A Tweak on K-Nearest Neighbor Decision Rule

Tanmay Basu', C. A. Murthy!, and Himadri Chakrabarty?
1 Machine Intelligence Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata-700108, India
2 Department of Computer Scinece, Surendranath College, University of Calcutta, Kolkata - 700009, India

Abstract— The k-nearest neighbor (knn) decision rule puts
a point into a particular class if the class has the maximum
representation among the k nearest neighbors of the point
in the training set. If the difference between the number
of points belonging to the two competing classes (i.e., two
classes with maximum representation) among the k nearest
neighbors is at least one then the point will be assigned
to that class. This article presents a tweak on the knn rule
to enhance the confidence of the knn voting process. This
method proposes a discrimination criterion on the majority
voting of knn by a predefined threshold to enhance the
rigidity of the voting process. The method does not require
the knowledge of neighborhood parameter k to execute knn.
The empirical studies show the utility of the proposed method
using some synthetic and well known benchmark data sets.
It is observed from the experiments that the accuracy of the
proposed method is significantly better than the traditional
knn method.

Keywords: Majority Voting, K Nearest Neighbor, Pattern Recog-
nition

1. Introduction

The k-nearest neighbor (knn) rule is a very popular and
simple classification technique. It classifies a test data point
to a particular class which is most frequent in the neigh-
borhood of the data point. The size of the neighborhood is
determined by the predefined parameter k. Given a test data
point X and a training sample set, the task of the k-nearest
neighbor rule is to assign X to a particular class. It first finds
the k-nearest neighbors from the training sample set using
some distance function and assigns X to a particular class by
taking a majority vote among the k-nearest neighbors.

In 1951, Fix and Hodges [1] introduced the nearest
neighbor rule and in 1967, Cover and Hart [2] found out
the classification error for k=1. It was shown that for k=1
and n — oo the classification error is bounded by twice the
Bayes error rate. A series of research works have been done
on knn classification. B. V. Dasarathy has provided a number
of a comprehensive collection of around 140 key papers [3]
[4]. A rejection approach was proposed by Hellman [5]. In
this method a point will be assigned to a particular class,
if at least | > k/2 nearest neighbors belong to the same
class, otherwise the method will refuse to classify the point.
The distance weighted knn [6] gives different weights to
the k nearest neighbors based on their distances to the test

data point with closer neighbors having greater weights. Let
x1, T2, ..., be the k nearest neighbors of zy arranged in
increasing order of p(x;,p), Vj = 1,2,...k, where p is the
distance function. Here z1,) are the first and k** nearest
neighbor of xy. The wel%ht of the j** nearest neighbor
was defined as w; = (i:zgg p(iiizg if p(zg,z0) #
p(z1,20) and w; =1, if p(xk,xo) = p(x1, o).

The test data point xy will then be assigned to the class for
which the weights of the representatives of the class among
k nearest neighbors sum to the greatest value.

Generally, for knn, a closed disk of radius r; is taken
as the neighborhood, where 7 is the distance between x
and its k*" nearest neighbor. Then x would be classified
to the class which has maximum number of representatives
in this neighborhood. So different values of k can change
the classification result and hence choice of k is crucial for
proper classification. Existing theoretical results suggest that
optimally k should tend to oo and k/n — 0 hold only for
n — oo [7]. The usual cross validation technique [8] is used
to estimate an optimal value of k. But effectively choosing an
optimal k is still a difficult job. The cross-validation method
uses the training data to select a single value of k, and then
that selected value is used for classifying all observations.
However, one should note that in classification problems,
in addition to depending on the entire training sample, a
good choice of k depends on the specific observation to
be classified. A discussion on the bias and the variance of
the posterior probability estimates for different k values is
available in [9].

Sometimes, one may not be interested in classifying an
observation to one of the classes. Suppose, for the chosen £,
the same number of observations fall into the two competing
classes, and thus no class has a majority of members. We
then assign it arbitrarily to one of the competing classes.
This assignment may not be intuitively satisfying if the point
belongs to the intersection region between classes, where one
may not always necessarily be interested classifying every
point.

