
The Centinel Data Format:
Reliably Communicating through Time and Place

Clarence Lehman1, Shelby Williams2, and Adrienne Keen3

1University of Minnesota, 123 Snyder Hall, 1474 Gortner Avenue, Saint Paul, MN 55108, USA
2University of Minnesota, 100 Ecology, 1987 Upper Buford Circle, Saint Paul, MN 55108, USA

3London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK

“A library book lasts as long as a house, for hundreds of years.”
—Thomas Jefferson, 1821

Abstract— A common experience among scientists and en-
gineers is storing and sharing data, the capacity for which
has advanced immensely since laboratory notebooks were
only paper and ink. However, since that time, the sustain-
ability of data has decreased. Even though our digital data
should be safer and more secure than ever, a continuing
cascade of obsolescence in computer media and software
can actually make it less so. Here we outline an ensemble of
free tools and techniques that we call “Centinel,” designed to
manage, communicate, and archive digital datasets. Rather
than embedding error-correcting codes as part of the com-
puter media, Centinel exposes them and places them with
the data and metadata. Thus even printed copies of the
data form reliable storage media that can last indefinitely
without intervening attention. Centinel complements stan-
dard methods for data sustainability, such as data migration.
Unified approaches, as we outline here, benefit reliability
and longevity of data.

Keywords: database, data archive, data longevity, data reliability,
error correcting codes

1. Introduction
In 1815 began one of the largest scientific data collection
projects ever launched [1]. Legions of surveyors walked
regularly spaced transects along 2,500,000,000 meters of
the Louisiana Territory, recording the biological species,
geographic locations, and diameters of selected trees near
periodic sample points—plus other information on soils,
vegetation, and boundaries of wetlands. For almost a century
the survey continued. Now, another century after the last data
were recorded, the results form one of the most visible ef-
forts ever, organizing the rural landscape into square sections
along those transects. The results also form one of the best
preserved and widely available datasets ever. Think of which
present datasets, in your personal experience, are guaranteed
to be extant and usable well into the 22nd century.

A large part of the reason the survey data survived was
that it was recorded on paper and protected at many different

governmental sites. In the meantime, technology changed
immensely. Computers emerged and increased in capacity so
relentlessly that the Library of Alexandria’s ancient charge
of organizing and cataloging all human knowledge began to
draw within reach. Global access to digital data can make
that knowledge available to all. Large-scale private enter-
prises are aiming at this goal, but individuals in academia
and industry are established sources of knowledge and
therefore have a special role in achieving this.

Here we are addressing that role—of scientists, engineers,
and others who collect empirical data, share it, and want
to preserve it for the future. In this report we explain how
digital computer techniques of today combine naturally with
paper methods of prior centuries to create a form of digital
storage that can reliably persist into future centuries and
improve electronic processing today.

2. What Centinel is and is not
The general topic that Centinel addresses has been long
discussed (e.g., [2] [3] [4] [5] [6] [7] [8] [9]) and a complete
solution is not yet available. Centinel combines the words
“century” and “sentinel,” guarding data for extended periods.
One goal for Centinel is to ensure that the digital data it
encodes will be accessible in a century or more, without the
need for care and intermediate steps by humans. A second
goal is to protect data over a shorter term, from the time of
initial creation to the time of final processing. Centinel works
by (1) keeping all metadata with the data, (2) protecting
data with line-by-line error correcting codes, (3) providing a
format easily readable by humans as well as computers and
scanners, (4) supporting a reliable digital format that works
on any media, including paper and verbal communications,
to protect data from unintentional alteration, and (5) supply-
ing an extensible, self-defining format with accompanying
tools that help computer programmers know that the data
entering their programs are correct. Centinel is an approach
to data management, but also a set of basic computer utilities
for writing, reading, editing, separating, joining, ordering,
and aligning data. It avoids structures that are error prone

