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Abstract— The Cancer Imaging Archive (TCIA) has a pub-
licly available FDA database consisting of just over one
thousand CT scans intended for facilitating the assessment of
lung nodule size estimation methodologies, the development
of image analysis software, as well as a wide range of
different analyses. The use of these scans would be greatly
facilitated by the availability of phantom nodule location
data that could be input into methods that require them. This
paper outlines a new image processing method to locate the
phantom nodules in these CT scans in order to supplant
manual location prior to their use. We present a method for
extracting the phantom nodules, that involves phantom lung
wall removal and separation of the phantom nodules from
surrounding phantom blood vessels. Nodule locations are
described by rectangular boxes bounding their positions in
the scans and volume estimations.
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1. Introduction
Nodules in the lung are classified according to their

measured growth in CT scans taken over a period of
time. Many prognostic techniques for cancerous nodules
depend on accurate volumetric measurement techniques.
Fully automated volumetric techniques must be able to
handle the complex task of separating nodules from the
blood vessels and structures around them, and often attached
to them. Many different techniques have been developed
both fully and semi-automated, and comparative studies
have been done and are still underway [1]-[5]. The Ra-
diological Society of North America’s QIBA (Quantita-
tive Imaging Biomarkers Alliance) Volumetric CT Study
3A is in the process of testing the variation and per-
formance of algorithms for computing nodule volumes in
CT lung nodule data sets (http://qibawiki.rsna.org). The
study is currently being performed on phantom lung nod-
ule data. The phantom data, generated at the FDA, is
available via the TCIA for lung nodule size estima-
tion assessment and image analysis software development
(https://wiki.cancerimagingarchive.net/display/Public/ Phan-
tom+FDA). However, the locations of the phantom nodules
in these sets are not known well enough to be used as inputs

to methods that require them. Studies using phantom nodules
are one way to make direct quantitative comparisons of volu-
metric techniques. However, manually collecting the location
data for the phantom lung nodules is a time-consuming
process. As a result, the FDA phantom CT database would
be more easily utilized if the centroid locations of the
nodules imaged in them are known well enough for methods
requiring locations as input. In this paper we describe a
technique to extract the location of phantom nodules from
these phantom lung CT data sets. We developed the method
by working with a set of 15 CT scans, and then tested the
method by use of another 40 scans. The results of these tests
are given.

2. Extraction Method
There are several main challenges to separating the phan-

tom nodules from the rest of the lung data. Pixel intensities
that represent the nodules in these scans are in the same
range as those representing the anthropomorphic phantom’s
lung walls and the blood vessels. The first two major steps
in this method are to define the boundaries of the lung walls
in each CT slice, and then to separate the nodules from the
blood vessels in the areas inside each lung. Histograms of
pixel intensities for a set of CT slices containing a phantom
nodule, and for the nodule alone are shown in Figure 1.
The phantom nodules each have slightly different pixel
distributions. Nodules with different densities are located in
the anthropomorphic thoracic phantom, with mean values for
the nodule pixels falling in two ranges, approximately -600
and 0 Hounsfield units. The pixel intensities that represent
the air in the lungs are approximately -1000 Hounsfield units,
and the lung walls approximately 0 HU.

2.1 Lung Wall Definition
It is important to define the boundaries of the lung wall

in each CT slice, so that we limit our search to the regions
where the nodules occur. Clusters of pixels that represent
the lung walls themselves, therefore will not be part of our
search. To do this we take advantage of the large difference
in pixel intensity between pixels representing the lung wall
and pixels representing the air inside of the lung. Figure
2 shows a section of a sample slice of both clinical and



Fig. 1: Histograms of: 1.) pixels intensities in a set of slices
containing a phantom nodule with a mean pixel intensity
around 0; 2.) pixel intensities in the extracted tumor itself,
illustrating the large difference in pixel intensities between
the nodules and air inside the lung; 3.) pixel intensities from
a nodule with lower mean pixel value.

phantom CT data that contains a nodule, color coded to
show the large differences in pixels intensities between the
wall and the lung region. We use these large pixel intensity
differences to locate the lung walls in the data sets. In each
slice of data, we find each segment of the outer and inner
walls of the lung by searching for sets of pixels that maintain
a high Hounsfield value and then shift to a lower Hounsfield
value. Figure 3 shows the results for 2 data sets: the first,
a 119 slice 2.5 mm slice thickness set, the second a 749
slice 0.4 mm slice thickness set. From each slice we extract
values for both the inner and outer boundaries in that slice.

