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Abstract - In this paper, we propose a new approach to 
Bayesian subspace method for face recognition. We review 
this method and point out some weak points in its assumptions 
and propose a practical solution to overcome those weak 
points. In addition, we present an efficient way to estimate the 
high dimensional Gaussian density function. 
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1 Introduction 
  Face recognition is one of the successful applications of 
computer vision. There have been recently advances in 
accuracy and time performance due to new algorithms and 
computer development.  
 A popular method used in face recognition is linear 
subspace due to its high stability and performance compared 
with other methods. The first subspace method is Principal 
Component Analysis (PCA) proposed by Turk and Pentland 
[1]. This method is based on the work done by Kirby and 
Sirovich on face representation and analysis [2]. Since then, it 
has become the de factor method in face recognition. 
However, it is completely based on distances and there is no 
clear explanation for choosing metrics; therefore, there is no 
strong mathematical foundation to support this method.  
 To overcome this problem, a variety of statistical based 
methods was proposed. For example, Belhumeur et al. [3] 
proposed Linear Discriminant Analysis (LDA). This method 
aims at finding a subspace that can maximize variances 
between classes and maximize variances in each class 
compared with PCA where a subspace can only capture the 
most variance of data set. The PCA method reduces only the 
dimensions of space but there is no strong evidence to show 
that it can improve recognition rate, whereas the LDA method 
could show an improvement in practice. The Bayesian method 
proposed by Moghaddam et al. [4, 5] is based on Bayes 
theorem and is the best method in independent tests performed 
on 1996 FERET dataset [6, 7]. The idea of the Bayesian 
method is to use two probability density distributions of intra-
variation and extra-variation subspaces to classify an unknown 
object. In 2003, Wang and Tang [8] attempted to unify PCA, 
LDA and Bayesian subspaces and presented a good unified 
model to explain three kinds of subspaces. However, they did 

not include the extra- variation subspace in their solution to 
improve the recognition rate although this information is also 
very important according to Bayes theorem. Other researchers 
[9] attempted to discover the structure of that extra-variation 
and reported better recognition results, however, there is no 
independent evaluation about this method and the most 
important factor is that it needs a lot of computing resources. 
 In this paper we present a new approach to the Bayesian 
method. The challenge in face recognition is that there are 
many classes but only a few samples are available for each 
class. To deal with this challenge, two kinds of variations have 
been investigated: intra-variation for one person and extra-
variation between two people. However, there are not 
sufficient data to estimate distributions for those variations 
and hence equal intra-variations and equal extra-variations are 
assumed to have sufficient data to estimate their distributions.   
 On the other hand, based on experimental evaluations for 
the Bayesian method, it is shown that this method does not 
always provide better performance for face recognition [?]. 
We have faced on this issue and found a new similarity score 
that can improve the performance. This score is called soft 
similarity score and its best value can be found through a cross 
validation process. 
 The remainder of the paper is organized as follows. In 
the next section, we will present the Bayesian method and our 
proposed approach. We then present in Section 3 experiments 
to evaluate our proposed approach on two public face data 
sets which are FERET and AT&T. Finally, Section 4 gives a 
brief review of our proposed approach and future work.  

2 Bayesian Method for Face Recognition 
 In this section, we present the conventional Bayesian 
method and its distribution estimation for face recognition. 

2.1 Distribution estimation 

 It is hard to determine density distribution for random 
variables in multi-dimensional space. A mixture of Gaussian 
distributions is assumed as their mean vector µ and covariance 
matrix Σ can be estimated from a training set [10-13]. 
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where p(.|.) is the density distribution function and D is the 
dimension. To efficiently compute the value of distribution, 
the following equation is used [14] 
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where  
− Λ  be eigenvalues of Σ  
− V  be eigenvectors of Σ  
− ρ be an average of remainder eigenvalues 

− ( )−=y V x μ  and ( ) −= −x μx y
2 22ò  

 
 In Equation 2, the density distribution is represented as a 

product of two distributions in subspace V  and V , 
respectively. As mentioned in the previous section, the second 

term for subspace V  was ignored in most of publications. 
Recent study such as [15] has included this second term. 
Moghaddam et al. [4] uses the following to estimate ρ  
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 In practice computing exactly high eigenvalues is 
intractable due to numerical computing errors. Therefore, 
fitting techniques are used to estimate these eigenvalues. 
Bishop [10] suggests the use of an expectation-maximization 
(EM) algorithm, however the computation cost is very high. 