6674844762232577 Keyword SpAbbr: Abbreviations for species names. Abbreviations contain the
0629561874138616 first three letters of the genus name followed by the first three letters
0211050455008008 of the species name. The full species names are recorded with their
5515307245627135 abbreviations in table "species codes" at the end of the chapter.
5915322805104717 Keyword Date: Date species was collected. Format year-month-day.
1453182442695072 Keyword CollID: Unique code assigned to species sample collected.
1382423906566782 Keyword Cover: Estimated canopy cover, in percent. Dashes indicate missing
5953391885352618 data. (See "methods" at the end of the chapter.)
0748783303437946 Keyword HtMax: Maximum height, in meters. Dashes indicate missing data.
0229302812296440 (See "methods" at the end of the chapter.)
0602554115737437 Keyword HtMin: Minimum height, in meters. Dashes indicate missing data.
0229302812296440 (See "methods" at the end of the chapter.)
0000000000000000
1976160343505769 :Site :Code :SpAbbr :Date :CollID :Cover :HtMax :HtMin
4554847814214755 :1600 :P1600D04 :Abibal :1989-08-21 :AMB00555 : - : 5 : 5
2645745581124348 :1600 :P1600D01 :Abibal :1989-08-21 :AMB00604 : 2 : 1 : 1
1076375677295808 :1600 :R1600EA :Abibal :1989-08-24 :AMB00666 : 3 : 1 : 1
2000445884315808 :1600 :R1600EA :Abibal :1989-08-24 :AMB00668 : 5 : 6 : 6
0582355170295008 :1600 :R1600EA :Abibal :1991-08-05 :AMB01719 : 2 : 2 : 2
1485325476235008 :1600 :R1600EA :Abibal :1991-08-05 :AMB01722 : 4 : 6 : 6
4100414960104041 :1600 :R1600EA :Acerub :1991-08-05 :AMB01503 : 2 : 2 : 2
5773084583093978 :1600 :P1600B01 :Agrsca :1989-08-25 :AMB00456 : 3 : 2 : 2
4766066289426272 :1600 :P1600D01 :Amerot :1991-06-17 :AMB01439 : 2 : 2 : 2

Figure 1. Excerpt of a sample Centinel data file from a large ecological database, with metadata above and error
correcting codes called “centinels” at left. Here colons separate columns rather than vertical bars. In the Centinel
structure, error detection and correction stays with the data rather than with the computer medium.

and supports good data management practices, for example
as outlined in [10] and [11].

Centinel is not intended to substitute for large-scale in-
teractive databases undergoing continual manipulation, such
as in PostgreSQL, MySQL, or Access. It is, however, a
good format for long and medium-term retention of such
databases, as Centinel format can be readily exported from
them through simple utility programs, and conversely, im-
ported through conventional means or by scanning. Nor is
Centinel intended as a complete solution to the problem of
storing all data at national and international scales (e.g. [12]
[13]), but rather as a solution for individual research and
development groups to help maintain their data.

The Centinel format shown in Figure 1 supports the
movement of data through place and time. A dataset docu-
mented sufficiently with complete descriptions as its meta-
data, and protected with error correcting “centinels,” can be
transmitted to another researcher in a distant place without
separate documentation and time spent explaining the data,
or equivalently it can be transmitted forward to another
researcher in the distant future. In other words, it can be
archived. Instead of error detecting and correcting codes
being applied to the storage media, as is the common method
today, codes in Centinel are applied to the data themselves,
and stay with the data through all media changes. That
simple but unusual characteristic fills a gap in existing data
methods and provides confidence in the data across distant
places and times. Multiple printed copies of the data can
be stored throughout the world and scanned with optical
character recognition in the remote future. The centinels,
checked automatically against the scanned results, are the
essential link to data reliability.

