, LLE, DM and LLTSA 

is almost equivalent. But not constant according to 

degradation of noise, bound to a geometrical deformation of 

increasing SS value all around the unit proportionally to the 

variation of noise. This is illustrated by the deformation of 

information bound by a strong fall of degradations compared 

to the other methods of reduction on a scale of noise [2%; 

10%], and SS value rather near to the unit. In conclusion, the 

SS criterion shows a better partial performance on the PCA, 

MDS followed by NPE method. The variation rate of noise 

equal to 40 seems to be a best alternative. 

4.2 Band selection methods: Structural 

Similarity Criteria (SS) 

 This category of methods seems giving different 

advantages compared to the first category of linear or non-

linear projection. Indeed, the two indexes evolving near the 

unit which allows concluding a stable behavior for the three 

compared methods. The BandClust method using mutual 

information between two bands as selection criterion 

provides a rather increased similarity, reflects a good 

performance compared to other methods bands selection in 

the same category PSA and PA. On the other hand, the 

influence of this noise parameter on the bands selection 

methods performance probably imposes the use of the natural 

images of large dimension. Note that a noise percentage of 

20% was not sufficient to disturb the performances of these 

methods.  

   In the Table 1, a classification of the methods of 

projection and of bands selection is ranked of three 

categories (good, average and bad) presenting the 

performances of the application in comparison with the 

similarity criterion observed. 



Classification derived by reduction methods 

Good Average Bad 

PCA – MDS – 

NPE – LTSA - 

KernelPCA - 

LPP - Laplacian-

Sammon - 

BandClust 

Isomap – PSA - PA 

 

Landmark isomap – 

 

LLE - Kernel LDA  

 

 

HessianLLE 

 

Table 1. The various reduction methods used, in order to 

categorize, with similarity criteria, on artificial data with 

different noise variances. 

5 Conclusion 

   The paper presents a review and comparative study of 

techniques for dimensionality reduction. In this comparative 

study on the similarity of non-parametric algorithms, 

unsupervised by dimension reduction of large images (by 

projection and by selection of spectral bands) and taking into 

account the similarity evolution criteria presented in section 

3.  It is revealed that the techniques unsupervised by 

projection are either limited by their linear character (ACP, 

MDS), or difficult to use because of their algorithm 

complexity when working on high dimensional data. 

Moreover, the majority of them are sensitive to the different 

undergoing variations as the noise degradation and the 

information loss. This is the reason making these techniques 

do not fully meet our two main points of interest: stability 

and preservation of the rare event. Despite the PCA-MDS 

algorithms followed by NPE that are quite sensitive to noise 

degradation in comparison with other reduction techniques of 

projection, to preserve the geometrical structure local / global 

of reduced data. It seems that one should focus on selection 

techniques by projection, which at the moment can stay in 

sensitive observations space with some little variation. The 

selection of bands in unsupervised learning is not explored 

sufficiently and the existing techniques strongly rely on 

similarity measures between attributes (spectral bands) or on 

variance measures. We can conclude from this study on the 

robustness of the selection method  BandClust and MDS 

projection method, which found very encouraging results on 

the similarity of artificial data compared to the influence of 

noise during the reduction .Several extension of this work 

can be considered such as the development of new hybrid 

techniques by band selection with projection methods for 

dimensionality reduction, which does not rely on the local 

properties of data.                  
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