Let us consider two classes C7 and (5, and the nearest
neighbors of a test point o are ordered as follows:

C1,0,C,C,C,C,C,C,Ch, . (D

For k=5, the data point will be classified to C5, for k=6
there will be a tie and for k=7, the point will be classified to
C and so on. It reveals the fact that simple majority voting
may not be appropriate. Basically, when there is more or less

same representation from the competing classes among the
nearest neighbors, we believe that the test data point should
not be put into one of those classes. A way of formalizing
more representation for one class is to put a lower bound
([on the difference between the cardinalities of the two
competing classes for the training set, and selecting the class
with maximum representation.

The paper is organized as follows. Section 2 describes
the proposed tweak on knn in detail. The experimental
evaluation on both synthetic and benchmark data sets is
given in section 3. Conclusions and discussion are presented
in section 4.

2. A Tweak on KNN Decision Rule

Knn method takes decision on majority voting. For knn
rule, a test data point is put in a particular class that has
maximum number of representatives among the k nearest
neighbors. There are no particular bounds on the discrimi-
nation criterion of majority voting. Sometimes, we assign a
test data point to an arbitrarily chosen competing class when
there is a tie between the competing classes. Choosing one
of the competing classes randomly results in less confidence
on the selection process. Additionally, suppose, for a given
k, the difference between the number of nearest neighbors
of competing classes, represented by <, is 3. Then, for
that k, intuitively, classifying the test data point to the class
with maximum number of nearest neighbors would result in
more confidence on our decision compared to the case of 7
being 1 or 2. On the other hand, putting an arbitrarily large
threshold on the value of ~; (without looking at the size of
the training set) may result in a bad classification strategy
with many unclassified points.

We propose a discrimination criterion on the voting pro-
cess of knn. Basically, the proposed method restricts the
majority voting of knn with a predefined positive integer
threshold, say (3, to assign a data point to a predefined class.
For the proposed method there is no need to select a fixed
k prior to classifying a point. The method will start with an
initial value of k as . If the difference between the number
of representatives of the best and the second best competing
classes is (3, then the point is classified to the best competing
class. Otherwise the value of the neighborhood parameter
k will be increased by one and the process will continue
until the point is classified to a particular class. If the test
data point is not classified till the process reaches the last
point of the training set, then the test data point will remain
unclassified. But this is rare and the experimental results
reveal that this kind of situation arises when the number of
points of the training set is very small. The initial value of k
is taken as (3. If for the k under consideration, the test data
point can not be classified, then the value of k is increased
by one. It may be noted here that 3 is the only parameter to
the proposed method. The proposed method is named tknn

Algorithm 1: TKNN for a Particular Test Data Point

Input: a) A set of training data points, X =
{X1,X5,....,X,} and n = | X|.
b) A set of predefined classes, C = {C1, Cs, ..
m = |C]
c) Let y is a particular test data point and 3 is an initial
threshold.
Steps:

I L«p

2: fori < 1 tondo

3: dist; < Distance of y from X

4

5

., C } and

: end for
: Sort dist}s in increasing order and the corresponding
order of points are Z1, Zs, ..., Zy,
6: Find the first L data points from Z/ s
7. L; < Total number of data points € C; and 27;1 L;
L.
8: Lmas, — max{Ly, Lo, ..., Ly}
Linaz, < max{{L1, L2, ..., L;m} — {Lmaz, }}

9: if (Lmaz, — Lmaz,) == 0 then

10: Yy € Chaqe1 1€ y is classified to Chz1
11: else

12: if L ==n then

13: Classification not possible, stop and exit.
14: else

15: L—L+1

16: if Lt" data point € C;,Vi € m then
17: L, —L;+1

18: end if

19: Goto step 8

20: end if

21: end if

(i.e., tweak on knn). Algorithm 1 describes the tknn method
in detail.

Like knn, the proposed algorithm tknn will first find the
distances of a test data point from all the training set sample
points and will sort it in increasing order of dissimilarity.
But unlike knn, initially, it will take only the first 3 points
from the ordered set and performs the majority voting with
a criterion that the difference between the total number of
data points of the competing two classes (Lmaz, & Limaz,)
among the nearest neighbors is equal to (. If it is so then
the point will be labeled with that particular class (Cyna21),
possessing maximum number of representatives. Otherwise
it will check the next point and performs the same operation.
This is continued until it has reached the end of the ordered
training sample set.