2.2 Similarity score 

 Due to insufficient data to estimate each variation, some 
assumptions have been made in the Bayesian method. 
 Assumption 1: Density distributions of variations for all 
individuals are the same. 
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Figure 2 a) correct classification using L
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 In statistical view, each metric is corresponding to an 
assumption ab out the form of variation distribution. For 
example, metric L

2
 assumes it be a hyper-sphere "shape"; 

metric L
1
 assumes it be hyper-cube "shape" (see Fig. 1a). In 

recent studies, Mahalanobis metric is used for face recognition 
(see Fig. 1b).  
 Obviously, the distribution of variation will decide which 
metric is used for classification. For example, as seen in Fig. 
2a, the distribution has a hypersphere "shape" and hence L

2
 

metric can provide correct classification to x . However the 
distribution in Fig. 4b is not a hyper-sphere "shape", L

2
 

cannot provide correct classification to x . 
 Previous studies performed empirical tests to compare 
metrics and did not mention how a metric was theoretically 
chosen. In the Bayesian method, Moghaddam et al. [?] pointed 
out some weak points in previous studies. A variation between 
two images ix and jx  is defined as i j∆ = −x x . Two classes 

which are intra-variation class IΩ  and extra-variation class 

EΩ were defined and their density distributions were 

estimated if a training data set is provided. To simplify the 
distribution estimation process, the following assumptions on 
two density distributions are made.  
 Assumption 2: Intra-variation has Gaussian distribution 
 Assumption 3: Extra-variation has Gaussian distribution 
 With a variation ∆  of two images, maximum likelihood 
value ( )| Ip ∆ Ω  or maximum posterior value ( )|IP Ω ∆  can 

be used as similarity scores to measure the similarity between 
two images. In practice, ( )ln | Ip ∆ Ω  and 

( ) ( )ln | |I EP PΩ ∆ Ω ∆  are used instead. 

Maximum likelihood score 

( ) ,

,

k
I i

i I
M

i
Ls

y

=

∆ =
λ∑

2

1

            (4) 

or 

( ) ( ),

,

k
I i

i I i
M

I
L

y
s

=

∆
∆ +

λ ρ
=∑

22

1

ò
       (5) 

Maximum posterior score 
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3 The Proposed Approach to Bayesian 
Method 

3.1  Determine ρρρρ 

 We suggest a simple and closed-form way to compute 
the average of eigenvalues ρ .  



Lemma 1 
Given data set { ; ,..., }i i N= =X x 1   

If it has Gaussian distribution = ρΣ I  , where I is the unity 

matrix 
Then 
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Proof 
Compute log likelihood for the data set 
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Take derivative and set it to 0 
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Figure 3. Distances of points of training set with Gaussian 

distribution = ρΣ I  

 
 The Lemma 1 shows that the information of distances 
from data points to the mean point is sufficient for computing 
ρ  (see Fig. 3). 

 Recall that two subspaces V  and V  are orthogonal. 
Therefore their distributions are independent and can be 

estimated separately. Distances of data points in subspace V  
can be computed from those in subspace V  using Pythagorean 
theorem (see Fig. 4). 

