
Proactive Channel Allocation for Ad-Hoc Networks

Yosi Ben-Asher1 and Yehuda Ezra1
1CS Department, University of Haifa, Haifa, Israel

Abstract— In this work we consider the problem of creating
multi-edge channels in ad-hoc networks wherein each node
can use multiple frequencies for sending and receiving
packets by filling the slots of an OFDMA matrix. We consider
the problem of how to fill-up the slots of a frequency×time
matrix (FTM) at each node such that maximal collision free
k > 1 path cover (CFkPC) of the communication graph is
obtained. This problem is a variant of edge and node disjoint
path cover in graphs extended to include collisions caused
by the hidden terminal problem where two nodes A and B
which are not in transmission range collide by transmitting
at the same frequency and time to an intermediate node C.
The proposed solution for filling the FTM is based on using
maximum independent set in a suitable conflict graph. Our
simulations compare between the proposed CFkPC approach
and a version of the DCA protocol [12] that was extended to
use multiple send/receive slots. The results show significant
advantage of using CFkPC versus the adaptive approach of
the extended DCA. We assume that GPS coordinate and GPS
time synchronization is available.

Keywords: Wireless, Ad hoc, multi-channel,routing

1. Introduction
We consider the possibility of sending and receiving

packets in multi-frequency channels by the mobile nodes of
Ad-Hoc networks. In Ad-Hoc networks, due to movements
of users, the connections between nodes frequently change
creating different topologies of the communication graph
between the nodes of the network. This creates a challenging
situation for suitable protocol that can decide, for a given
node v, in which frequencies it should transmit and at what
time slot such that minimal latency and maximal throughput
of packets is obtained. We assume that all nodes use a GPS
for location and perfect time synchronization. We model
the use of multi-frequencies channels in ad-hoc networks
by assuming that each node v needs to fill up slots in
a frequency × time matrix M (called FTM) indicating
whether it will transmit Mv

f,t = send or receive Mv
f,t =

receive a packet at this frequency × time slot. FTM is
repeatedly used by each node for sending and receiving
packets and thus it is an abstraction of a strategy for using
multi frequency channels. Depending on how the FTM
at each node are filled, communication channels between
neighboring nodes are generated. Thus if u −→ v are two
nodes in communication range and Mu

f,t = send,Mv
f,t =

receive, then possibly u can transmit packets to v at this

frequency× time slot. The channel created between u and
v by setting Mu

f,t = send,Mv
f,t = receive is subject to two

problems:

• Frequent movements of u and v may move/remove u
and v in/out-of communication range.

• Transmissions of other neighboring nodes at the same
frequency × time slot can collide with packets sent
by u (known as the hidden terminal problem).

The goal in this work is to find a strategy for filling Mv
f,t

such that we maximize the number of channels of length
k > 1 while minimizing packet-lost caused by collisions
(due to the hidden terminal problem [2]).

For the purpose of this paper a channel is an agreement
between two nodes u and v to use a certain frequency
to transmit packets from u to v in a given frequency for
a certain period of time or another terminating condition.
As such it is possible to generalize the channel from a
single hop to a multi-hop channel where u sends packets
to v through a sequence of nodes which are all part of
the channel agreement. Consider for example a tree like
communication graph that has seven nodes given in figure
1. Each node x, u, w, r, z, v, y has the ability to use two
frequencies and two time slots (depicted by the 2 × 2
FTMs in figure 1). Following the previous discussion we
would like to configure the slots (transmit/receive) such that
multi-hop communication paths will be generated. These
communication paths will allow us to pipeline packets of
data streams to longer distances faster than what could
be obtained had we used single edge channels. Practically,
pipelining or streaming of messages implies that packets
are transmitted along such a path without acknowledgment
from the receiver. The communication paths that have been
selected to cover the communication graph of figure 1
contain two paths p0, p1 each containing four edges.