Consider sequence 1 and assume (5 = 3. Let there be 9

data points in the training set and the order of those points
according to their dissimilarity with z(in increasing order
are shown in sequence 1. Initially Ly,qz, = 2 and Lynqz, =
1 and (Lynaz, — Limaz, < 3). So L (total number of nearest
neighbor traversed by tknn so far) has to be increased by
one to execute the same operation and so on. Thus, at the
end Lyaz, = 5 and Ly,qz, = 4, which concludes that the
test data point will remain unclassified.

Tknn will refuse to classify a point to a particular class,
if the majority voting is not discriminating i.e., if (Laz, —
Lipaz,) < [and it reaches the last point of the ordered
training sample set. These points will remain unclassified.
The decision should not be taken on the difference of
only one vote. The difference should not be less than the
threshold (). Among the nearest neighbors of the test
data point there should be sufficiently many representatives
of the class to which the point will be assigned by the
classifier than the other classes. Intuitively, the likelihood
of correct classification is more for the proposed scheme
than the knn. Consider the situation of the points which lie
on the boundary of two adjacent classes. Knn method can
misclassify those points with the weak voting criterion. But
for tknn, either it would not be able to classify the point
or it is likely to correctly classify it. If it is able to classify
the point then it has sufficiently many representatives among
the nearest neighbors in support of the corresponding class,
otherwise the point will remain unclassified.

Selection of k is a very difficult problem for knn. Wrong
selection of k for knn may degrade the quality of knn. Tknn
has no requirement of a fixed value of k to execute the
method, though the value for (3 is to be fixed by the user. In
the experimental evaluation we have shown that one of the
value of # among § = 2, 3,4 is sufficient. It is to mention
that a particular 5 will be used for every point in the test
set. The algorithm will stop only when it satisfies the said
voting criterion.

In the proposed procedure, we are interested in ensuring
significant difference between the number of representative
points of majority class and its competing classes. Intuitively,
such a restriction may not result in good performance of the
proposed method if the size of the training data set is small
since smaller training data sets may not have enough sample
points to ensure such a restriction. Larger training data sets
are likely to produce better results for the proposed method.

3. Experimental Evaluation

In this section we present the experimental results on syn-
thetic and benchmark data sets to compare the performance
of the proposed tknn method with the traditional knn method.

3.1 Parameter Selection

The knn classifier classifies a point on the basis of k
nearest neighbors. Note that the value of k can vary from
one to the total number of points in the training set. But k

must be fixed for all test data points. If k is very high then
the computational complexity of the classifier will be very
high which is not desirable. So k should not be as high as
possible. 5 = 1 is actually the one nearest neighbor (1-NN)
method. So in the experimental evaluation 1-NN is not used
for comparison. Here 10 fold cross validation is performed
on the training set varying k from 2 to 15. The k value which
provides best accuracy among these 14 values is used in the
experiments of the test data points for knn and wt-knn. The
knn and wt-knn method were executed using this k value and
the error rate along with their standard errors are reported
in Table 1 and Table 2 for comparison and the particular k
value is reported in a separate column.

Tknn is dependent on the [values. A high 3 value can
produce a large number of unclassified points if the training
set size is not very high. So here we have restricted the values
of 3 to 2, 3, 4 for comparison with the other methods. Here
also 10 fold cross validation is performed on the training
sets using § = 2,3,4. The 3 value for which tknn gives
best accuracy is used in the experiment of the test set. It is
to be mentioned that euclidean distance is used in all the
experiments.

3.2 Description of Simulated Data Sets

This section presents the performance of the proposed
method on some randomly simulated data sets. Here, dif-
ferent sizes and shapes of classes are considered for perfor-
mance evaluation. Suppose the number of classes is ¢, and
the conditional probability density function for the i-th class
is pi(z), and the prior probability of i-th class is 7;. Then the
mixture probability density function is p(x) = Y mpi(z).
Except Dataset 6, the artificial data sets are generated by
considering different p;s. Different sizes are achieved by
considering different prior probabilities of classes. For each
of the data sets (except for Dataset 6), we have generated
10 independent sets of points and reported the average
misclassification percentage along with the standard error
for misclassification rates. For the first three data sets each
of the two populations is normally distributed and has the
same prior probability 0.5. For each of the first five data sets
the size of the test set is 10000 and there are five training
sets of size 100, 500, 1000, 1500, 2000 respectively. The
description of all the data sets is given below.