 
Figure 4. Distances of ix  in subspace V  and V  

Algorithm to compute ρρρρ 

Input: training data set { ; ,..., }i i N= =X x 1  

Output: ρ  

Step 1: Determine subspace V  
Step 2: Compute distance to mean in subspace V  

Step 3: Compute distance to mean in subspace V  
Step 4: Compute ρ  using Equation 7 

3.2 Similarity score 

 Assumption 2 in Section 2.2 on the distribution of intra-
variation could provide better recognition results. However, 
the assumption on the distribution of extra-variation is not 
persuading us. In fact, in our first experiment, we repeated the 
experiments presented in [5-7] but we could not get the same 
results. We assume that the contributions of intra-variation and 
extra-variation are not equal as seen in Equation 6. We 
propose a scale factor w for the second term to adjust its 
contribution. The proposed score is of the form 

Proposed soft similarity score 
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 We can use cross-validation task to find the optimal 
value for this scale factor w .  
 It can be seen that our proposed soft similarity score has 
a close relationship to those scores in Section 2.2. For 
example, if w = 0  then soft MLs s=  and if w = 1  then 

soft MAPs s= . 

 

4 Data sets, experiments and results 
 We evaluate our approach based on two well-known 
datasets which are FERET and AT&T. We use FERET 
protocol to evaluate our experiments. 

4.1 FERET protocol for face recognition 

 The goal of FERET evaluation protocol is to provide a 
standard method to access an algorithm. The evaluation design 
cannot be too hard or too easy. In the protocol, an algorithm is 
given two sets of images which are target set T  (training set) 
and query set Q  (testing set). The algorithm reports the 

similarity score ( ),i js q t  between all query images  iq  in the 

query set Q  and all target images jt  in the target set T . In 

face recognition, the query is not always "Is the top match 
correct?" but "Is the correct answer in the top n matches?" like 
Google search engine responds our query by listing more 
possible answers for each query. For our method, we assume 
that a larger similarity score implies a closer match. Finally, 
the performance statistics are reported as cumulative match 
scores.  



4.2 Data sets 

AT&T dataset was taken at University of Cambridge. It 
includes 400 images of 40 individuals and each person has 10 
images in different illumination, pose and expression. 
Grayscale FERET is standard data set and is widely used for 
evaluation. There are about 14000 images of more than 1000 
individuals. 

4.3 Experiments 

4.3.1 Preprocessing 

 There was no image processing task for AT&T data set. 
For FERET data set, we used the data set conducted in 1996 
for independent tests including gallery set fa and four probe 
sets fb, fc, dup1 and dup2. Based on the information 
containing in ground truth files, we cropped, aligned and 
masked images to normalize images. We used procruste 
analysis for aligning images based on the positions of mouths 
and eyes. Fig. 5 shows some sample images of AT&T and 
FERET after cropping and aligning. 
 

 

Figure 5. a) images from AT&T b) images from FERET 

4.3.2 Building two subspaces from training set 

For AT&T data set, we divided the training data set into four 
partitions and each partition included 200 images for training 
and gallery sets and the other 200 images for probe sets. There 
were 1000 intra-variation pairs and 39000 extra-variation 
pairs in those training sets. From these pairs of data sets, we 
could find the parameters in Equation 2 or build two 
subspaces intra and extra-subspaces (see more details in [10-
14]). For FERET dataset, we randomly selected a subset 
including 250 fa images and 250 fb images from the training 
set in FERET CD-ROM. There are 1230 intra-variation pairs 
and 248770 extra-variation pairs. 
 We used Equation 2 for subspace projections and 
distribution computations. For the AT&T dataset, we kept 160 
first eigenvectors for intra-variation subspace and 199 for 
extra-variation subspace. For the FERET dataset, we kept 200 
first eigenvectors for intra-variation and the same for extra-
variation. 

4.3.3 Experiments 

To evaluate our approach with state-of-the-art approaches, we 
conducted six algorithms on each data set. They were raw 
matching method (Baseline) using metric L

2
, Eigenface 

method (Eigenface) using PCA to extract feature vectors and 

using L
2
 + Mah [16] for computing similarity scores, 

Bayesian method using scores MLs  in Equations 5 and 6 (ML1 

and ML2) and MAPs  (MAP), and our proposed scores softs  

(Soft). Note that the best results could be obtained by selecting 
an appropriate number of Eigenfaces for Eigenface method. In 
our experiments, they were 200 for FERET and 199 for 
AT&T. To validate our proposed score, we used three 
partitions as validation sets and the remaining as test set. The 
best accuracy rate is corresponding to w  = 0 for AT&T data 
set (see Fig. 6) and w  = 7.25 for FERET (see Fig. 11). It 
means that softs  becomes MLs  in AT&T case. The detailed 

experimental results on AT&T are presented in Table 1 and 
Figure 6. The detailed experimental results on FERET are 
presented in Figures 7-11. 
 