We compare two strategies for channel allocation in ad
hoc networks:
Extended Dynamic Channel Allocation (EDCA) is a strat-
egy where by using a control channel with request-to-send
(RTS) and clear-to-send (CTS) messages, a node u can
negotiate with a neighboring node v for a slot Mu/v

f,t that
is currently free. By snooping on other requests on the
control channel, both u, v can verify that Mu/v

f,t is not used
by any neighboring node of u or v (possibly preventing
collision with other nodes). EDCA is an extension of a well
known protocol DCA that have been extensively used in
other works. Another extension of DCA is the multi channel

w z

ux v y

r

f1

f0

t0 t1

f1

f0

t0 t1

f1

f0

t0 t1

f1

f0

t0 t1

f1

f0

t0 t1

f1

f0

t0 t1

f1

f0

t0 t1

ux r v y

w z

comm.

graph

S R

S R

p0

p1

Fig. 1: Configuring frequency× time slots to create multi-
channel paths for streaming of packets

DCA [12] which allowed a node dynamically jumps from
one frequency to another according to the traffic of the
network, but still do not allow transmitting or receiving on
multi channels simultaneously. Thus, in this work we extend
the original DCA algorithm [15] to handle receiving and
transmitting packets through multi set of channels at same
time slot.
Proactive Channel Allocation (PCA) is what we propose
here, a strategy based on finding a path-cover by a maximal
number of paths of length k such that each path passes
through 2k transmit/receive slots of the FTMs available at
each node. For example the path-cover depicted in figure 1
is a solution to the coverage problem for k = 4 as follows:

• There is no legal cover with more than two paths of
length k = 4 (must be verified by checking all possible
cases). This is also a maximal cover since no path, even
of length one, can be added to it.

• Each path forms a legal scheduling for pipelining a
stream of packets traversing along this path edges (as
can be seen there are edges that seems to go back in
time but this will be explained later on).

• There are no interferences between the paths, i.e., no
node can receive more than one packet at any fi, tj
slot. For example, node v is in communication range
with nodes r, y, z and is scheduled to receive a packet
at f0, t1 and at f1, t1. Indeed only node r broadcasts
at f0, t1 and only node y broadcasts at f1, t1.

As opposed to the EDCA approach the channels that are
created by these paths contain more than one edge allowing
forwarding of packets to longer distances without dynami-
cally checking which neighbor is “free”. In addition unlike
the EDCA, for PCA, the FTMs are filled once for a specific
graph topology regardless of the communication sessions
that are currently going on.

Intuitively the PCA method proposed here significantly
differs from current techniques to perform routing and
channel allocation in ad hoc networks as follows:

1) It creates multi-channels containing more than one
edge, actually transforming the communication graph
to a hyper-graphs which is a graph whose edges
connects more than two nodes. This stand in contrast
to current techniques that create channels only between
neighboring nodes. By the term channel we prefer to a
group of nodes that agrees on a set of frequency/time
slots through which data-packets can be broadcasted.

2) We focus on streams rather than on individual packets,
we thus assume that a channel, once created, will be
used to transfer a stream of packets. Moreover, we
assume that pipelining a stream of n packets through
a channel of length k in a pipeline mode is faster than
n · k namely sending each packet through k distinct
channels. Thus, by creating channels of length k > 1
we support pipelining of a stream of packets where
packets are being sent along the edges of the path
without acknowledgement.

3) Further, all current methods for routing in ad hoc net-
works use adaptive and dynamic creation of channels
tracking the frequent changes in the topology of the
communication graph. In contrast, PCA samples the
communication graph to create channels and attempts
to use them for a relatively long time regardless of
the frequent changes in the topology. There are two
reasons as to why a sample “road-map” will be useful
for a relatively large time before an update of it is
needed:

• There are many changes caused by frequent move-
ment that cancel one another, e.g., a node moves
out of a channel but another may take its place
listening and transmitting at the right frequencies
and time slots.

• The sampled “road-map” may be wrong about
some of its roads (channels) but by attempting
to use it a packet will travel at the direction it
needs to go. Thus the sampled map is a good
approximation of the true road-map that currently
exits.

Thus PCA creates an approximated “road map” which
is likely to be useful in most cases even when the
“roads” are frequently changing.

