
Ad hoc Networks Routing : Shortest Path is Enough

Maher Heal 1 and Marwan Fayed 2

1Department of Computing Science and Math, University of Stirling, Stirling, UK,
Email: maher.heal@cs.stir.ac.uk

2Department of Computing Science and Math, University of Stirling, Stirling, UK,
Email: mmf@cs.stir.ac.uk

Abstract— It is well-known in hardwired networks that
shortest path routing is optimum in regard to optimizing net-
work performance such as maximizing network throughput
for instance, but little is known in this regard in ad hoc
networks routing due to the dynamic, changing topology
of these networks. Via linear programming formulation of
the optimum routing problem, we show shortest path is the
best routing strategy as well when it comes to maximizing
the mean network throughput in ad hoc networks provided
that interference is neglected. However, the routing metrics
in selecting routes (paths) should be dependent on links
availability probabilities in these networks. Heuristic ap-
proaches were used in suggesting such metrics when the
links capacities are equal and unequal.
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1. Introduction
Optimum routing has been studied in the context of

hardwired networks. In a hardwired network where the
topology is fixed and rarely changing, optimum routing can
be formulated as a linear programming problem to optimize
a certain objective function. It has been shown that a routing
algorithm that selects the shortest path is usually the best
algorithm in optimizing many objective functions such as
maximizing network throughput [1].

In Ad hoc network where the topology is changing and
maybe is changing randomly, little is known whether the
best routing algorithm should be shortest path algorithm or
not. By generalizing the linear programming formulation
in [1] to model the changing topology of the ad hoc
network, neglecting interference, and by assuming links
between nodes are available with a constant probability,
we show the best routing algorithm to maximize the mean
network throughput is shortest path as well. However, the
routing metric must be dependent on these links availability
probabilities. Afterwards heuristic reasoning is applied to
suggest ways to calculate such metrics.

2. Related Work
Many routing protocols were suggested in the literature

with different routing metrics that capture different working

aspects of the ad hoc environment such as link quality,
interference, mobility, and energy constraints [2]. However
shortest path minimum hop count is the default metric in
many popular ad hoc routing protocols, such as OLSR [3],
DSR [4], AODV [5] and DSDV [6]. The first experimental
work that doubted shortest path minimum hop count as the
right metric to achieve high throughput is that of De Couto
et al. [7]. By experimenting with two testbeds of static
wireless networks running DSDV protocol, they showed the
protocol may select low link quality minimum-hop counted
path which leads to low throughput due to retransmissions.
Although in this paper we propose better metrics for wireless
networks by assuming links available with constant proba-
bilities due to changing topology, but links availability with
a certain probability could be due to link qualities. In another
paper De Couto et al. [8] proposed ETX routing metric
based on active probing measurements and many metrics
were derived and based on that metric. However, though
metrics based on active measurements with probe packets
are better than minimum hop count metric in static networks,
the reverse is true with mobile networks [2]. Researchers
suggested mobility aware metrics, for example Mcdonald
and Zanti [9] suggested a routing metric that selects more
stable paths based on the availability of network paths
that are subject to link failures caused by node mobility.
Kamal Jain et al. [10] in their seminal paper proved that
shortest path is not the optimum throughput routing strategy
in multi-hop wireless networks due to interference which
was modeled using conflict graphs. Moreover they proved
that the optimal throughput problem is NP-hard. However
their analysis was for static or infrequent changed topology
networks.

In this paper however, we model topology change but we
neglect interference which is a limitation of more model to
be incorporated in future research and extensions. However,
the contribution of this paper is in suggesting and devising
the mathematical means to derive better routing metrics for
mobile ad hoc networks and proving shortest path is opti-
mum in maximizing throughput whenever the interference
is low and can be neglected.



3. Background
In this section we summarize the problem of optimum

routing and its linear programming formulation in hardwired
networks. Details can be obtained from [1].

Let us say we have a fixed topology network where the
links capacities are already selected, the traffic demand is
known ahead of time, the traffic is elastic1 and we can
arbitrarily split demands on different paths. Let us say also
as our objective function we want to maximize the smallest
spare capacity (difference between link capacity and carried
load) of all links. This objective function is reasonable
because by that we guarantee there will be enough capacity
in the network for more traffic and hence better throughput
and less delay (see the proposition in the appendix). This
problem is formulated as a linear programming problem as
given below.

Let the network be represented as a directed graph
G(N,L) where N is the set of nodes (routers) and L is
the set of directed links. This means that if a and b are
two nodes in N, then the link a → b and the link b → a
are distinct. Thus, any link l ∈ L has a head node and a
tail node, and as the names indicate, the link is directed
from the head to the tail. In ad hoc networks the case of
asymmetric links is quiet common, though some routing
protocols where designed to work with symmetric links only.
There are K demands that are to be routed on the network.
Each demand is associated with an ordered pair of nodes
(n1,n2), where n1,n2 ∈ N. Note n1 is the source of the
demand, and n2 is the destination. We number the quantities
as follows: demands are numbered 1, 2, ..., k, ...,K, nodes
1, 2, ..., i, ..., N , so that |N| = N , and links are numbered
1, 2, ..., l, ..., L, so that |L| = L.