As in some other databases, Centinel has multiple equiv-
alent formats, which we call “singular,” “columnar,” and
“mixed.” Long lines of data in singular format can extend
onto new lines, indented as in Figure 1. Here is a simpler
file in singular format:

Class: 1
ID: 123
Age: 21
Region: SSA

Class: 1
ID: 47
Age: 7
Region: UK

Class: 2
ID: 723
Age: 70
Region: US

Below are the same data in columnar format:
| Class | ID | Age | Region
| 1 | 123 | 21 | SSA
| 1 | 477 | 7 | UK
| 2 | 723 | 70 | US

And below is mixed format:
Class: 1
| ID | Age | Region
| 123 | 21 | SSA
| 477 | 7 | UK

Class: 2
| 723 | 70 | US

These formats are interchangeable. The choice is a matter
of space, readability, and ease of processing. All software
written to handle Centinel data should process the three
formats equally.

Printed copies of data with error-correcting centinels need
not be limited to small data sets. For example, the genome
of the fruit fly (Drosophila melanogaster), represented with
one base-64 symbol for each of its 47 million codons,
would require approximately 6000 pages—not absolutely
prohibitive to print for an important, expensive dataset. By
comparison, the King James Bible is 4.3 million characters,
about one-tenth of this genome, and more than one copy of
that work has been printed.

3. How Centinel works
Centinel protects data when they are complete and ready to
be archived. But it can also be used when the data are first
entered, to guard against accidental modifications of datasets
undergoing incremental change.

To explain how Centinel works, we must consider what
it means for data to be digital. Two properties are essential.
First, the data must be represented by “symbols” that have
only a finite number of states. Second, the shapes of any
two distinct symbols must be separated by a sufficient gap,
so that a symbol for one datum does not, except very
rarely, degrade into a different symbol for a different datum.
Symbols can take various forms—binary 0 and 1 encoded
electronically in computer memories are one example of
digital data. The Arabic numerals 0–9 printed on paper are
another. With these ideas in mind, Figure 2 shows analog
versus digital representations of a function, y = f(x).

An analog form on paper could take the form of a graph,
Figure 2A. The value on the vertical axis varies smoothly,
and can be read to reasonable accuracy with a ruler and
a careful eye. However, each time the graph is copied,
its accuracy diminishes. The curve becomes successively
blurred, the right side may get slightly skewed with respect
to the left, and so forth. In contrast, the entire curve in digital
form is defined by coefficients, Figure 2B. When this digital
version is copied by re-typesetting, it will not degrade, for
the individual symbols will be recognized for what they are
and reproduced intact. A new font may even change ‘x’ to
‘x’, but the meaning of the symbol will remain.

1.5 2.0 2.5 3.0 3.5A

0.4

0.2

−0.2

−0.4

.................
.................
..................
..................
.................
...................
...................
.....................
.......................
.............................

...
...........................

.......................
....................
....................
..................
..................

B
y = x3 − 7.4776x2 + 18.0197x − 13.8159

Figure 2. Non-electronic analog and digital data for the same curve.
Printed copies of the digital data (B) will not degrade over time as
will the analog version (A) of the same data.

↑ ↑
−5−4−3−2−1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

.

.

×
×
.

.

×
.

.

×

×
×
.

×
.

.

.

×
×
×

×
.

.

×
×

.

.

.

×
×

×
.

×
×
.

.

×
.

×
×

×
.

.

×
.

×
×
.

.

×

.

×
.

×
.

×
.

×
.

×

.

×
×
×
.

×
.

.

.

×

.

×
×
.

.

×
×
.

.

.

.

.

×
.

×

.

×
×
.

×

×
.

×
.

.

↓↓↓↓↓
g b f e j j o y o f a m i s t y d a w n

Figure 3. Error-correcting “centinels” (left) for a 19-character mes-
sage (right). Each centinel covers a distinct combination of columns,
such that any unmatched centinels identify which column is in error
and how to correct it. (See code in the appendix for details.)

