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Abstract - In this research, an improved approach to 

reconstruct high resolution brain images from Parallel 

Magnetic Resonance Imaging (pMRI) data is proposed based 

on the mathematical understanding that the PARS algorithms 

can be recast as linear approximates. It extends the PARS 

reconstruction method and is called IPARS in this paper. Our 

new improvements are in the following two aspects. First, 

localized significant coefficients of the Fourier series are 

selected and used for the reconstruction. Second, the 

maximum information from ACS lines have been retrieved 

and used for generating the coefficients for the 

reconstruction. The experiments have shown improved image 

reconstruction quality. 

Keywords: pMRI, image reconstruction, IPARS algorithm, 

PARS algorithm, GRAPPA algorithm.  

 

1 Introduction 

  Acquisition of Magnetic Resonance Imaging (MRI) can be 

dramatically speeded up by using parallel imaging 

techniques, called Parallel MRI (pMRI), or Parallel 

Acquisition Technique (PAT). PMRI uses multiple receiver 

coils to simultaneously acquire several sets of k-space data 

with reduced samples in the phase encoding line direction. 

Fast imaging time is a critical factor in medical imaging, 

especially when we consider the inconvenience it might bring 

for patients. The imaging time can be dramatically reduced 

when the sampling rate is reduced to a level lower than the 

Nyquist sampling rate; however, the desired high resolution 

images can only be obtained in post-processing when an 

image reconstruction algorithm with a goal to achieve 

minimal compromise in the signal-to-noise ratio (SNR) is 

applied to all datasets and the sensitivity profile of all coils.  

The development of an efficient image reconstruction 

algorithm is an important link in the successful 

implementation of pMRI technique. The direct result of 

subsampling is reduced field of view (FOV) in the 

reconstructed image with aliasing exhibited. In addition, a 

distinct inhomogeneous intensity across the imaging object is 

presented in images received from all coils due to each coil’s 

reception sensitivity. All acquired datasets contain signals 

from the imaging object that have been modulated by the coil 

sensitivities, and can be described using a mathematical 

model to depict the Fourier transformation of signals from 

the spatial to the k-space domain. Such a model provides a 

theoretical framework for various parallel imaging 

reconstruction methods [1]. It has been used to reconstruct a 

high resolution image that clearly shows the imaging object 

that is free of sensitivity effects. 

One reconstruction method for pMRI is in the spatial 

domain. The goal is to reproduce the exact full-resolution 

images that are sensitivity-invariant. This is represented by 

Generalized SENSE (GenSENSE), or SENSE (Sensitivity 

encoding), see [2,3,4]; both are referred to as SENSE-based 

algorithms. A typical problem with this type reconstruction is 

the under-determined problem due to an inverse matrix 

calculation, which is typically modified by regularizations, 

such as truncated SVD (Singular Value Decomposition) and 

Tikhonov regularization on matrix to obtain the Moore-

Penrose pseudo inverse to alleviate this problem [5,6].  

Another method of reconstruction is in the k-space domain. 

The goal is to directly reconstruct the sensitivity-invariant 

signals in full resolution. This is represented by a variety of 

SMASH and GRAPPA type algorithms, see [7-9]. In 

addition, research interest in the connection between the two 

category reconstruction methods has lead to further 

improvements on the reconstruction methods [10-21]. This 

research focuses on improving the PAR method that is 

further based on the GRAPPA algorithm.  

The original GRAPPA algorithm [8] was developed as a two-

step procedure. First, the under-sampled k-space data from 

each individual coil was interpolated to a full resolution 

version by a weighted combination of multiple lines and 

columns from data in neighboring coils. Second, the 

interpolated datasets from all coils are combined to obtain 

one synthesized full resolution k-space dataset that is 

sensitivity-invariant.  The PARS method [10] improved the 

first step by interpolating the missing data from the 

combination of k-space data from neighboring coils that are 

located within an adaptive radius. These methods relax the 

strict requirements on the accuracy of the coil sensitivity 

maps, and they also reduce the burden of large computer 



memory usage. However, problems, such as computational 

burden, and under-determined weights for the linear 

combination due to the limited coil spatial information, still 

persist in the GRAPPA-based algorithms. The problems 

became worsen with the increased number of weights to be 

determined.  

In this paper, a new approach call IPARS algorithm is 

proposed based on the mathematical understanding that the 

GRAPPA-based algorithms can be recast as approximates, 

and based on the fact that the ACS lines can be viewed as 

being reconstructed from the sub-sampled data in its 

neighborhood, and vice versa. The experiments with our 

improved IPAR algorithm have shown improved image 

reconstruction quality. 