Now denote the demands by d(k), 1 6 k 6 K, and define
a flow vector X(k) of dimension L×1 corresponding to the
kth demand, with X(k)l represents the amount of the kth
demand carried on link l, where 1 6 k 6 K. The topology of
the network is summarized using node-link incidence matrix
A of dimension N × L where

Ai,l =

 +1 if i is the head of link l
−1 if i is the tail of link l
0 otherwise

(1)

And define the demand vector V (k), 1 6 k 6 K, of
dimension N × 1 as

V (k)i =

 d(k) if i is the source of demand k
−d(k) if i is the destination of demand k

0 otherwise
(2)

The optimization problem is given by

max z

1Elastic traffic has no intrinsic transfer rates or end-to-end delay require-
ments. It is generally the traffic generated by TCP sessions like browsing.


A 0 0 . . . 0
0 A 0 . . . 0
...

...
...

. . .
...

0 0 . . . 0 A




X(1)
X(2)

...
X(K)

 =


V (1)
V (2)

...
V (K)


(3)

[
I I . . . I

]


X(1)
X(2)

...
X(K)

+ z1 6 C (4)

X(k) ≥ 0, 1 ≤ k ≤ K, z ≥ 0 (5)

where z is the minimum spare capacity. In equation (3),
the left matrix is of dimension KN ×KL and there are K
block elements in each row and K block elements in each
column; A is the node-link incidence matrix, of dimension
N ×L. 0 is also a matrix of dimension N ×L. The middle
matrix in equation (3) is of dimension KL×1 and the right
matrix is of dimension KN × 1.

In equation (4), the left matrix is of dimension L ×KL
and there are K block elements in it, where I is the L× L
identity matrix. 1 is a column vector of L elements, all of
which are 1. C is a vector of L elements where the lth

element is the capacity of link l.
A solution to the above linear programming problem

exists when routing is done by selecting shortest paths
where the link weights are the optimal dual variables of
the dual problem. Coarse approximation is used in practice
like taking the weights as the inverse of link capacities as
in Cisco implementation of OSPF [11].

4. Generalization and Metrics
4.1 Generalization

The problem in ad hoc networks is exactly the same as
the problem of hardwired networks, when mobility is the
only factor of concern. The only difference is that the node-
link incidence matrix A that defines the network topology
is not static but dynamic with 1’s and 0’s entries changing
according to the time. The entries (1’s and 0’s) could be
assigned randomly depending on the mobility model used.

The optimum routing solution of this problem is unknown
and it could be shortest path or not. We will show the
optimization problem in ad hoc networks is the same as in
hardwired networks when the mean throughput is maximized
and accordingly shortest path is optimum.

Again the network is represented by a directed graph of
fixed nodes and changing links from one time epoch to
another. Let N be the set of nodes and L be the union of links
sets at the different time epoches of the network life time.
Thus between any two nodes a and b a link may be available
for certain time epoch and not available for another. We will
assume the link is available between any two nodes with a
constant probability p. This probability is 0 for links that
are available for a short period of time only in the network



life time and then they disappear, although they ∈ L. They
have no effect on our analysis as we are concerned with
the mean throughput. Assuming links are available with a
constant probability is only an approximation, depending on
the mobility model.

The node-link incidence matrix is a function of time now
and given by

Ai,l(t) =

 +1 if i is the head of link l at time t
−1 if i is the tail of link l at time t
0 otherwise

(6)

A(t) is of dimension N ×L. The flow vector for demand k
is also a function of time X(k)(t); we have

Ai(t).X(k)(t) =


d(k) if i is the source of demand k

at time t
−d(k) if i is the destination of demand

k at time t
0 otherwise

Note that each component of X(k)(t) for each link, i.e.
X(k)(t)1, X(k)(t)2,. . . , X(k)(t)L, may be zero when the
link is not available between the nodes. Now

A(t).X(k)(t) = V (k)

where V (k) is the usual demand vector in equation (2). By
considering the flows of all demands, we have


A(t) 0 0 . . . 0

0 A(t) 0 . . . 0
...

...
...

. . .
...

0 0 . . . 0 A(t)




X(1)(t)
X(2)(t)

...
X(K)(t)

 =


V (1)
V (2)

...
V (K)

 (7)

A(t) is the node-link incidence matrix in equation (6).