Dataset 1 : The mean and the scatter matrix for the first
population are p; = (0, 0) and 31 = Iy (identity matrix)
respectively and those for the second population are o =
(2, 2) and X5 = I, respectively. The data set is shown in
Figure 1(a).

Dataset 2 : The mean and the scatter matrix for the first
population are pq = (0, 0, 0) and ¥; = I3 (identity matrix)
respectively and those for the second population are po =
(2, 2, 2) and Yo = I3 respectively.

Dataset 3 : The mean and the scatter matrix for the first
population are iy = (0, 0, 0, 0) and ¥4 = I (identity matrix)

Dataset 1

L L L L L L
-3 -2 -1 0 1 2 3 4

(©)

Dataset 4
8 T T
* Class 1
Class 2
Class 3

(b)

Dataset 6
12 ; ; — ; :

0.8

06

0.4r

02r

Fig. 1: Simulated Data Sets

respectively and those for the second population are po =
(2, 2, 2, 2) and ¥y = I, respectively.

Dataset 4 : Here we considered three populations which
are normally distributed and having prior probabilities 0.6,
0.1, 0.3 for populationl, population2 and population3 re-
spectively. The mean and the scatter matrix for the first
population are pq = (0, 0) and »; = I (identity matrix)
respectively. The same for the second population are po =
(0, 2) and X5 = 215, and for the third population are p3 =
(0, 1) and ¥5 = 215 respectively. The data set is shown in
Figure 1(b).

Dataset S : This data set has two classes with equal prior
probabilities. For obtaining an unusual shape for a class, we
initially considered a curve which has that basic shape, and
added a normal distribution with mean at the origin for every
point on the curve. The data set is shown in Figure 1(c).

Dataset 6 : This data set was developed by Ripley!
[8] and used by Holmes [4]. The data set is a two class

classification problem where each population is an equal
mixture of two bi-variate normal distributions. A total of
1250 points are given. A training set of 250 points is used
and the model is tested on a set of 1000 points. The training
set is given by the authors, and thus there is only one test
set here. The data set is shown in Figure 1(d).

3.3 Analysis on Simulated Data Sets

Table 1 shows the comparative performances of the pro-
posed method with weighted voting knn method and the
usual knn method on the simulated data sets stated above.
For Dataset 6, which has separate training and test sets, we
have reported the test set misclassification rates for different
classifiers in the following way. If a classifier leads to a test
set error rate r, the corresponding standard error is taken as

\/r(1 —r)/n, where n is the size of the test set [10]. The

misclassification rate (MR) of tknn is determined as follows:

'www.stats.ox.ac.uk/pub/PRNN/

Table 1: Misclassification rates (in %) of different classification methods and their standard errors on various simulated data
sets

