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Abstract - In this paper, we propose a new approach to
Bayesian subspace method for face recognition. We review
this method and point out some weak points in its assumptions
and propose a practical solution to overcome those weak
points. In addition, we present an efficient way to estimate the
high dimensional Gaussian density function.
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1 Introduction

Face recognition is one of the successful apiica of

not include the extra- variation subspace in teiution to
improve the recognition rate although this inforimatis also
very important according to Bayes theorem. Othseaechers
[9] attempted to discover the structure of tharaxtariation
and reported better recognition results, howevesret is no
independent evaluation about this method and thest mo
important factor is that it needs a lot of compgtirsources.

In this paper we present a new approach to thefay
od. The challenge in face recognition is thetre¢ are
many classes but only a few samples are availasleedch
class. To deal with this challenge, two kinds afiations have
been investigated: intra-variation for one persod axtra-
variation between two people. However, there ard no
sufficient data to estimate distributions for thossriations

computer vision. There have been recently advarines and hence equal intra-variations and equal extriazti@ns are

accuracy and time performance due to new algoritant
computer development.

assumed to have sufficient data to estimate thstriloutions.
On the other hand, based on experimental evahsafar

A popular method used in face recognition is lineathe Bayesian method, it is shown that this methoesdnot

subspace due to its high stability and performarmapared
with other methods. The first subspace method ischal
Component Analysis (PCA) proposed by Turk and Readt
[1]. This method is based on the work done by Kignd
Sirovich on face representation and analysis [Ric&then, it

has become the de factor method in face recognition

However, it is completely based on distances apdetis no
clear explanation for choosing metrics; therefahere is no
strong mathematical foundation to support this eth

To overcome this problem, a variety of statistisaked

methods was proposed. For example, Belhumeur ef3hl.

proposed Linear Discriminant Analysis (LDA). Thisethod

always provide better performance for face recagmi{?].
We have faced on this issue and found a new sityilscore
that can improve the performance. This score iedasoft
similarity score and its best value can be foumdubh a cross
validation process.

The remainder of the paper is organized as folldws
the next section, we will present the Bayesian otnd our
proposed approach. We then present in Section &riexnts
to evaluate our proposed approach on two publie fdata
sets which are FERET and AT&T. Finally, Sectionideg a
brief review of our proposed approach and futurekwo

aims at finding a subspace that can maximize vegign 2 Bayesian M ethod for Face Recognition

between classes and maximize variances

most variance of data set. The PCA method reduchstioe
dimensions of space but there is no strong evidémaow
that it can improve recognition rate, whereas tBé lmethod
could show an improvement in practice. The Bayesiathod
proposed by Moghaddam et al.
theorem and is the best method in independentpestsrmed

in eacts clas
compared with PCA where a subspace can only capiere

In this section, we present the conventional Bayesi
method and its distribution estimation for faceogrtion

2.1 Distribution estimation

It is hard to determine density distribution fandom

[4, 5] is based OneBayvariables in multi-dimensional space. A mixture@dussian

distributions is assumed as their mean vegtand covariance

on 1996 FERET dataset [6, 7]. The idea of the Hapes MatrixZ can be estimated from a training set [10-13].

method is to use two probability density distribas of intra-
variation and extra-variation subspaces to classifynknown
object. In 2003, Wang and Tang [8] attempted tdyuRCA,

LDA and Bayesian subspaces and presented a gofigduni

model to explain three kinds of subspaces. Howehes; did
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wherep(.|.) is the density distribution function aiis the
dimension. To efficiently compute the value of dimition,
the following equation is used [14]
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p(xIwAVp) =——— oM@
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= Pgen(y) (x) pspan(V) (x)
where

- A be eigenvalues of
- V be eigenvectors af
— p be an average of remainder eigenvalues

=y =V(x-k) andd (x) =[x -u]" [V

In Equation 2, the density distribution is represd as a

product of two distributions in subspac¥ and v,
respectively. As mentioned in the previous sectibe,second

term for subspac& was ignored in most of publications.