2 Imaging Model 

 In this paper, the Cartesian system is considered and the 

volumetric MRI data acquired using multiple RF receiver 

coils can be described as:  
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where , ,( )x y zr  is the spatial resonance signal (the 

sensitivity-invariant signal) that represents the density of an 

image object at ),,( zyx . For the l-th coil, 1, ,l L= L , 

, ,( )
l

x y zc  is the complex-valued spatial sensitivity map. 

( ), , x y zl k k ks  is the sensitivity modulated k-space data being 

subsampled with size of ,  ,  x y zK K K , 

,  ,  x x y y z zK N K N K N≤ ≤ ≤ , where ,  ,  x y zN N N  is the size of the 

full resolution data in the k-space domain. Here 

,  ,   0, , 1,  0, , 1,  0, , 1( ),x y z x x y y z zk k k k K k K k K= − = − = −L L L  is 

referred to the sampling locations, in comparison, 

,  , ( )x y zω ω ω  is usually referred to the location in the full 

resolution k-space. In this paper, a uniform sub-sampling 

scheme is referred, though an arbitrary sub-sampling scheme 

can be likewise described. The ratio of the amount of the fully 

acquired data compared to that of subsamples collected is 

defined as folds or reduction factors, M .  The observed data 

from the l-th coil, 1, ,l L= L , ( ), , x y zl
k k kd , can be described 

as   

( ) ( ) ( ), , , , , , x y z x y z x y zl l lk k k k k k k k kd s n= +  (2.2) 

with noise ( ), , x y zl k k kn  usually assumed as a Gaussian 

noise with independent identical distribution (i.i.d.) for each 

location.  

For the sake of simplicity and to focus on discussing the 

relationship between the parallel imaging reconstruction 

methods, a single slice ( 1zN = ) data will be used in Eqn. 

(2.1) though the formalism can be applied to volumetric data. 

Further, the noise term will be ignored in the following 

section; thus the data 
l

s  is the same as 
l

d . Additionally, the 

subsampling is constrained to phase encoding ( y direction) 

since regularized subsampling in the frequency encoding, or 

readout, direction will have no effect on the acquisition time 

[13]. 

 

3 The Extended GRAPPA Algorithm 

 In this section, an extended GRAPPA algorithm is 

connected to the GenSENSE through a best fit reconstruction 

using a mathematical model [23]. The characteristic of the 

GRAPPA style algorithms is that data of imaging object for 

each coil is reconstructed and combined to obtain a high 

resolution MR image of the object that is invariant to the 

sensor locations. The extended GRAPPA is indeed equivalent 

to the GenSENSE algorithm. To focus on the discussion of 

the extended GRAPPA and to simplify, 

1, ,( , ) 0,  l M
l

c x y =≠ L  are assumed when the extended 

GRAPPA reconstruction is derived, and we rewrite Eqn. (2.1) 

as 
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  (3.1)      

By using the convolution theorem, the following equation can 

be obtained,  

 ( ) ' , '
, ,  ,  ( ) ( )x y l x y l l x x y y

x y

k k k kld d c
ω ω

ω ω ω ω− −=∑∑ % ,   

                                                                                     (3.2)  

where ( )
( )
( )

.
,

,
,,

yxc

yxc
yxc

l

l
ll

′

′ =  Therefore, ( )
yxll kkc ,~

, ′  is 

the Fourier transformation of the ratio of sensitivities of two 

coils, i.e., the l-th and the 
'

l -th coils. Thus the LHS, 

( )
yxl kkd ,  in Eqn. (3.2) is the observed sub-sampled 



k-space data from l-th coil, while ( )
yxld ϖϖ ,  in the RHS of 

Eqn. (3.2) is the full resolution k-space data from the 
'
-thl  

coil. This modified formula establishes a connection between 

the data from two different coils. It can be interpreted as an 

application of generalized series [21] where the 
'
-thl  coil 

data is served as the reference data for the data from the 

-thl coil.  

A matrix , ' 'l l l l
D C D= %  can be formed from Eqn. (3.2) and it 

leads to a large matrix system by integrating data from all 

coils 
'l l≠  (the number of coils involved in the matrix is 

denoted as 
'

L , 
'

L L≤ ), therefore, we have 
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The full resolution k-space data, 'l
D , of the 

'l -th coil can 

then be reconstructed as    
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Eqn. (3.4) shows that the observed data in 
'
-thl coil can be 

obatained as the weighted sum of data from the other coils, 

where the weighting matrix used in Eqn. (3.4), is given as   
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Now we divide the weighting matrix, , '

ˆ̂
l l

C , of size 

2mN N×  in Eqn. (3.5) into M  different Toeplitz matrices 

of size mN mN×  along the column direction according to 

the relative locations in each block. The circulant elements in 

each resulting matrix is a vector of size  mN , which, when 

reshaped back into a 2D matrix of size m N× , yields a 

weighting map, ( )' ' ,  
, , , ,

( )k kx ys l l s l l
W a= , for the l’-coil that 

can be used to reconstruct data at a relative location, 0s >  

(note that reconstructing data at 0s =  is redundant because 

those data have already been sampled) in each block. The 

missing data at a relative location, s , can then be 

reconstructed as 
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This linear combination method follows the GRAPPA 

philosophy and is termed the extended GRAPPA algorithm. 
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Fig. 1.  Illustration of the matrix 
H

l l
C C% % . 