Fig. 2: Section of a sample slice of both clinical (left) and
phantom (right) lung tumor data, and below them the color
coded corresponding pixels.

Fig. 3: Lung wall from a data set of 119 2.5 mm. and a set
of 749 0.4 mm slices.



2.2 Lung Wall Removal
Once the inner and outer boundaries of the lung wall are

determined within each slice, the space inside the lungs
is scanned for nodules. In general, the nodules will be
represented in the data by clusters of pixels that are inside
the lung and have a relatively high pixel intensity. If clusters
of pixels whose intensities are greater than -100 Hounsfield
units are selected from these regions, there are 2 factors that
complicate the process of selecting out those clusters that
represent nodules. The first is the fact that blood vessels and
nodules have overlapping pixel intensity ranges. The second
is the fact that some of the nodules are attached to the lung
wall, and therefore those nodules do not show up as isolated
pixel clusters. An example of an attached nodule is shown
in Figure 4.

Fig. 4: Top: An isosurface from a phantom tumor data set
at -100 Hounsfield units. Bottom: a close up of the attached
tumor from this set.

Separation of nodules from blood vessels is described in
the next section. Here we describe a technique to separate
nodules attached to the lung wall. Because these sets of data
are all images of the same anthropomorphic thoracic lung,
the lung wall shows up consistently in every set. Looking
in the slice direction at the 3-D set of pixel intensities, the
lung wall consists of high intensity clusters of pixels that
span most of the slice direction. Specifically, if we look at
sets of pixels that are 10 pixels wide in the x direction (10
× y dimension × z dimension), there exist clusters of high
intensity lung wall pixels that span the entire slice direction
(see Figure 5). Our method scans these sets of high intensity
pixel clusters, and removes those that span the set in the slice
direction. In this manner, 2 outcomes are helpful for our
nodule search: Both outer and inner walls are removed, and

Fig. 5: Clusters of high intensity pixels are seen in isosurface
at -100 HU. On the right is a section of the lung, and on
the left some 10 pixel sections of that isosurface in the slice
direction, many of which span the slice direction and will
be removed with the lung wall removal algorithm.

attached nodules are separated from the wall. That is, where
nodules are attached, the 10-pixel columns of high intensity
pixels will leave clusters that represent the nodules, since
these do not span the whole slice direction, while removing
clusters that make up the wall. Figure 6 shows the same
attached nodule as in Figure 4, and then sets of high intensity
pixels that remain after elimination of the lung wall. In some
sets of data the entire wall is removed by this process (see
Figure 7); in others, parts of the wall remain and are later
removed by another processing step. In every case we have
run so far, a good part of the lung wall is removed and the
attached nodules are separated.

2.3 Separation of Tumors from Blood Vessels
At this point we distinguish between the nodules with

mean intensities around 0 and around -600 Hounsfield units.
We search for clusters of pixels inside the lung in one of our
two pixel intensity ranges. These clusters of pixels inside the
lung often contain both nodule and blood vessel pixels. We
separate out all of the smaller (less than 300 pixel) clusters,
and perform an erosion on the rest of the sets of pixel clusters
to separate pieces of a single cluster, i.e., for each pixel
cluster, a pixel that does not have a neighbor immediately
to the right, to the left, up, down, and in the previous and
next slice direction is eliminated. The smaller clusters are
not put through this process, so that the small nodules are
not lost. Pixel clusters representing the blood vessels appear
not as whole blood vessels, because the pixel distribution
of blood vessel pixels as a whole is different from that
of the nodules and the distribution is more spread. We see
incomplete vessels in these pixel clusters, which are easily
separated into pieces, removing them from the nodules (see
Figure 8). Because we are using data sets from the phantom