Let C(t) be the capacity vector of the links. It is a
vector of dimension L × 1 and is a function of time. Note
that Ci(t) may assume the value zero when the link i is
not available in certain time epoches or a constant capacity
Ci, when the link is available. Then

X(1)(t) +X(2)(t) + · · ·+X(K)(t) 6 C(t)

It is a vector inequality, where both sides are vectors of
dimension L× 1.
The spare capacity vector is given by

Z(t) = C(t)− (X(1)(t) +X(2)(t) + · · ·+X(K)(t))

So far the analysis done is the same as that in [1], but
time is added as a parameter to reflect the dynamic changing

topology of ad hoc networks. Since we are interested in
optimizing the mean performance of the network (mean
throughput), we will try finding solutions that maximize the
mean of the spare capacities of links. Taking the mean of
both sides of the above equation, the mean spare capacity is
given by

E(Z(t)) = E(C(t))− (E(X(1)(t)) + E(X(2)(t))

+ · · ·+ E(X(K)(t))) (8)

Note

E(C(t)) =


p1C1

p2C2

...
pLCL

 (9)

where pi is the probability that link i is available.
In hardwired networks, we want to maximize the spare

capacity of links and thus we maximize the minimum
spare capacity since by that we guarantee all links will
have a spare capacity more than that minimum which is
maximized. In ad hoc networks we want to maximize
the mean spare capacity of all links and hence we will
maximize the minimum mean spare capacity2 given by
equation (8).

Let z = minl∈LE(Z(t)), then we have

E(X(1)(t))+E(X(2)(t))+· · ·+E(X(K)(t)) 6 E(C(t))−z1

where 1 is a column vector of L elements, all of which are
1. In matrix form

[
I I . . . I

]


E(X(1)(t))
E(X(2)(t))

...
E(X(K)(t))

+ z1 6


p1C1

p2C2

...
pLCL


(10)

I is the L×L identity matrix and there are K blocks in the
left matrix of the above equation and thus it is of L×KL
dimension. By taking the mean of both sides of equation (7),
our optimization problem is

max z

2Although the mean spare capacity of each link will be guaranteed to
be more than that minimum, but the minimum mean spare capacity could
be due to a link that is available for a short period of time, i.e. with very
low probability and hence we could maximize the minimum of mean spare
capacity divided by availability probability. In that case I in left matrix of
equation (10) must be the identity matrix where its diagonal 1’s replaced
by 1/pi,1 6 i 6 L. Also the right matrix is replaced by links capacities
vector.



E
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X(K)(t)


 =

E




V (1)
V (2)

...
V (K)


 (11)

[
I I . . . I

]


E(X(1)(t))
E(X(2)(t))

...
E(X(K)(t))

+ z1 6 E(C(t))

(12)
E(X(k)(t)) ≥ 0, 1 ≤ k ≤ K, z ≥ 0 (13)

To find the mean of left side of equation (11), consider
A(t).X(k)(t); it is clear the ith entry of this multiplication
is given by

L∑
j=1

aij(t).X(k)(t)j

where

aij(t) =

 +1 if i is the head of link j at t
−1 if i is the tail of link j at t
0 otherwise

aij(t) = 1 or −1 with probability pj and zero with
probability 1 − pj , and whenever aij(t) is zero X(k)(t)j
is zero as well. Hence, we have:-

E(aij(t)X(k)(t)j) =


+E(X(k)(t)j) if i was the head

of link j
−E(X(k)(t)j) if i was the tail

of link j
0 otherwise

Hence, equation (11) can be written as
A 0 0 . . . 0
0 A 0 . . . 0
...

...
...

. . .
...

0 0 . . . 0 A




E(X(1)(t))
E(X(2)(t))

...
E(X(K)(t))

 =


E(V (1)
E(V (2))

...
E(V (K))

 (14)

Ai,l =

 +1 if i is the head of link l
−1 if i is the tail of link l
0 otherwise

By this we have proved the optimization problem in
ad hoc networks is the same as hardwired networks but
with with variables E(X(k)(t))’s and z which is now the

minimum mean spare capacity. Also the link capacities now
are multiplied by the links availability probabilities. Since
the problem is the same, then shortest path is expected to
be the optimum routing in ad hoc networks but the routing
metric needs to be estimated based on link availability
probabilities.

4.2 Metrics
In our analysis we assumed the probability of node A

being within range of node B in ad hoc network is p. Then
the link between A and B will be available p of the time
and unavailable 1− p of the time, i.e. The channel capacity
of the link between A and B is pC on average; where C is
the link capacity of the link between A and B when they are
within range of each other. This is similar to time division
multiplexing between two connected nodes in hardwired
networking where the capacity is the proportion of the time
allocated for communication between A and B; though it
could be better approximated by statistical multiplexing.