Some of the related works are as follows. Dual Busy Tone
Multiple Access [7] is a method that divides a common
channel into two sub-channels. Wu et al [15], propose
MAC protocol called Dynamic The main drawback of this
protocol concealed in the fact that RTS, CTS and ACK
packets exchange are necessary for every pair nodes on every
communication path. Jain et al [8], propose a protocol that
achieves throughput improvements by intelligently selecting

the data channel, but also required RTS and CTS and ACK
packets exchanged for every pair nodes as described in DCA.
Finaly, [12] propose a protocol that uses all channels as
data channels where nodes negotiate channels with their
destination nodes during a time-window. In this window,
every node must listen to the default channel. [14] proposed
a Usage-Prediction Based Channel Allocation scheme for
GSM networks.

2. The Problem of Finding a Collision-
Free Maximal Path Coverage

The problem of finding a maximal FTM scheduling for
a given communication graph with communication paths of
length k is equivalent to finding maximal coverage of a graph
by disjoint paths of length k.

Definition 2.1: Let FTG be an undirected graph resulting
from expanding a communication graph G such that each
node has been replaced by a clique of internal edges repre-
senting the FTM slots as depicted in figure 2. Each commu-
nication edge of G have been expanded to a set of external-
edges connecting the suitable f, t nodes of two neighboring
cliques. By definition FTGs are not general graphs and
in particular each path in an FTG consists of alternating
external and internal edges (see the FTG graph of figure
2 for an illustration). Let a collision free k path cover
(CFkPC) of an FTG be any cover of it’s edges by a maximal
number of directed paths p1, p2, . . . , pn of length k (k ≥ 1)
such that:
• Each path pi corresponds to some path of FTG.
• No node/edge is shared by two paths (node/edge dis-

joint paths).
• All the nodes of a path are distinct (i.e., paths cannot

visit a node more than once).
• Each path should start with an external-edge and end

with an external edge.
• Paths should not be connected by an external edge that

connects two of their external edges. Thus if u, v are
two external edges in two different selected paths then
there can be no external edge in G that connects them
(we later show that this is sufficient to prevent hidden
terminal problems).

We can sharpen this definition to include paths of length
smaller than k by grading a path-cover of G by a vector with
k coordinates grade = < xk, . . . , x1 > where xi counts the
number of paths of length i in the cover and two grades are
compared lexicographically. A maximum CFkPC of an FTG
is a CFkPC with the maximal number of paths of length k
or the one that achieves the maximal grade.

The CFkPC of graphs is similar to the multi-dimensional
matching [1] and to cover − by − disjoint − paths in
graphs which are all NP-complete problems. Thus, CFkPC
is likely to be NP-complete. Figure 2 illustrates how the
communication graph with 3×2 FTMs at each node is extend

to include the Mf,t slots as nodes forming an undirected
graph called FTG. The FTG is formed by:

1) For each node v, every slot in its FTM Mv
f,t is made

a node of FTG.
2) For each edge (v, u) and f, t slot add all edges(

Mv
f,t,M

u
f,t

)
(indicating a possible send-receive op-

eration between v and u using this f, t slot).
3) Add an internal edge between every two slots of the

same node Mu
f,t and Mu

f ′,t′ where either f 6= f ′ or
t 6= t′ (indicating that a message received at Mu

f,t will
be sent at Mu

f ′,t′ or vice-versa).
A possible cover of the resulting FTG by paths of up to

k = 5 edges is given at the upper part of figure 2. This
cover, does not satisfy the hidden terminal requirement and
several paths can collide, e.g., the receive in Mu

f0,t1 collide
with the Send of both Mw

f0,t1 and Mz
f0,t1.

u

v

w

z

v
f0

f1

t0 t1

f2

f0

f1

t0 t1

f2

f0

f1

t0 t1

f2

u w

f0

f1

t0 t1

f2

z

0,0 1,0 2,0

0,1 1,1 2,1

0,0 1,0 2,0

0,1 1,1 2,1

0,0 1,0 2,0

0,1 1,1 2,1

0,0 1,0 2,0

0,1 1,1 2,1

M
v

M
M

M

u
w

z

0,0 1,0 2,0

0,1 1,1 2,1

FTG

M
v

graph

communication

p0

p1

p2

p3

possible coverage by paths
of length 4,3

Fig. 2: Building the FTG of a communication graph and a
possible k − path− cover for it with 3× 2 FTM

3. The algorithm for computing maximal
CFkPC

We turn now to the algorithm for computing maximum
CFkPC of an FTG. First we show that finding a CFkPC
allowing collision free broadcasts:

Lemma 3.1: The conditions of definition 2.1 grantee that
if we broadcast packets along the paths of a CFkPC then no
two packets will collide.
Proof omitted due to space limitations.