Fig. 6: Clusters of high intensity pixels after wall removal
in the region of the data set of Figure 3 where the tumor is
attached to the lung wall.

lung, the pixel distribution of the blood vessels will differ
from those of clinical data. However, from our past work,
we have seen that the blood vessel data have a fairly wide
distribution in clinical data, and one that is centered around
mean values lower than those of clinical nodules [6]-[7].

2.4 Final Tumor Selection
At this point, we are left with sets of pixel clusters (either

in the range of greater than -100 or -630 to -450), and
must make decisions about whether or not they represent
the phantom nodules. For each cluster we at look a variety
of factors: 1. its position in the data set (is it within the
boundaries set by our lung wall calculations?); 2. aspect
ratio; 3. ellipsoidal shape: the ratio of the number of pixels
to the corresponding volume of an ellipsoid that would fit in
the bounding box of the nodule; 4. percent of the bounding
box of the nodule that is filled by the pixel cluster. Nodule
clusters are often ellipsoidal, have aspect ratios that are not
exaggerated in a particular direction, and fill their bounding
boxes more than the spindly clusters resulting from blood
vessel do. Clusters representing the lung wall that were not
removed completely by the process above are eliminated in
the step by their aspect ratio. We evaluated the nodules in
the test set of 15 data sets and set limits on the geometric
factors based on the results of the 15 sets. We then tested

Fig. 7: Large pixel clusters remaining after wall removal on
another set of 749 slices.

Fig. 8: Comparative histograms of pixels in the region of
blood vessels and the pixels representing the phantom nodule
from Figure 4 in an isosurface at -100 Hounsfield units.

those limits on an additional 40 sets. Some of these limits
were size dependent; i.e. Smaller nodules are expected to
be rounder than larger nodules. Table 1 has the limits for
these factors over different size ranges of the high intensity
pixel clusters. Nodule shapes in these sets include spherical,
irregular, elliptical, lobulated, and spiculated. Results are
output as both the bounding boxes for each nodule and their
volume estimated by the number of cluster pixels.

3. Results
For the initial 15 sets we worked with to develop the

software, and for the 40 test data sets, manually selected
ground truth estimates were generated. Groups of these sets
had the same phantom lung nodule layouts, and results for
these sets should look the same. Some of the sets consisted
of 119 2.5 mm slices and the rest of 749 0.4 mm slices.
Pixel-pixel distances in plane were 0.78125 mm. Table 2



Table 1: Selection factors

Screening Pixel clump Aspect Ellipsoidal Fraction of
order size ratio ratio box filled

1 all ≥ 0.1
1 all ≤ 10.0
1 all ≤ 5.0 and ≤ 3.0
1 all ≤ 4.0 and ≤ 2.0 and ≥ 0.2
2 ≤ 500 ≤ 2.5 and ≤ 2.0
3 ≤ 500 ≤ 1.5 or ≥ 0.5
2 500-1000 ≤ 5.5 and ≤ 1.7 and ≥ 0.2
2 ≥ 1000 ≤ 5.0 and ≤ 5.0 and ≥ 0.1

outlines the different overlays of phantom nodules in the 40
sets. Table 3 gives the results generated for the 40 sets. For
each set, we report the number of nodules found, comparing
the computed boundary box and estimated volume with the
manually generated bounding box and the known volume
of the phantom. A false positive is a cluster of grid points
not associated with a reference nodule. In general, we were
able to locate medium and large nodules that were located in
the data sets. In the sets with thicker slice distances, we are
not able to locate the smaller nodules that are represented
in only a very small number of slices. In the thin sliced
sets, we are able to locate 96% of all phantoms. Figure 9
visually shows some the results from both a 119 slice set
and the corresponding 749 slice set from identical phantom
nodule layouts.