Recent study such as [15] has included this sederd.
Moghaddam et al. [4] uses the following to estimate

p_N—M Z)\i 3)

i=M +1

In practice computing exactly high eigenvalues
intractable due to numerical computing errors. €fae,
fitting techniques are used to estimate these eajees.
Bishop [10] suggests the use of an expectationsmiagtion
(EM) algorithm, however the computation cost ispMeigh.

2.2 Similarity score

Due to insufficient data to estimate each varigt&ome
assumptions have been made in the Bayesian method.

Assumption 1: Density distributions of variations for all

individuals are the same.

x ®
x @
x ®
x @

Figure 1 a)L,, L, metrics b) Mahalanobis metrics

Figure 2 a) correct classification usihg b) incorrect
classification using.,

In statistical view, each metric is correspondingan
assumption ab out the form of variation distribotioFor
example, metricL, assumes it be a hyper-sphere "shape";

metric L, assumes it be hyper-cube "shape" (see Fig. 1a). In

recent studies, Mahalanobis metric is used for facegnition
(see Fig. 1b).

Obviously, the distribution of variation will detg which
metric is used for classification. For examplesasn in Fig.
2a, the distribution has a hypersphere "shape"hmmte L,

metric can provide correct classification 0. However the
distribution in Fig. 4b is not a hyper-sphere "s#apL,

cannot provide correct classification xa

Previous studies performed empirical tests to aep
metrics and did not mention how a metric was thibcatly
chosen. In the Bayesian method, Moghaddam et]ghojfited
out some weak points in previous studies. A variabetween
two imagesx; and x; is defined asA =x; —x;. Two classes

which are intra-variation clas€), and extra-variation class
Q. were defined and their density distributions were

estimated if a training data set is provided. Tipify the
distribution estimation process, the following amptions on
two density distributions are made.
Assumption 2: Intra-variation has Gaussian distribution
Assumption 3: Extra-variation has Gaussian distribution
With a variationA of two images, maximum likelihood

valuep(A|Q,) or maximum posterior valu®(Q, |A) can
be used as similarity scores to measure the sitgilaetween

iStwo images.  In  practice, Inp(A|Q)) and
INP(Q, |A)/P(Q¢ |A) are used instead.
Maximum likelihood score
Ky
Su (8) =257 (4)
i=1 Ay
or
Kyt & (A
0 (0)= 320+ 18) )

M aximum posterior score
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3 The Proposed Approach to Bayesian
Method

Determine p

We suggest a simple and closed-form way to compute
the average of eigenvalues

3.1



Lemma 1
Given data seX ={x;; i =1,..., N}
If it has Gaussian distributio@ =pl , wherel is the unity

matrix
Then

p= (7)

3w (6 -w)

i=1

Pr oof
Compute log likelihood for the data set

ND ND 1{
Inp(X |u.p) =-— In21T—TInp—2—pZ(xi -n)" (x, —n)
i1

Take derivative and setitto 0

i

Figure 3. Distances of points of training set vithussian
distribution z = pl

Algorithm to compute p

Input: training data seK ={x;; i =1,..., N}

Output: p

Step 1: Determine subspave

Step 2: Compute distance to mean in subspace

Step 3: Compute distance to mean in subsp_ace
Step 4: Compute using Equation 7

3.2 Similarity score

Assumption 2 in Section 2.2 on the distributionrdfa-
variation could provide better recognition resultwever,
the assumption on the distribution of extra-vaiatis not
persuading us. In fact, in our first experiment, r@peated the
experiments presented in [5-7] but we could nottgetsame
results. We assume that the contributions of inéndation and
extra-variation are not equal as seen in EquationVg
propose a scale factowfor the second term to adjust its
contribution. The proposed score is of the form

Proposed soft similarity score

S (2) :[iﬁ+ﬂ}w{iﬁ+ﬂ},wzo (8)

T A P = Ag, E

We can use cross-validation task to find the ogltim
value for this scale factow .