Next consider a possible lower bound on the number of
paths in the CFkPC of a given FTG:

Lemma 3.2: Let a conflict graph CG of a given FTG
be a graph whose nodes correspond to the edges of the
FTG and an edge is inserted between two nodes u, v if
the corresponding edges eu, ev ∈ FTG collide under the
conditions of definition 2.1. It follows that the number of
paths of length k in a maximum CFkPC of the given FTG is
smaller than |MIS(CG)|

k where MIS(CG) is the maximum
independent set of CG.
Proof omitted due to space limitations.

Finding an MIS of a graph [13] is well known and if
we settle for maximal independent set [11] we can use
fast distributed algorithms suitable for ad-hoc networks. Let
G be a given graph representing a communication graph
where each node uses an F × T FTM. The algorithm
for maximizing use of multi-channels of length k uses the
following steps:

1) Let each node internally maintains its part of the FTG
by representing the FTM as a clique as described in
figure 2. This requires that each node will identify its
neighbors.

2) Compute conflict graph CG using the two rules of
definition 2.1: 1) two connected edges of the same type
and 2) three connected external edges. Note that this
can be done distributively letting each node acquire
information on conflicting edges from its neighbors.

3) Find maximum independent set (MIS) in the resulting
CG. Statically this can be computed by an exact
exponential algorithm [9], [13] or an approximated by
a polynomial approximation algorithm for finding the
biggest colored class as the MIS [10]. For a distributed
algorithm that can be used in ad-hoc networks it is
reasonable to use an algorithm for finding a maximal
independent set (an IS that cannot be increased by
adding any other node to it) to approximate the MIS.
Distributed maximal IS protocols have been used in ad
hoc networks extensively to find a connected dominate
set in the communication graph [3], [4]. We select the
algorithm of [11] that completes in log∗ steps on unit-
disc graphs (using GPS addresses as unique node ids).
The size of the MIS is also computed and broadcast
to every node.

4) Finally multi-channels can be computed using a simple
protocol that grows paths randomly:

a) Each node learns which edges of the FTG and
the MIS resides in its neighbors.

b) External edges of the MIS are selected at each
node to be the head of a path. This is done with
probability k

2|MIS| so that most edges of the MIS
are not selected and are marked as free-edges.

c) For each path L whose head is currently at node
v we randomly select an internal edge from the
MIS that will continue it. Next we select the
external edge from the MIS that will continue it
to the next node u and send a continuing request

for L to u.
d) When a node u receives a continuing request for

path L from v it checks to see if < u, v > is
a free external edge which is not used for any
other path. If so u returns an acknowledgment
to v and marks < u, v > as used. Otherwise, u
returns a fail message to v which ends the path
L.

e) This is continued for each active path until this
path reaches a length of k or reaches a node for
which there is no free edge in the MIS that can
be added to it.

f) A backward chain of messages from the last
active end-point of each path L (either reached
length k or terminated) is sent back through the
active end-point of a path/channel to configure
the FTMs at each node.

g) There is a fixed time budget (order of k steps)
after which each node assumes that this phase is
over and packet routing is performed.