Data Training | 3 L [TKNN TKNN K KNN K Wt-KNN
Set Set (avg) (including | (knn) (wt-knn)
Description Size UP)?
100 4 6 3 8.16 8.17 14 8.16 15 8.59
(0.003) (0.003) (0.002) (0.005)
Dataset 1 500 4 6 0 8.13 8.13 15 8.25 15 8.50
(0.001) (0.001) (0.002) (0.003)
(No. of 1000 4 6 0 8.18 8.18 14 8.22 15 8.48
Attributes = 2, (0.001) (0.001) (0.002) (0.002)
No. of 1500 4 6 0 8.13 8.13 15 8.19 15 8.43
Classes = 2, (0.002) (0.002) (0.002) (0.002)
Test Set 2000 4 6 0 8.12 8.12 15 8.19 15 8.41
Size = 10000) (0.0009) (0.0009) (0.001) (0.001)
100 4 6 0 4.82 4.82 14 4.74 15 5.18
(0.005) (0.005) (0.004) (0.006)
Dataset 2 500 4 6 0 4.45 4.45 14 4.46 15 4.95
(0.001) (0.001) (0.001) (0.003)
(No. of 1000 4 5 0 4.33 4.33 15 4.36 15 4.56
Attributes = 3, (0.001) (0.001) (0.001) (0.001)
No. of 1500 4 5 0 4.32 4.32 15 438 15 4.54
Classes = 2, (0.001) (0.001) (0.001) (0.001)
Test Set 2000 4 5 0 4.39 4.39 15 443 15 4.58
Size = 10000) (0.001) (0.001) (0.001) (0.001)
100 4 5 1 2.47 2.47 14 2.50 15 2.72
(0.003) (0.003) (0.002) (0.004)
Dataset 3 500 4 5 0 2.26 2.26 15 2.32 15 2.47
(0.0007) (0.0007) (0.0009) (0.001)
(No. of 1000 4 5 0 2.20 2.20 14 2.24 15 2.37
Attributes = 4, (0.0005) (0.0005) (0.0007) (0.001)
No. of 1500 4 5 0 2.19 2.19 14 222 15 2.35
Classes = 2, (0.0008) (0.0008) (0.0008) (0.001)
Test Set 2000 4 5 0 2.23 2.23 15 2.26 15 2.37
Size = 10000) (0.0005) (0.0005) (0.0004) (0.001)
100 4 16 191 46.67 46.98 14 47.42 15 48.83
(0.01) (0.01) (0.009) (0.01)
Dataset 4 500 4 17 0 46.41 46.41 15 47.00 15 48.82
(0.006) (0.006) (0.005) (0.007)
(No. of 1000 4 16 0 46.48 46.48 15 47.25 15 48.66
Attributes = 2, (0.01) (0.01) (0.01) (0.01)
No. of 1500 4 17 0 46.47 46.47 14 47.29 15 48.57
Classes = 3, (0.006) (0.006) (0.007) (0.007)
Test Set 2000 4 17 0 46.25 46.25 14 47.19 15 48.60
Size = 10000) (0.005) (0.005) (0.006) (0.008)
100 2 3 0 4.26 4.26 8 4.23 12 4.17
(0.006) (0.006) (0.006) (0.005)
Dataset 5 500 4 5 0 3.72 3.72 13 3.73 15 3.83
(0.001) (0.001) (0.001) (0.001)
(No. of 1000 4 5 0 3.67 3.67 15 371 15 3.77
Attributes = 2, (0.001) (0.001) (0.001) (0.001)
No. of 1500 4 5 0 3.69 3.69 13 371 15 3.79
Classes = 2, (0.001) (0.001) (0.0009) (0.001)
Test Set 2000 4 5 0 3.76 3.76 15 3.80 15 3.87
Size = 10000) (0.001) (0.001) (0.0009) (0.002)
Dataset 6 250 4 7 0 9.00 9.00 15 9.50 15 10.80
(Test Set Size = 1000) (0.009) (0.009) (0.009) (0.009)

! UP stands for unclassified points. > Here the UPs are treated as misclassified points and the misclassification rates are measured as usual.

MR = TIQ{IZJJP’

where MP is the number of misclassified points, TP is the
size of the test set, and UP is the number of points remaining
unclassified. Basically we are discarding the unclassified
points from the total set of points to measure the accuracy.
In the experimental results the performance of tknn are
measured using two separate misclassification rates. The first
one is using the above mentioned misclassification rate and
second one is using the usual misclassification rate (here we
treat every unclassified point as misclassified point).

Table 1 shows the misclassification rates of tknn, knn
and wt-knn methods along with their standard errors (in
parentheses). The k values are noted in separate columns
for each of the knn and wt-knn methods which is used in
the experiments of the test set points. Tknn observes first
L nearest neighbors of point to determine its class. The
average of the L values ([L] is used here) of all the test
data points (excluding the unclassified points) is noted in a
separate column for each data set in this table. The § value
which is used for each of the data sets is noted in another
column.

It is observed from Table 1 that tknn performs better
than the other methods in all cases except for one case
of dataset 2 when training set size is 100 and one case
of dataset 5 when training set size is 100. Let us consider
the case of dataset 2 when training set size is 100. The
misclassification rate of knn (4.74) has an edge over tknn
(4.82). It needs to be checked whether these such differences
are significant i.e., whether 4.74 is significantly different
from 4.82. For all other cases when tknn performs better
than the other methods, it needs to be judged whether tknn
performs significantly better than the other methods.