Thus digital data are not at all restricted to electronic
media, but paper can carry digital data as well, and has
done so for millennia. Moreover, some of the most common
digital information read by computers today is recorded
directly on paper, plastic, metal, and other substrates. The
ubiquitous bar code is a case in point, though bar codes are
not human-readable as Centinel-protected data are.

A significant separation between symbols in appearance
or physical state keeps unavoidable small degradation in
information from changing the message, because one symbol
does not easily degrade into another. However, separation
of symbols is not enough. For highest reliability, error
correcting codes must be applied to the digital data to prevent
rare alterations of one symbol into another from changing
the message, except with negligibly small probability.

Centinel uses a “Hamming code” for arbitrary symbols,
a generalization of the original code [14] for binary digits.
Such codes we call “centinels,” and they appear at the left
of each line, at the end of each printed page, and at the
end of each file. They can correct any single-symbol error
in a line and detect any two-symbol errors. In addition,
with high probability they detect multiple-symbol errors,
including errors in the centinels themselves.

Each symbol is assigned a small integer and the integers
for a given subset of columns are summed. The sum, modulo
the number of symbols, is translated back to a symbol, as
in columns −1 to −5 of Figure 3. This is repeated for
carefully chosen subsets of columns which allow errors to
be located and corrected. Then the results are translated to
decimal form, as in Figure 1, to mask the actual random
combinations of symbols, which by happenstance can spell
out any word.

Complete details are in the Centinel algorithms (ap-
pendix). These details are part of the metadata and should
be included with archived data.

4. Comparison with other approaches
A standard approach to data archiving is a rigorous effort
of continually transferring data from old media and old
software to new, before the old media and software become
completely obsolete—keeping the data “alive” so to speak.

That is called “migration” [12]. It is a practical, well-tested
method, though it can be labor intensive and susceptible to
catastrophic failure.

Successful migration requires a central discipline main-
tained over long periods. Any lapse in the chain of migration
will result in the complete loss of data. Successful migration
will be practical for large, well funded data sets. However,
for many small data sets, discipline and funding can easily
lapse over long periods of time.

Timing is key, as migration must take place while (1) ma-
chines that can read the media still exist, (2) programs
encoding the information are still operational, and (3) the
media and the information stored on it have not deteriorated.

It follows that the best chance of success in data preser-
vation will be for (1) media that require no advanced or
specialized machinery to read them, (2) formats that require
no complex computer programs to process them, or at worst
require the simplest programs that can be described com-
pletely in a few pages of text, as in the Centinel algorithm
(appendix), and (3) media and encoding methods that will
themselves last a century or more. Centinel allows data
preservation with a single migration.

A second method is called “encapsulation.” Fully suc-
cessful migration to new media will be worthless if the
software that accesses the data ceases to exist. For example,
an organization producing software may go out of existence
and no other organization may support the old format.
This has happened repeatedly in the history of computing.
Encapsulation aims to include with the data all software
that accesses the data, in a form that can be translated
to future machinery. That is, of course, easiest when the
corresponding software is as limited as possible.

Two other methods proposed for data archiving are “em-
ulation” and “technology-preservation.” In emulation, the
complete hardware and software architectures to retrieve the
data are migrated forward with the data and “emulated”
on the future system. That practice was widespread and
successful among mainframe computers in the 1960s, where
one generation of computers would emulate the hardware of
the generation before. But as computers become increasingly
complex in their architecture and operating software, it
becomes difficult to make this practical into the indefinite
future.

In technology-preservation, the actual hardware and soft-
ware is preserved, museum-style, along with the data for
future access. This is problematic, however, for today’s
computers are built for the moment, not built to last, and
may not even boot up properly after a decade of disuse.

Therefore, emulation and technology-preservation are not
related to Centinel, but migration and encapsulation are.
Centinel implements encapsulation in the simplest form—
under 100 lines of code (appendix)—and with a single
migration, creates digital documents that last as long as
possible—up to a century or more.