Figure 3 illustrates how the algorithm works. The input
FTG is a grid of alternating levels of external and internal
edges. The edges are marked with numbers 0− 11 and also
by their type ′ex/in′ for external/internal. Figure 3 right
side contains the resulting conflict graph (CG) with nodes
corresponding to the FTG edges 0− 11 and edges between
any two conflicting edges. The MIS for the CG of figure 3 is
marked by circled nodes. In order to create the paths (marked
by dashed arrows) for this MIS, we start with edge-0 which
can be continued only to edge-6 and finally end this path
with edge-10. The second path starts with edge-3 and can
be continued with two internal edges (edge-7) and (edge-08)
out of which we cannot continue with edge-7 since edge-
10 is not free so we attempt to continue it through edge-8.
However edge-8 is an internal edge that cannot be continued
by an external edge in the MIS so the resulting second path
contains only edge-3.

For a given ad hoc network with n nodes, transmission
radius r, F frequency channels, T time slots and field-size
L×L, we can use a maximal CFkPC of the communication
graph as the base for an algorithm to send streams of packet
over ad hoc networks. The algorithm is called PCA works
as follows:

1) We globally set the value of k to be 2 ·
field_length

transmission_range which is the maximal Manhattan
distance between any two nodes assuming uniform dis-
tribution of the nodes in the given field (also assuming
that there are enough nodes to form this density).

2) CFkPC is performed globally and the resulting paths
are held in suitable routing table in every node. Thus
every node has knowledge of the CFkPC paths that
pass through it (including their length, start/end nodes
and FTM slots that are used to realize them). Note that
the CFkPC may include paths of length 1.

0 1 2 3 4 5

6 7 8 9

10 11

in

ex

ex ex ex ex ex

in in in

ex

0 2 3 5

6 7 8 9

10 11

41ex

 FTG graph

conflict rules (edges u,v)

exexex
u

u v
ex ex u v

in inv

conflict graph
MIS

selected conflict free paths

Fig. 3: Conflict graph and the rules to create it for a grid
like FTG

3) Streams of packets are generated arbitrary in source
nodes where each stream contains a relatively large
number of packets which should be sent to the same
destination.

4) At each cycle all nodes receive packets through their
FTM slots and send them further as follows. The
packet is sent to the next node in its current path if
that node gets it closer to its destination. A packet will
switch to another path if the next hop in its current
path does not get it closer but there is another path in
the routing table that will and that path is not used.
Otherwise the packet proceeds in its current path if
there is a next hop for that path. In case that the packet
reach to the end of its path and there is no unused path
through which it can continue it is moved to a waiting
queue to wait until there is an unused path through
which it can continue.

5) One slot is reserved for beacon messages where each
node transmits its ID, its location, and a list of un-
used F-T slots through which packets can be received
“outside” the scope of the CFkPC paths. Each node
constantly listen and collect beacon messages from
its current set of neighbors and collects their un-used
slots.

6) When a node u does not detect beacon message from
a neighbor v for a certain period of time it assumes
that v moved out of transmission range and the set
of paths that passed through v are now “broken”.
Packets that needs to continue through a broken path
are sent through an un-used slot to a suitable neighbor.
If no un-used slot is available and no un-used path can
be used packets from broken paths are added to the
waiting queue.

7) A new neighbor v may move to the vicinity of a node u
and is thus detected by u through its beacon message.

In that case u and v will attempt to join their broken
paths by connecting them together.

8) A packet may be dropped if its TTL expires, receiving
queue is full, or if it collides at some node with another
packet that have been transmitted at the same FT-slot.

9) The CFkPC is recalculated periodically every fix pe-
riod of time called the re-calculation time.

4. Experimental Results
In here we discuss the experimental evaluation of the

proposed PCA algorithm in comparison to the EDCA tech-
nique. We first summarize our assumptions: Time is divided
to T frames such that for every time frame, F frequencies
are available for use and none of the frequencies overlap.
transmitted on different frequencies do not interfere with
each other. Each host can listen or transmit on more than one
channel at a time. Fixed-channel-bandwidth model is used.
Each host is equipped with a single full-duplex transceiver
[5]. Nodes are synchronized using GPS [6]. Simulations are
performed in multi-hop networks scenario of varied nodes
that are randomly placed in a 500m × 500m area. Source
and destination nodes for streams are randomly chosen with
probability 0.5. A node may be the source for multiple
destinations and a node may be the destination for multiple
sources. Each simulation was performed for duration of
one minute. Packets have been partitioned to streams of
50 . . . 250 packets. Each data point in the result graphs is
an average of 15 runs. Packet size is 512 bytes. Packet TTL
was 10 implying that packets are dropped after 10 hops.
Queues for receiving packets were limited to 50 packets
while queues for transmission have unlimited capacity. We
used geographic routing algorithm where nodes know their
geographical coordinates and also their one hop neighborś
coordinates. The parameters we vary are: speed of nodes,
number of frequency slots F , number of time slots T , size of
flows (in packets), transmission range and number of nodes
in the network. We use the throughput performance metrics
in our simulation:

Throughput = Packet_Length∗Num_Of_Received_Packets
Total_Time

where the throughput measures the rate in which packets
have been received at their final destination.

It immediately follows that there are too many parameter
values that should be considered, since each measurement
of the PCA requires setting a value to: n number of nodes,
r the transmission range, L×L size of the field, F number
of available frequency slots, and T number of time slots.
However, assuming uniform distribution of the nodes at
any given time in the field, T can be approximated by
T ·F
2 = β·α

4·n where α = π·r2
L2 ·n and β = γ·n

2 · δ. This
formula is based on the following assumptions:
• α is the average number of nodes that are in commu-

nication range of any node (v).

• β is the approximate number of transmissions in the
field such that:

– γ is the probability that a node will start a stream
of packets (0.5 in our experiments).

– n
2 is due to the fact that each stream has two end
points.

– δ is the average number of hops a stream will
follow and is approximately equal to L/r − 1
assuming n > (L/r)2 and that streams travels
in the shortest Manhattan distance between their
end-points that have been selected at random.

• The term β·α
n is the expected number of transmissions

from the nodes that are in the communication range of
v. Out of this number we assume that transmissions are
sent equally to all four directions out of which only 1/4
will be sent to v.

• Thus at maximum throughput each node v should have
enough F ·T slots to pass streams from/to all the nodes
that reside in its transmission range yielding eq. 4.

The first experiment we consider is designed to verify the
formula of eq. 4. We run the PCA algorithm with F = 4,
r = 100m, L = 500m, n = 60, 90, 120, 150 and measured
the throughput of PCA for T = 2, 3, 4, 5, 6 (with random
way-point and 50 packets per stream). For this setting of eq.
4 we get that β = 0.5·n

2 · 8 = 2 · n, and α = 0.12 · n
yielding that T · F = 0.12 · n and T · = 0.03 · n The
results in figure 4 show that for n = 150 the throughput
ceased to improve for T > 5 which is indeed what eq. 4
determines (0.0314 · 150 = 4.71). For n = 120 throughput
in figure 4 ceased to improve for T > 4 which agrees with
0.0314 · 120 = 3.76. Similarly for n = 90 the experimental
result is T > 3 which agrees with 0.0314 · 90 = 2.82 of eq.
4, and so is the result for n = 60 we have T > 2 which
agrees with 0.0314 · 60 = 1.88.

Fig. 4: PCA Throughput vs. Number of time slots T and
number of nodes n.

Next we compare between PCA and EDCA selecting

F, T values which are bellow the saturation point of eq.
4 T ·F

2 ≤ β·α
4·n . In this set of experiments we compared

the throughput of PCA and EDCA for n = 120, r =
250m, L = 500m,#stream = 50packets and tested for
several < F, T > values. Figure 5 presents the results for
F = 4, 8, 12, 16 and T = 24, 12, 12, 6. The results show
that when at F = 12 EDCA cease to improve while the
PCA continues to improve the throughput (about 40%) and
maintain the channel utilization. This was also obtained for
#stream = 250packets (Omitted due to space limitations).