It can be seen that our proposed soft similadtyes has
a close relationship to those scores in SectionFh@
example, ifw=0 thens, =5, andifw=1 then

ssoﬂ = S\/IAP .

4 Data sets, experiments and results

We evaluate our approach based on two well-known

The Lemma 1 shows that the information of distanceiasets which are FERET and AT&T. We use FERET
from data points to the mean point is sufficientdomputing protocol to evaluate our experiments '

p (see Fig. 3).
Recall that two subspaceg and vV are orthogonal.
Therefore their distributions are independent amah de

estimated separately. Distances of data pointslﬁnspsacev
can be computed from those in subsp¥casing Pythagorean
theorem (see Fig. 4).

span (V) \

Yo i

span(V)

Figure 4. Distances af, in subspace/ and v

4.1 FERET protocol for facerecognition

The goal of FERET evaluation protocol is to previd
standard method to access an algorithm. The ei@ugdésign
cannot be too hard or too easy. In the protocoglgarithm is
given two sets of images which are target Beftraining set)
and query setQ (testing set). The algorithm reports the

similarity scores(qi ,tj) between all query imageg, in the
query setQ and all target images; in the target sef . In

face recognition, the query is not always "Is thp tnatch
correct?" but "Is the correct answer in the tapatches?" like
Google search engine responds our query by listhage
possible answers for each query. For our methodasseme
that a larger similarity score implies a closer chatrinally,
the performance statistics are reported as cunaalatiatch
scores.



4.2 Datasets

AT&T dataset was taken at University of Cambridde.
includes 400 images of 40 individuals and eachgrergas 10
images in different illumination, pose and expressi
Grayscale FERET is standard data set and is wiaksdygl for
evaluation. There are about 14000 images of mane 1900
individuals.

4.3 Experiments

431 Preprocessing

using L, + Mah [16] for computing similarity scores,
Bayesian method using scorgg in Equations 5 and 6 (ML1
and ML2) ands,,, (MAP), and our proposed scoresg,

(Soft). Note that the best results could be obthimeselecting

an appropriate number of Eigenfaces for Eigenfaethad. In
our experiments, they were 200 for FERET and 199 fo
AT&T. To validate our proposed score, we used three
partitions as validation sets and the remainingeasset. The
best accuracy rate is correspondingwo= 0 for AT&T data
set (see Fig. 6) andv = 7.25 for FERET (see Fig. 11). It
means thats,, becomess, in AT&T case. The detailed

There was no image processing task for AT&T data s experimental results on AT&T are presented in Tablend
For FERET data set, we used the data set conductt®6 Figure 6. The detailed experimental results on FEREe

for independent tests including gallery $éatand four probe presented in Figures 7-11.

sets fb, fc, dupl and dup2. Based on the information
containing in ground truth files, we cropped, atignand

Table 1. Experimental results on AT&T data set

masked images to normalize images. We used precrust i

analysis for aligning images based on the posit@fnsouths ’l\BAaeétgior?e 't"et”c gé F;é 233 5 ng s av§4 5

. : 2 . . .

?E‘Lge;&;'g;oipsizg";i dsglr%iirs]gmple images of ATEd a5 tace | [+ Mar | 89 | 905 |87 | 865 | 88.3¢
’ Bayesian ML1 94 95.5| 94.5| 93 94.25

Bayesian ML2 94 95.E | 94.E | 93 94.2¢
h r 1 1 Bayesian MAP 525 | 425| 56 57.5 52.13

-2 a Bayesian Sofl 94 95.F | 94.£ | 93 94.2¢
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Figure 5. a) images from AT&T b) images from FERET

4.3.2  Building two subspaces from training set

For AT&T data set, we divided the training data iséb four
partitions and each partition included 200 imagestriaining
and gallery sets and the other 200 images for pset®e There
were 1000 intra-variation pairs and 39000 extraateam
pairs in those training sets. From these pairsabé gets, we
could find the parameters in Equation 2 or buildo tw
subspaces intra and extra-subspaces (see morés detgio-
14]). For FERET dataset, we randomly selected asetub
including 250fa images and 25€b images from the training
set in FERET CD-ROM. There are 1230 intra-variatiairs
and 248770 extra-variation pairs.