5. Suggestions
In conclusion, we offer the following: (1) To keep electronic
data safe, prepare early for archiving. (2) Archive data in
the simplest formats possible. (3) Document data to the
highest standards. (4) Associate documentation directly with
the data it describes, ideally in the same file. (5) Keep
multiple copies in separate locations. (6) Regularly convert
working files from proprietary databases to archival format.
(7) Keep printed copies of critical data, with Centinel-like
guard symbols and documentation for future recovery.

For full details and utility programs supporting this
project, see www.cbs.umn.edu/centinel.

6. Acknowledgements
We thank Eville Gorham, Jan Janssens, Todd Lehman, Eric
Lind, Richard McGehee, David Tilman, Richard Barnes,
and all others who lent help and encouragement during this
ongoing project. This project was supported in part by a
National Science Foundation LTER grant to David Tilman
and by a University of Minnesota database grant to Eville
Gorham.

References
[1] L. A. Schulte and D. J. Mladenoff, “The original US public land sur-

vey records. their use and limitations in reconstructing presettlement
vegetation,” Journal of Forestry, vol. 99, pp. 5–10, 2001.

[2] J. Rothenberg, “Ensuring the longevity of digital documents,” Scien-
tific American, vol. 272, pp. 42–47, 1995.

[3] A. Waugh, R. Wilkinson, B. Hills, and J. Dell’oro, “Preserving digital
information forever,” Proceedings of the Fifth ACM Conference on
Digital Libraries, pp. 175–184, 2000.

[4] D. Butler, “The future of electronic scientific literature,” Nature, vol.
413, pp. 1–3, 2001.

[5] C. Tristam, “Data extinction,” Technology Review, vol. 105, pp. 37–42,
2002.

[6] K.-H. Lee, O. Slattery, T. Lu, R. McCrary, and Victor, “The state of
the art and practice in digital preservation,” Journal of Research of the
National Institute of Standards and Technology, vol. 107, pp. 93–106,
2002.

[7] S. Ong, “Worm storage is not enough,” IBM Systems Journal, vol. 46,
pp. 363–369, 2007.

[8] U. Duerig, “High density multi-level recording for archival data
preservation,” Applied Physics Letters, vol. 99, p. 023110, 2011.

[9] J. Marberg, “Towards SIRF: Self-contained information retention
format,” Proceedings of the Annual International Systems and Storage
Conference, Haifa, Israel, 2011.

[10] E. T. Borer, E. W. Seabloom, M. B. Jones, and M. Schildhauer,
“Some simple guidelines for effective data management,” Bulletin of
the Ecological Society of America, vol. 90, pp. 205–214, 2009.

[11] M. C. Whitlock, “Data archiving in ecology and evolution: Best
practices,” Trends in Ecology and Evolution, vol. 26, pp. 61–65, 2011.

[12] S. Rabinovici-Cohen, M. E. Factor, D. Naor, L. Ramati, P. Reshef,
S. Ronen, J. Satran, and D. L. Giaretta, “Preservation datastores:
New storage paradigm for preservation environments,” IBM Journal
of Research and Development, vol. 52, pp. 389–399, 2008.

[13] H. Heslop, S. Davis, and A. Wilson, “An approach to the preservation
of digital records,” National Archives of Australia, Link at http:// www.
naa. gov. au/ recordkeeping/ er/ digital_ preservation/ summary. html
or http:// www. naa. gov. au, 2000.

[14] R. W. Hamming, “Error detecting and error correcting codes,” The
Bell System Technical Journal, vol. 26, pp. 147–160, 1950.

[15] B. Kernighan and D. Ritchie, “The C programming language,” Pren-
ticeHall, Englewood Cliffs, NJ, 1978.

7. Appendix: The Centinel algorithm
The complete algorithm that encapsulates Centinel files is
given here in a subset K&R C [15]. The material below,
together with Kernighan and Ritchie’s book, should allow
the algorithm to be transcribed into future programming
languages and the data to be extracted from Centinel files
as long as the printed form is extant.