A generalized version of paired ¢-fest is suitable for testing
the equality of means when the variances are unknown.
This problem is the classical Behrens-Fisher problem in
hypothesis testing and a suitable test statistic? is described
and tabled in [11] and [12], respectively. It has been found
that whenever a method has an edge over other method, the
test showed significant difference in the values for the level
of significance 0.05. No testing is done on Dataset 6.

Remarks : It is observed from the experiments that tknn
performs better than knn and wt-knn if the training set size
is large (> 500). Tknn is useful when the training set size is
large. For large training set, neighborhood selection may be
difficult for knn and wt-knn. But from the experiment it is
seen that one of the 3 values from 8 = 2, 3,4 is sufficient
for tknn. On the other hand it is also true that the essence
of tknn can not be reflected if the training set size is very
small.

1 —Tg
\/83/n1+s3/n2
the means, si, s are the standard deviations and n1,n2 are the number
of observations

2The test statistic is of the form ¢ = , where Z1, T2 are

3.4 Analysis on Benchmark Data Sets

The proposed algorithm has been evaluated using 8
representative data sets from UCI [13] machine learning
repository. The data sets used here are well known and
the descriptions of the data sets can be obtained from the
online UCI repository?. The sizes of the data sets range
from 150 to 4601 with the dimensionality between 4 and 57
including both two class and multiclass data. The data sets
are evaluated (i.e., finding optimal value of k and finding
average misclassification rate and standard error for knn
and wt-knn,) using 10 fold cross validation. Note that the
results of cross validation depend on the partition of the
data set. Thus, to make the results partition independent,
the experiments have been executed 100 times for every 10
fold cross validation. Out of these 8 data sets Monks2 and
Spect Heart data sets have specific training and test sets,
and thus no cross validation is performed on these data sets.
Table 2 shows the average misclassification rates of the 100
independent runs along with their standard errors of the data
sets for tknn and the other methods. Here also individual
values of k for knn and wt-knn and the values of 3 for tknn
for each of the data sets has been noted in separate columns
in this table.

From Table 2, it can be seen that tknn performs better
than knn and wt-knn method for Abalone, Balance Scale,
Heart Disease (Hungarian), Monks2, Pima Indian Diabetes
and Spambase data sets. It has been found using paired ¢-fest
(discussed above) that tknn performed significantly better
than the other methods for the level of significance 0.05 for
these data sets (except for Monks2, Spect Heart data sets
where the t-test could not be performed since the training
set is not changed). It may be noted that the sizes of the
training sets for the other data sets (i.e., Iris, Spect Heart)
for which tknn has not provided better results, are less than
150.

Remarks : The performance of knn was slightly better
than the proposed method for the Iris data set. The paired t-
test shows that this difference was significant. The following
points are the nearest neighbors of a particular data point of
the iris data set.

13221131111132111111111222233
223121...

For k = 3, 4 the point will be classified by knn to class 2,
and actually it belongs to class 2. But tknn will classify it
to class 1 for 8 =2, 3, 4. Note that the third and the fourth
nearest neighbors belong to class 2. Then, the next point
belonging to class 2 is the 14" nearest neighbor. This is an
extreme example, and these examples change the pattern of
results significantly when the sizes of the training data sets
are small.

3http://www.ics.uci.edu/~mlearn/MLRepository.html

Table 2: Misclassification rates (in %) of different classification methods and their standard errors on various benchmark

data sets
Data No of No of No of B L TKNN TKNN k KNN k Wt-KNN
Set Data Classes | Attributes (avg) (including | (knn) (wt-knn)
Name Points UpP)#

Abalone 4177 28 8 4 38 73.44 73.44 15 73.91 15 75.40
(0.003) (0.003) (0.003) (0.003)

Balance Scale 625 3 4 4 8 10.53 10.53 10 10.71 15 12.62
(0.002) (0.002) (0.005) (0.005)

Heart Disease 294 5 14 4 9 36.06 36.06 13 36.28 13 39.05
(Hungarian) (0.0005) (0.0005) (0.003) (0.007)

Iris 150 3 4 4 5 3.56 3.56 15 2.96 15 3.58
(0.006) (0.006) (0.007) (0.006)

Monks2* 601 2 6 3 5 32.87 32.87 12 32.87 3 32.87
(169) (0.02) (0.02) (0.02) (0.02)

Pima Indian 768 2 8 4 11 28.52 28.52 12 28.57 14 29.46
Diabetes (0.01) (0.01) (0.01) (0.01)

Spambase 4601 2 57 2 3 18.14 18.14 3 18.87 7 19.97
(0.002) (0.002) (0.003) (0.001)

Spect Heart* 267 2 22 2 3 43.85 43.85 14 39.57 5 41.17
(80) (0.03) (0.03) (0.03) (0.03)

Here misclassification rate = Total number of misclassified points/Total data points. The UPs are treated as misclassified points.