By applying shortest path algorithm and using the inverse
of capacity as links weights as in Cisco implementation of
OSPF [11], the route (path) metric will be

Metric = 1/p1C1 + · · ·+ 1/piCi + · · ·+ 1/pMCk (15)

where pi is the availability probability of the link i of the
path (the path has M links; 1 to M ).

When all links capacities are equal which is not usually
the case in ad hoc networks, then the metric is simply the
addition of the inverses of links probabilities.

The case of symmetric links metric can be derived using
a different approach. Rather than trying to maximize mean
spare capacity to maximize mean throughput, we will
try to minimize the delay and hence the throughput is
maximized. Assume retransmissions between any nodes is
infinite and given the propagation delay is small compared
to the transmission delay, the overall end-to-end delay of
the packet is directly proportional to the total number of
hop transmissions (including retransmissions). Hence the
mean delay is

1/p1 + 1/p2 + · · ·+ 1/pM

on a path of M links; where pi is the probability
that the link i is available.

That can be easily seen by noting that the packet should
pass link by link until reaching the destination at the end
of link M and that the probability of passing link i is a
geometric random variable with parameter pi.

By comparing the above metric with the metric in equa-
tion (15) for the general case of different links capacities
network, we see it is only the special case of that metric
when all the links are of equal capacity.



5. Conclusion and Future Work
Shortest path routing has been proved as the optimum

strategy (algorithm) in regard to optimizing mean network
throughput in ad hoc networks whenever interference is
neglected. That was done by showing the optimization prob-
lem has the same form as in hardwired counterpart through
a generalization of the hardwired networks optimization
problem to include the dynamic topology of ad hoc networks
and assuming nodes are within range of each other with
constant probabilities. However, the routing metrics must be
dependent on these probabilities since they are parameters
of the optimization problem of ad hoc networks. Heuristics
were used to suggest such metrics.

More accurate metrics need to be estimated based on
solutions of the optimization problem of ad hoc networks.
Simulation studies to validate these metrics or the ones sug-
gested using heuristics in optimizing network performance
are required as well, by applying the new metrics to some of
the popular routing protocols such as DSDV, DSR, OLSR
or AODV. Ways to calculate such metrics by ad hoc hoc
networks nodes and ways of realizing them in a distributed
routing algorithm is an open problem.

The assumption of nodes are available with constant
probabilities within each other range needs to be studied
further depending on the mobility models. we modeled a
network with fixed nodes and the topology is changing due
to links availability only. A more general model is when
nodes can join and leave randomly, and thus the topology is
changing due to varying number of nodes as well. Finally,
as interference is an important factor in deteriorating wire-
less networks performance, an extension of our model by
incorporating interference as an additional constraint in the
optimization problem is required.

Appendix I
Proposition: Proof of any Solution of
Load (Throughput) Maximization is also
a Solution of Spare Capacity Maximiza-
tion

Let us name a routing strategy (algorithm) that solves
our optimization problem, i.e. maximizing the minimum
spare capacity γ and other strategies that don’t solve our
optimization problem ω.

In any network: (i) when γ is used, which means
the minimum spare capacity is maximum, then we can
inject more load (traffic) in the network, i.e. we can
increase the demand (load), if it is not maximum. This
means higher throughput. (ii) On the other hand when
we have the demand (load) maximum then the routing
strategy (algorithm) used must also be a solution to
our optimization problem (maximizing the minimum spare
capacity) and the maximum minimum spare capacity is zero.

Proof:
The first part of the proposition (i) is clear because spare

capacities of all links are at least z = minl∈Lzl, zl is the
spare capacity of link l, 1 ≤ l ≤ L and that minimum is at
maximum value when γ strategy (algorithm) is used. Hence
we can increase the load of each link by that minimum
which means we can increase the load (demand). We prove
the 2nd part of the proposition (ii) as follows:

Let the load is maximum whatever the routing strategy
used ω or γ, i.e. for the collection of all routing strategies
(algorithms), then min zl should be zero for at least one
value of l, 1 ≤ l ≤ L. Let this is not the case, i.e. zl is not
zero for all values of l. Take now any path from a source
node to a destination node. Increase the traffic (flow) on
the links of this path by minl∈links of the pathzl and thus we
were able to increase the total load (demand). This is a
contradiction because the load is maximum and accordingly
min zl should be zero for at least one value of l, 1 ≤ l ≤ L.
We have proved for any routing strategy γ or ω that at
least one spare capacity is zero. Thus z = minl∈Lzl = 0 is
independent of the routing strategy. Thus max z = 0 for the
collection of all routing strategies (algorithms) ω or γ. Now
when we use γ, we get z maximized and when we use any
ω strategy (algorithm) we have z less than its maximum
value but this means z < 0 which is a contradiction since
z ≥ 0. Hence only strategy γ can be used when the load is
maximum.
Q.E.D
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