GRAPPA PARS

Locations with sampled data

Locations with missing data
A pixel with missing data to be reconstructed

Locations where sampled data will be used for reconstruction 
 

Fig. 2. Pixels used in GRAPPA reconstruction (left), inside a rectangle, length =7 pixels, width =5 pixels, compared to those 

pixels used in PARS reconstruction (right), inside a circle with radius=3.5 pixels. 

4 The GRAPPA and PARS as the 

Approximation of GenSENSE 

The proposed extended GRAPPA reconstruction method 

describes the weights for reconstructing each channel data 

in the same way as the GRAPPA algorithm. The only 

different is that the ratio of coil sensitivity maps is used for 

reconstructing data for each coil in the extended GRAPPA 

reconstruction.  

In the extended GRAPPA algorithm, the weight maps for 

the relative location, s , in a block, are universal. They 

resemble the ratio of the k-space sensitivity maps with the 

most significant weights located in their central locations. 

In each k-space location where the missing data needed to 

be estimated, the weight maps are to be shifted to be 

centered upon the particular location as weights for 

reconstruction. This ensures the closer neighbors of the 

location have   heavier weights used in the reconstruction. 

Therefore, optimal approximation can be constructed by 

choosing the most significant weights (in the center of the 

weight maps) while ignoring other small weights if we sort 

the weights according to their magnitude values, the same 

way as the SMASH algorithm. This is consistent with the 

GRAPPA and PARS methods where selected neighboring 

blocks and columns are involved in estimating the 

individual k-space coil data. Specially, we have the 

following relationship among the extended GRAPPA, 

GRAPPA, and PARS: 

• Extended GRAPPA becomes the GRAPPA 

algorithm when a rectangle frame with R  rows 

and P  columns are involved in the reconstruction, 

see Fig. 2 (a), 
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• Extended GRAPPA becomes the PARS algorithm 

when a circle frame radius r is involved in the 

reconstruction, namely 
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5 The Proposed Method 

  In this paper, using the theory developed in the previous 

sections 3 and 4, we proposed to extend the Eqn. (3.3) to 

the following 
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where ( )kskkG yx ∆+,  is a localized sub-region that is 

centered at a pixel ( )kskk YX ∆+,  in the k-space. This sub-

region can be selected as a subset of the disk with a radius 

of r.  

(a



Further, it is interested to notice that an important feature 

with the usage of the auto-calibration signal (ACS) lines to 

determine the weights. The following explanation 

highlights the role of the ACS lines based on the proposed 

weight maps to be used for our algorithm. The connection 

between the data to be used and those from the ACS lines 

can be establish by rewriting Eqn. (5.1) as 
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where ( )kskkd yxl
∆+,'  is the ACS data lines from the 

'
l -th coil. Assume a  is the amount of available ACS lines, 

for an approximation with degree, v, namely, v number of 

weights to be used in the approximation, and let 
'

s

l
W  be the 

vector of the selected weights within a relative distance 

from a location, s  where data are to be used in 

reconstruction using all the 
'

L  number participating coils. 

By integrating together the available data from the ACS 

lines of the '
l -th coil into a vector 

, '

ACS

s lD , of size u Na= ,  

we have 

 ( )( )
1

,,

1 ×′′′×=
Lv

s

lLvu

sACS

ux WDD  (5.3) 

where D= '
u vL

D
×

 is the affine transformation of the data 

from other coils to be used as weights for reconstruction 

(according to Eqn. (5.3), and in the same formalism of Eqn. 

(5.1)). The weights can then be estimated as 

 
1

' ',
( )s H H ACS

l s l
W D D D D

−= . (5.4) 

This equation demonstrates that the ACS lines essentially 

play the same role of providing the sensitivity information 

of the coils in determining the weights for reconstruction. 