We used Equation 2 for subspace projections areB.4

distribution computations. For the AT&T dataset, kept 160
first eigenvectors for intra-variation subspace &P for
extra-variation subspace. For the FERET datasekepe200
first eigenvectors for intra-variation and the safoe extra-
variation.

433 Experiments

To evaluate our approach with state-of-the-art aagines, we
conducted six algorithms on each data set. They waw
matching method (Baseline) using metric,, Eigenface

method (Eigenface) using PCA to extract featurgorscand

,)r

accuracy rate (%)

Figure 6. Average accuracy rates corresponding sufth
scorew ranging from O to 20

Discussion
Our experimental results on FERET using traditiona
Bayesian scores are quite similar to some publice fa
recognition evaluation systems such as “The CSUe fac
identification evaluation system” although our iexplentation
is based on MATLAB platform and independently veritt As
mentioned above, the results are slightly differizatn the
results published in 1996 FERET independent tests.
example, the rank-1 result éh is 95% in 1996 FERET test;
but it is 85% in our experiments and in other répt5, 17].
Because Moghaddam and his colleagues have notshedli
more details on their implementation, we suggesteanplan-
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accuracy rate (96

Figure 11. Accuracy rates corresponding with softre
w ranging from O to 20 on validation dét

-ations for this issue. The first one is numerisales. If the
original formulas of Bayesian scores [4, 5] are duge
compute probabilities, it can lead to unstablelteg®ee more
details in [17]). The second one is that the quadt face
recognition system depends not only on classificathethod
(Bayesian method) but also on other tasks in tiséesy such
as the quality of preprocessing tasks.
According to our experiments,
Assumption 3 is not good.
experiments on AT&T and show that the MAP scoresgithe
worst result (52.5%) compared with the best re@#t25%).
Obviously, the distributions of extra-variationseamot
Gaussian because the training sets contain indil/idarition
and strong different variations such as illuminati@riations
and pose variations. Therefore, these distributioas not
improve accuracy rates. Figures 7 — 11 presentrgmpsts on
FERET and show that the MAP score gives good re$88%

rank-1 for proble sefb in Fig. 7) but our approach can (8]

achieve the best results (92% rank-1 for probélsetg. 7). It
proves that the contribution of extra-variatiorthe similarity
score is not equal to that of intra-variation. Tet good soft
scores, we used validation set to find optimal ealor w.

Fig. 11 shows the accuracy rate curve for rankth véspect
to w. The maximum value 92% is corresponding wo =

7.25. In some experiments [4, 5, 8], researcheakedadown
normal images to small images. It can make theaesdriation
distributions to approach Gaussian distributions. these

cases, using extra-variation distributions woulgriave the
accuracy rates.

We would also discuss on Probabilistic Eigenface@‘?’]

method proposed by Shakhnarovich and Moghaddanin[5]

it proves that the
Table 1 and Fig. 6 prEse[G]

[7]

[10]
[11]

[12] K.

this paper, however they did not present their Brpnts
related to this approach. In fact, there is no enig to
persuade that it will increase the accuracy ratas.our
experiments, it achieved only 48% for probe ffetand the
lowest for the other proble sets. In our opinidh& method is

appropriate to distinguish face or not face — fdetection or
objection detection.

5 Conclusions

We have reviewed conventional Bayesian, givenearcl
picture about some confused experimental resultdighed
previously and presented some weak points. We lads@
proposed a soft similarity score to deal with tisblem and
suggested a closed-form formula to estimate vergh hi
dimensional Gaussian distributions.
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