Fig. 5: Throughput vs. increased F, T values of EDCA and
PCA with 50 packets per stream

The explanation for this behavior is that when the network
load become very high, the control channel becomes a
bottleneck for the EDCA but not for PCA. The throughput
ratio between EDCA and PCA is significant. When using
only 4 channels, the ratio is about 8% for EDCA and
increased to 37% in favor of the PCA when using 20
channels. In a different experiment (omitted due to space
limtations) we set the number of packets of each flow to
200 and found even more throughput improvement using
PCA algorithm. Results of this test show that when using
4 channels, the ratio is about 18% and increased to 40%
when using 20 channels. The difference between two tests is
because in PCA, long communication paths are already exist
and ready for streams transferring without any overhead of
RTS/CTS protocols. Clearly without increasing the amount
of streams β even PCA will cease to improve (as follows
from eq. 4).

We have also tested the effect of the mobility rate on
network throughput using the Random Waypoint mobility
model. The results show that the more the speed of nodes
increases the more the network throughput decreases and
that there is a constant gap of 17% more throughput of PCA
versus EDCA. Another experiment we done is to compare
packets latency between the two algorithms. The latency was

computed for 100 packets that were selected randomly. We
varied the number of generated streams in the network from
50 streams up to 500. The results show that for PCA the
average latency of a packet is 6 simulation cycles compare
to 17 for the EDCA. The last experiment measures the
effect of the CFkPC recalculation on the network throughput.
A degradation in the throughput is expected when the
recalculation time increases however this experiment shows
that for certain range of values this degradation does not
harm the usefulness of the PCA. Due to space limitations
the results of these three sets of experiments can not be
included.

References
[1] 3-dimensional matching. http://en.wikipedia.org/wiki/3-

dimensional_matching, 2011.
[2] Hidden node problem. http://en.wikipedia.org/wiki/Hidden_node_problem,

2011.
[3] A. Agrawal, P. Klein, and R. Ravi. When trees collide: An approxi-

mation algorithm for the generalized steiner problem on networks. In
Proceedings of the twenty-third annual ACM symposium on Theory
of computing, pages 134–144. ACM, 1991.

[4] K.M. Alzoubi, PJ Wan, and O. Frieder. Maximal independent set,
weakly-connected dominating set, and induced spanners in wireless
ad hoc networks. International Journal of Foundations of Computer
Science, 14(2):287–303, 2003.

[5] D. W. Bliss, P. A. Parker, and A. R. Margetts. Simultaneous trans-
mission and reception for improvedwireless network performance. In
Statistical Signal Processing, 2007. SSP ’07. IEEE/SP 14th Workshop
on, pages 478 –482, 2007.

[6] I.A. Getting. The global positioning system, 1993.
[7] Zygmunt J. Haas, Senior Member, Jing Deng, and Student Member.

Dual busy tone multiple access (dbtma) - a multiple access control
scheme for ad hoc networks. In IEEE Transactions on Communica-
tions, pages 975–985, 2002.

[8] Nitin Jain, Samir R. Das, and Asis Nasipuri. A multichannel csma mac
protocol with receiver-based channel selection for multihop wireless
networks. In In IEEE IC3N, pages 432–439, 2001.

[9] T. Jian. An o(20.304·n) algorithm for solving maximum independent
set problem. Computers, IEEE Transactions on, 100(9):847–851,
1986.

[10] T. F. More. Estimation of sparse hessian matrices and graph coloring
problems. Springer, 1982.

[11] J. Schneider and R. Wattenhofer. A log-star distributed maximal
independent set algorithm for growth-bounded graphs. In Proceedings
of the twenty-seventh ACM symposium on Principles of distributed
computing, pages 35–44. ACM, 2008.

[12] Jungmin So and Nitin H. Vaidya. Multi-channel mac for ad hoc
networks handling multi-channel hidden terminals using a single
transceiver. ACM MobiHoc, 2004.

[13] R.E. Tarjan and A.E. Trojanowski. Finding a maximum independent
set. SIAM J. Comput., 6(3):537–546, 1977.

[14] Jinsu Wang, Sharad Mehrotra, and Nalini Venkatasubramanian. Pbca
- prediction based channel allocation. In GLOBECOM, pages 4801–
4806. IEEE, 2007.

[15] Shih-Lin Wu, Chih-Yu Lin, Yu-Chee Tseng, and Jang-Ping Sheu. A
new multi-channel mac protocol with on-demand channel assignment
for multi-hop mobile ad hoc networks, 2000.