* The data sets have specific training set and test set. The size of the training set is given below the total instance (in ()).

Note that, for each increase in the value of k, the dis-
tance from the test point increases, thereby, the confidence
on either the majority voting of knn or the difference in
cardinalities of competing classes for tknn would decrease.

4. Conclusions

The knn method is one of the most fundamental and sim-
ple classification methods for statistical pattern recognition.
The majority voting of knn groups a point to a class if the
best competing class wins over the second best competing
class by at least one vote. For a tie we can arbitrarily assign
a point to a class. But for high dimensional data set with two
or more number of classes this weak voting criterion may
not be suitable. Another major issue of knn classification rule
is to select an optimal value for neighborhood parameter k.
Generally cross validation or some resampling methods are
used to select a value of k from the labeled data.

We proposed a discrimination criterion on the voting
process of knn which applies a threshold (8) on the win-
ning method of the voting process. The advantages of the
proposed method are as follows: a) tknn would not require
a prior knowledge of neighborhood parameter k, b) it will
refuse to classify a data point if its margin of winning vote
is not sufficient. Thus tknn may reduce the misclassification
rate.

Tknn is dependent on (3. The experimental results show
that one of the values 2, 3, 4 of § would provide better
classification results if the size of the training set is not
small. Thus, instead of checking several values of k, one can
look for the best among (=1, 2, 3, 4. For smaller sample
sizes, other classification methods may perform better than
the proposed one.

References

(1]

[2]

(3]

[4]

[3]

(6]

(71

(8]
[9]
[10]

[11]

[12]

[13]

E. Fix and J. Hodges, “Discriminatory analysis, nonparametric dis-
crimination: Consistency properties,” Technical Report 4, USAF
School of Aviation Medicine, Randolph Field, pp. 261-279, Texas,
USA, Tech. Rep., 1951.

T. Cover and P. Hart, “Nearest neighbor pattern classification,” IEEE
Transactions on Information Theory, vol. 13, no. 1, p. 21aAS$27, 1967.
B. Dasarathy, Nearest Neighbor NN Norms: NN Pattern Classification
Techniques. McGraw-Hill Computer Science Series. IEEE CS Press,
1991.

C. C. Holmes and N. M. Adams, “A probabilistic nearest neighbor
method for statistical pattern recognition,” Journal of Royal Statistical
Society, vol. 2, no. 64, p. 295348306, 2002.

M. Hellman, “The nearest neighbor classification rule with a reject
option,” IEEE Transactions on Systems, Man, Cybernetics, vol. 3, p.
179aAS185, 1970.

S. A. Dudani, “The distance weighted k nearest neighbor rule,”
IEEE Transactions on Systems, Man, Cybernetics, vol. SMC-6, p.
325aA8327, 1976.

K. Fukunaga and L. Hostetler, “Optimization of k-nearest neighbor
density estimates,” IEEE Transactions on Information Theory, vol. 19,
pp. 320-326, 1973.

B. D. Ripley, Pattern Recognition and Neural Networks.
University Press, Cambridge, 1996.

R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification, 2nd ed.
John Wiley and Sons, 2000.

A. K. Ghosh, “On nearest neighbor classification using adaptive
choice of k,” Journal of Computational and Graphical Statistics,
vol. 16, no. 2, p. 482aA$502, 2007.

E. Lehmann, Testing of Statistical Hypotheses.
Wiley, 1976.

C. R. Rao, S. K. Mitra, A. Matthai, and K. Ramamurthy, Eds.,
Formulae and Tables for Statistical Work. Calcutta: Statistical
Publishing Society, 1966.

C. L. Blake and C. J. Merz, “Uci repository of machine learning
databases,” Department of Information and Computer Science, Uni-
versity of California, Irvine, 1998.

Cambridge

New York: John