Fig. 9: Isosurfaces at -100 Hounsfield units of a 119 slice
set and a corresponding 749 slice set, and the results of our
software for each. The results are shown with the lung wall,
so that the position of nodules found is clear. More accurate
nodule detection is associated with thinner slice distances.

Table 2: Phantom lung nodules used in the 40 test sets

Nodule size mm3 shape Density (HU) Layout
1 511.13 spherical 100 2
17 676. irregular 100 2
18 263. iregular 20 2
30 63.72 spherical 100 2
31 254.71 spherical 100 2
19 253. irregular -300 2
3 526.64 lobulated 100 4
5 528.67 spiculated 100 4
7 4207.83 elliptical 100 4
20 4920.35 elliptical -630 4
21 471.3 elliptical 100 4
22 679.31 elliptical -630 4
23 4350.42 lobulated 100 4
24 5062.15 lobulated -630 4
25 569.17 lobulated -630 4
26 5279.07 spiculated -630 4
27 706.75 spiculated -630 4
8 4232.05 spherical 100 6
9 4286.76 spherical -10 6
6 533.69 spherical -10 6
29 33781.46 spherical 100 6
33 4215.1 spherical -630 6
36 34389.21 spherical -10 6
61 69.24 spherical -10 6
62 282.35 spherical -10 6
4 527.42 lobulated -10 7
2 524.67 spiculated -10 7
10 4315.84 elliptical -10 7
39 280.45 elliptical -10 7
40 283.36 lobulated -10 7
41 524.63 elliptical -10 7
42 67.65 lobulated -10 7
43 4234.41 lobulated -10 7
44 69.8 elliptical -10 7
46 68.71 spiculated -10 7
47 283.91 spiculated -10 7
63 4398. spiculated -10 7

Table 3: Results for 40 data sets

Layout Data Thick or 0 HU -600 HU False
set thin slice found found detections

2 7749,7755 thick 2/5,2/5 0/1 0,0
4 7495,7501, thick 3/5,4/5, 5/6,5/6, 0,0,

7507,7513, 3/5,3/5, 6/6,5/6, 0,0,
7519,7525 4/5,4/5 6/6,6/6 0,0

6 9511,9517, thick 4/7,4/7, 1/1,1/1, 0,1
9523,9529, 5/7,5/7, 1/1,1/1 1,0,
9535,9541 5/7,5/7 1/1,1/1 0,1

7 490,496, thick 2/12,2/12, 0/0,0/0, 0,0,
502,508, 2/12,3/12, 0/0,0/0, 0,0,
514,520 2/12,3/12 0/0,0/0 1,0

2 7001,7004 thin 5/5,5/5 1/1 1,1
4 1071,1077, thin 5/5,5/5, 6/6,6/6, 0,0,

1083,1089, 5/5.5/5, 6/6,6/6, 0,0,
1095,1101 5/5,5/5 6/6,6/6 0,0

6 9040,9046, thin 7/7,7/7, 1/1,1/1, 0,1
9052,9058, 7/7,7/7, 1/1,1/1, 1,0,
9064,9070 7/7,7/7 1/1,1/1 0,1

7 3,9, thin 11/12,11/12, 0/0,0/0, 0,0,
15,21, 11/12,10/12, 0/0,0/0, 0,0,
27,33 11/12,11/12 0/0,0/0 0,0



4. Conclusions and future work
We have developed a method to capture the location of

individual phantom nodules in lung phantom data sets. The
method includes an algorithm to locate the lung wall in
the data, and an algorithm to remove the walls from the
search for the nodules within them. This method has been
successfully tested with 40 sets of data for which we have
manually located the phantom nodules. Future work includes
applying our method to the full set of publicly available
FDA phantom CT scans available via The Cancer Imaging
Archive.
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