Using Eqn. (5.4), the number of weights used for 

reconstructing data from each coil can be decided by the 

ACS lines is limited by / 'u L . Byond the limit, the 

solution will be ill-posted. In fact, the number of weights 

can be determined becomes much less when considering the 

correlations among the sub-sampled data. If only Eqn. (5.3) 

is used, this drawback becomes obvious when the number of 

weights needed to be estimated is increased. In the extreme 

case where the perfect reconstruction is pursued, it becomes 

obviously ill-posted where the number of weights needs to 

be decided is 
'L Nm× × . Namely, the underestimation of 

weights would be a problem even using the full sampled 

data as ACS lines. This is because the matrix dimension of 

H
D D  is dramatically increased to 

' '( ) ( )m N L m N L× × × × × . This reveals truth effect and 

limitation of the ACS lines on the reconstruction with the 

existing PARS algorithm. 

Meanwhile, the ACS lines provide useful knowledge about 

the coil sensitivity. To retrieve the maximum information 

from the ACS lines, in this proposed method, we assume 

that Eqn. (5.4) is invariance with respect to the location, s . 

In the reverse direction, the ACS lines can be viewed as 

reconstructed from the sub-sampled data in its 

neighborhood, or the sub-sampled data can be viewed as 

reconstructed from the ACS lines; therefore, similar to Eqn. 

(5.4), another equation  can be written by swapping the 

matrix D and W in Eqn. (5.4), which resulting in the 

following, 

 ( ) ( )
1'1,' ×′′′

′
=

Lv

s

l

ACS

Lxvu

l

u WDD  (5.5) 

where 
ACS

LxvuD ′'  is the affine transform of the ACS lines from 

other coils to used as weights for reconstruction. Now, 

integrating together the Eqn. (5.4) and Eqn. (5.5) will result 

in a matrix of larger dimension as shown in the following 

equation, 
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Now the left hand side is a vector of size uu ′+ . The 

weight matrix is then obtained as following  
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This results in using a matrix with increased rank in Eqn. 

(5.7) for calculating the weight coefficients to be used for 

reconstructing the full resolution image from the pMRI 

data. This improvement is new to the existing techniques, 

and we call this algorithm IPARS method. As shown in the 

experiment in the following section, this method 

dramatically increases the efficiency of using the 

information from the available data.  

 



6 Simulation Studies 

To demonstrate the advantage of our proposed IPARS 

reconstruction method, the algorithm was applied to 

simulated data using the Matlab software.  

First, the simulation of the brain MRI image is obtained, 

and the sensitivity maps from eight receiver coils are 

simulated. The sensitivity maps are combined with the MRI 

to simulate the reduced sample MRI data from each 

channel. Specifically, a single-slice, sensitivity invariant 

MRI, of 64 x 64 points was  simulated using the Brainweb 

simulated brain model (21), which was then combined with 

the simulated eight channel coil sensitivity maps to create 8 

sets of sensitivity-variant MRI coil data of 64 x 64 points. 

The data were then Fourier transformed to k-space, from 

which the even samples in y-direction for each coil were 

selected to form 8 sub-sampled datasets of size 64 x 32. If 

zero filling is used for reconstruction, then the aliasing can 

be clearly observed, see Figure 1.  

 

Figure 4. The 8 channel reconstructed images using zero 

filing method, with no ACS lines used.  

Second, improved image reconstruction was run on the 

simulated data. In our reconstruction, one set of weight 

points focus in the center low frequency domain as shown 

in Figure 2 has been used to reconstruct the full resolution 

images. Namely, only those neighboring points around a 

pixel point is used for reconstruction. 

 

Figure 5. The set of weights used in reconstruction. 

 

7 Results and Discussion 

Shown in Figure 6(b) is the reconstructed image using our 

improved IPAR reconstruction method. IPAR has improved 

the PAR reconstruction and the usage of the ACS lines. The 

PAR reconstruction in Figure 6(a) used neighboring pixels 

data in each coils within a radius of 3 for reconstruction; the 

IPAR used 6 neighboring pixels for reconstruction. In both 

algorithms, three coils were involved in reconstructing the 

full resolution data in each coil. It is clearly shown that our 

improved algorithm reconstructed a full resolution image of 

high resolution and reduced aliasing. In contrast, the 

original PAR reconstruction has resulted in an image that, 

although in full resolution, some aliasing can still be 

observed clearly.  

Our proposed reconstruction method alleviates the 

underweighted problems that most algorithms encountered, 

Only most significant weights are used for the 

reconstruction, and maximum information from ACS lines 

are used.  

 

(a)                      (b) 

Figure 6.  The reconstruction results from (a) PAR 

reconstruction and (b) our proposed IPAR reconstruction.  

 

8 CONCLUSION 

In this paper, a mathematical understanding of the roles of 

the ACS lines has been presented to propose an improved 

reconstruction method IPAR base on the PARS algorithms 

so that the weight coefficients can be best determined for 

pMRI reconstruction. 
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