The algorithm adds an error-correcting code to each line
of a text-based file, another to each page, and a third to
the entire file. Each output line begins with a decimal error
correcting code guarding that line, and also guarding the
error correcting code itself, then the text of the line. In printed
form another decimal code guards the entire page and a third
guards the entire file.

In computing the error correcting code, leading and
trailing white space is skipped, multiple blanks count as
a single blank, and end-of-line codes are not counted. The
code at the beginning of the line is not counted either. The
assignment between symbols and numbers is specified in
array s below, where ‘a’ is number 1, ‘b’ is number 2, ‘A’ is
number 27, and so forth. Any similar assignment could be
substituted.

In the algorithms below, flow control and reserved words
are bolded, variables and function names are italicized, and
certain operations such as ‘<=’, ‘>=’, ‘!=’, and ‘==’ are
displayed in a mathematical form as ‘≤’, ‘≥’, ‘ 6=’, and ‘≡’,
respectively.

DATA STRUCTURES

#define C 256 1. Maximum character code plus 1.
#define L 120 2. Maximum data length, excluding guard symbols.
#define G 8 3. Number of guard symbols.
#define COL 9 4. Number of symbols columns displayed on the page.
#define PAGEL 50 5. Number of lines per page.
#define IDENT 127 6. Identity symbol.

char s[] = 7. Character set available for present application.
"_abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789"
" .,;:!?+-*/\\=\"’()[]{}<>^&%|";

int nchar; 8. Maximum number of characters in present application.
char seq[C]; 9. Sequence number for each symbol in the set.
char f [C][C]; 10. Modulo sum and difference tables.
char ptn[L][G + 1]; 11. Pattern of guard symbols for each position.
int pagef = PAGEL; 12. Number of lines on first page.
int pages = PAGEL; 13. Number of lines per subsequent page.

int ipage = 0; 14. Page index.
int ifile = 0; 15. File index.
char in[L + 1]; 16. Input line.

char line[L + 1], page[L + 1], file[L + 1]; 17. Current line, page, and file.
char guard[G + 1]; 18. Guard symbols, individual characters.

END OF PAGE
Upon entry to the algorithm, (1) page contains a list of symbols representing the current page. (2) ipage
indexes the next entry for the page. (3) a is set if a blank line should follow the code, indicating end of page.
(This is not used on the last page of the file, because the code for the entire file follows immediately.) At exit,
(1) Guard symbols for the page are displayed. (2) guard is destroyed. (3) ipage is set to zero.

seqpage(a) int a;
{

if (ipage ≡ 0) return;
page[ipage] = 0; ecc(guard, page);
seqn(guard, ”; ”, ””); if (a) printf (”\n”);
ipage = 0; }

MAIN PROGRAM

main(argc, argv) int argc; char ∗argv[];
{ char c; int i, j, k;

if (argc > 1) 1. If an entry parameter has been
{ pagef = atoi(argv[1]); supplied, take it to be the

if (pagef < 2 || pagef > 100) pagef = PAGEL; page length.
pages = pagef ; }

if (argc > 2)
{ pagef = atoi(argv[2]);

if (pagef < 2 || pagef > 100) pagef = PAGEL; }

s[0] = IDENT; 2. Determine the number of symbols
for (i = 0; s[i]; i = i + 1) seq[s[i]] = i; in the set while developing a
nchar = i; list of sequence numbers.

for (i = 0; i < C; i = i + 1) 3. Clear the modulo addition table.
for (j = 0; j < C; j = j + 1)

f [i][j] = IDENT;

for (i = 0; s[i]; i = i + 1) 4. Construct tables mapping all
for (j = 0; s[j]; j = j + 1) symbol pairs to corresponding
{ k = i + j; if (k ≥ nchar) k = k − nchar; sums.