Table 1. Experimental results on AT&T data set 

Method Metric P1 P2 P3 P4 avg 
Baseline L2 95 95 93.5 93.5 94.25 
Eigenface L2+ Mah 89.5 90.5 87 86.5 88.38 
Bayesian ML1 94 95.5 94.5 93 94.25 
Bayesian ML2 94 95.5 94.5 93 94.25 
Bayesian MAP 52.5 42.5 56 57.5 52.13 
Bayesian  Soft 94 95.5 94.5 93 94.25 

 

 

Figure 6. Average accuracy rates corresponding with soft 
score w  ranging from 0 to 20 

 

4.3.4 Discussion  

 Our experimental results on FERET using traditional 
Bayesian scores are quite similar to some public face 
recognition evaluation systems such as “The CSU face 
identification evaluation system” although our implementation 
is based on MATLAB platform and independently written. As 
mentioned above, the results are slightly different from the 
results published in 1996 FERET independent tests. For 
example, the rank-1 result on fb is 95% in 1996 FERET test; 
but it is 85% in our experiments and in other reports [15, 17]. 
Because Moghaddam and his colleagues have not published 
more details on their implementation, we suggest two explan- 



 

Figure 7. Experimental results on probe set fb 

 

Figure 8. Experimental results on probe set dup1 

 

Figure 9. Experimental results on probe set dup2 

 

Figure 10. Experimental results on probe set fc 



 

Figure 11. Accuracy rates corresponding with soft score 
w  ranging from 0 to 20 on validation set fb 

-ations for this issue. The first one is numerical issues. If the 
original formulas of Bayesian scores [4, 5] are used to 
compute probabilities, it can lead to unstable results (See more 
details in [17]). The second one is that the quality of face 
recognition system depends not only on classification method 
(Bayesian method) but also on other tasks in the system such 
as the quality of preprocessing tasks.  
 According to our experiments, it proves that the 
Assumption 3 is not good.  Table 1 and Fig. 6 present 
experiments on AT&T and show that the MAP score gives the 
worst result (52.5%) compared with the best result (94.25%). 
Obviously, the distributions of extra-variations are not 
Gaussian because the training sets contain individual varition 
and strong different variations such as illumination variations 
and pose variations. Therefore, these distributions can not 
improve accuracy rates. Figures 7 – 11 present experiments on 
FERET and show that the MAP score gives good results (85% 
rank-1 for proble set fb in Fig. 7) but our approach can 
achieve the best results (92% rank-1 for probe set fb Fig. 7). It 
proves that the contribution of extra-variation to the similarity 
score is not equal to that of intra-variation. To get good soft 
scores, we used validation set to find optimal value for w . 
Fig. 11 shows the accuracy rate curve for rank-1 with respect 
to w . The maximum value 92% is corresponding to w  = 
7.25. In some experiments [4, 5, 8], researchers scaled down 
normal images to small images. It can make the extra-variation 
distributions to approach Gaussian distributions. In these 
cases, using extra-variation distributions would improve the 
accuracy rates.  
 We would also discuss on Probabilistic Eigenfaces 
method proposed by Shakhnarovich and Moghaddam [5] in 

this paper, however they did not present their experiments 
related to this approach. In fact, there is no evidence to 
persuade that it will increase the accuracy rates. In our 
experiments, it achieved only 48% for probe set fb and the 
lowest for the other proble sets. In our opinions, this method is 
appropriate to distinguish face or not face – face detection or 
objection detection. 

5 Conclusions 
 We have reviewed conventional Bayesian, given a clear 
picture about some confused experimental results published 
previously and presented some weak points. We have also 
proposed a soft similarity score to deal with this problem and 
suggested a closed-form formula to estimate very high 
dimensional Gaussian distributions. 
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