f [s[i]][s[j]] = s[k]; }

for (i = 3; i ≤ 7; i = i + 2) colgen(i, G− 1); 5. Generate odd guard patterns.
ipage = 0; ifile = 0;

while (fgets(in, L, stdin)) 6. Compute the error-correcting code
{ i = strlen(in); for the line.

if (in[i− 1] ≡′ \n′) in[i− 1] = 0;

line[0] =′ −′; 7. Compress multiple blanks from
for (i = j = 0; in[i]; i++) the input line.
{ c = in[i]; if (seq[c] ≡ 0) c =′ ′;

if (line[j] ≡′ ′ && c ≡′ ′) continue;
line[++ j] = c; }

line[++ j] = 0;

ecc(guard, line + 1); seqn(guard, ””, in); 8. Compute the ECC guard symbols.

page[ipage++] = guard[G− 1]; 9. If this is the end of the page,
if (ipage ≥ pagef) seqpage(1), pagef = pages; prepare a code for the entire

file[ifile++] = guard[G− 1]; 10. If this is the end of the page,
if (ifile ≥ L) ifile = ifile− 1; } prepare a code for the entire

seqpage(0); file[ifile] = 0; 11. At the end of the file, prepare
ecc(guard, file); seqn(guard, ”.”, ””); a code for the entire file.
ifile = 0; }

COMPUTE CENTINELS
Upon entry to the algorithm, (1) gs points to an area of length G+ 1 to receive the results. (2) line points to
the line. (3) G defines the number of guard digits to be computed. (4) ptn defines which line positions contribute
to which guard digits. (5) f contains the modulo-addition table for all symbols. At exit, gs contains the guard
symbols for the line.

ecc(gs, line) char ∗gs, ∗line;
{ int i, j;

for (i = 0; i < G; i = i + 1) gs[i] = IDENT; 1. Clear all the guard symbols.

for (i = 0; i < G; i = i + 1) 2. Generate each guard symbols.
for (j = 0; line[j]; j = j + 1) 3. following the table that shows

if (ptn[j][i] ≡′ X′) which line positions contribute
gs[i] = f [gs[i]][line[j]]; to which guard symbols.

gs[G] = 0; }

CONVERT CENTINELS TO INTEGERS
Upon entry to the algorithm, (1) gs contains the guard symbols. (2) sep contains a separator character. (3) sym
contains the string of symbols. At exit, gn contains the corresponding integer sequence numbers.

seqn(gs, sep, sym) char ∗gs, ∗sep, ∗sym;
{ int i;

for (i = 0; i < G; i = i + 1) 1. Display the sequence numbers
printf (”%02d”, seq[gs[i]]); for the guard symbols.

printf (”%s%s\n”, sep, sym); } 2. Display the full line.

GENERATE PERMUTATIONS
Upon entry to the algorithm, (1) n defines the number of guard symbols to be marked. (2) k defines the
position for the initial mark. (3) l defines the column number on the line, starting with 0. (4) ptn contains an
area to receive the permutations. (5) w contains a work area for generating the permutations. At exit, (1) All
permutations have been generated. (2) l is advanced by the number of combinations generated. (3) ptn[0..l]
contains the permutations generated thus far. (4) w contains the most recent permutation generated.

colgen(n, k) int n, k;
{ static char w[G + 1] = ””; static int l = 0; int i;

if (w[0] ≡ 0) 1. On the first call, establish a
for (i = 0; i < G; i = i + 1) w[i] =′ −′; null pattern in the array.

if (n > 0) for (i = k; i ≥ n− 1; i = i− 1) 2. Mark the guard symbol for each
{ w[i] =′ X′; possible position and generate

colgen(n− 1, i− 1); all permutations within that
w[i] =′ −′; } position.

else if (l < L) 3. If there are no deeper
{ for (i = 0; i < G; i = i + 1) permutations, save the current

ptn[l][i] = w[i]; permutation and advance the
l = l + 1; }} column number.

