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Abstract 
 

The cover generation problem is relevant to 
the problem of creating large-scale wireless 
sensor networks with short-ranged sensor nodes 
that may not be capable of transmitting to the 
base station.  Quickly and efficiently placing 
relay nodes allows the sensors to save on 
battery power and transmit information back to 
the base station via the relay nodes.  Placing a 
minimal cover of relays is at least an NP-hard 
problem.  We present a geometric tiling 
algorithm to construct an approximation to a 
minimal covering set in O(n) time. 
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1. Introduction 
 

There are a wide variety of polynomial time 
approximation schemes (PTAS) that can 
approximate solutions to the minimum geometric 
disk cover (MGDC) problem, but none in 
current literature can do so in O(n) runtime.  We 
present an algorithm that computes an 
approximation to the MGDC problem with 
reasonable disk-to-point efficiency for many 
instances of the problem in linear runtime.  The 
motivation for this research is to computer 
optimal designs for building wireless sensor 
networks (WSNs).  Some WSN structure 
problems can be cast as MGDC problems.  
While for many applications long runtimes of 
current algorithms are not an issue, for time-

sensitive problems or very large regions with 
large sets of sensor nodes (SNs), computing a 
covering set of relay nodes (RNs) can take 
unreasonably long. 

Some applications can tolerate tens of hours 
computing an optimal networking solution that 
requires as few relays as possible.  However, not 
all networking environments have the luxury of 
unlimited design and setup time.  For time-
sensitive applications, computing a fast and 
reasonably accurate solution to a covering set of 
a network can achieve a “good enough” solution 
that will save lives.  The network will be more 
costly, but it can start being built immediately.  
This kind of algorithm could be useful for 
providing real-time logistical and tactical 
information to moving front-line military units 
and ensuring that search-and-rescue teams have 
real-time information.  Because these kinds of 
environments do not tolerate time delays, a less 
efficient network now is far more valuable than a 
more efficient network later.  

This paper presents a geometric tiling 
algorithm for approximating a minimal covering 
set in the context of a two-tiered, single-hop 
WSN.   This can alternately be described as an 
approximation scheme for the MGDC problem. 
The next section gives background on the 
problem along with related research. A formal 
description of the geometric tiling algorithm and 
an analysis of its performance is given in section 
3. Analysis and experimental results are given in 
section 4. Conclusions and future work are given 
in the final section. 
 



 
 
2. Background and Related Research 
 
WSNs consist of a set of sensor nodes that 
collect information and wirelessly communicate 
with one another.  There is either a Base Station 
(BS) that aggregates the information in the 
network or an outside access point to the 
network.  There may or may not be RNs that act 
as network gateways for SNs within a small 
region around them.  The presence of RNs 
determines if a WSN is one-tiered or two-tiered 
[1]. One-tiered WSNs have only sensor 
components. SNs are either deliberately placed 
or randomly dropped into a region, and an 
appropriate way to route data through the 
network must be found. 

There has been significant research into 
algorithms for generating two-tiered covers of 
WSNs within the past decade.  Two-tiered 
WSNs have not only a set of sensors in a region, 
but also have a set of relay nodes that act as 
network gateways for sensors in a small region 
around them.  These algorithms usually assume a 
random distribution of SNs in a given region.  A 
layer of relay nodes is placed such that the relay 
layer forms a cover over the sensors.  The SN's 
sole purpose is to gather information and 
forward it to a local RN.  For many applications 
the SNs are designed to be built as cheaply as 
possible, and thus do not have the battery power 
and design parameters to transmit data long 
distances.  The RNs collect data from the SNs 
within a small region and relay the data either 
directly to or through one another back to a BS.  
Each RN in a single hop two-tier WSN has a 
direct connection to the BS.  An example single-
hop two-tiered network is shown in Figure 1. 

Single-hop two-tier WSNs only require that 
the SNs transmit to the RNs, and do not require 
that the RNs be able to transmit to one another.  
The only requirement on the set of RNs is that it 
forms a covering set of the SNs.  It is assumed 
that either the data will be consolidated at the 

RN for later collection or each RN has some 
capability of transmitting its information back to  

 
 

Fig. 1.  A triangular grid of RNs 
 

a BS.  In the latter case, the RNs that are more 
distant from the BS will deplete their power 
more quickly than those further away [1]. 

Despite this drawback, this network 
architecture is still useful for networking 
environments where RNs have satellite uplinks, 
long range directional wireless communication 
or landline access.  There is extensive study on 
this problem in terms of the minimum geometric 
disk cover (MGDC) and discrete unit disk cover 
(DUDC) problems.   
 
2.1 Minimum Geometric Disk Cover 
 
Given a region D containing a set P with n 
points, generate minimal covering set of unit 
disks C such that for each p Є P,  c Є C such 
that p Є c. 
 
2.2 Discrete Unit Disk Cover 
 
Given a region D containing a set P with n 
points and a set of unit disks D, select a minimal 
covering set of unit disks C  D such that for 
each p Є P,  c Є C such that p Є c. 
 
 



2.3 Comparison 
 
The MGDC algorithm allows disks to be placed 
anywhere within the region, while the DUDC 
problem only allows disks to be placed in 
specific locations.  Both the MGDC and DUDC 
problems have been proven to be NP-complete 
[2], but both also allow polynomial time 
approximation schemes.  A PTAS generates a 
solution to an NP-Hard problem in polynomial 
time that is no more than some constant multiple 
of the optimal answer.  A wide variety of PTAS 
have arisen for both of these problems.  Many 
algorithms for DUDC have been proposed that 
generate solutions of no more than some 
constant multiple greater than one of the optimal 
solution in reasonable time [3, 4, 5, 6].  By 
comparison, algorithms for the MGDC problem 
generally require much longer runtimes, but can 
guarantee an arbitrary (1+ϵ) level of accuracy to 
the optimal solution of disks placed anywhere in 
the region.  Depending on the accuracy required 
and the algorithm used, MGDC and DUDC 
PTAS can be as fast as O(n2) or slower than 
O(n100).  Some connected cover algorithms from 
the multiple-hop two-tiered problem, such as the 
2CRNDC algorithm, are very similar to MGDC 
algorithms; only as a last step do they guarantee 
connectivity [7].  Some of the more recent work 
in this problem includes research by Liao and Hu 
[8], of which a modified algorithm is featured 
later in this work as a point of reference for the 
algorithm we present.  Liao and Hu's algorithm 
build off of general set-based PTAS for 
approximating the MGDC [9]. 
 
 
3. Formulation of the Algorithm 
 

We present an algorithm for generating a 
reasonably small unit disk cover of a set of 
points in O(n) time [11].  The approach for this 
algorithm relies on the uniformity of a triangular 
grid.  Consider the problem of finding the most 
efficient cover of a large but finite plane using  

 
disks of radius 1.  Pompili et al. showed that the 
most efficient regular cover is a triangular grid of 
disks as in Figure 2, with a point-to-point 
transmission distance of √3 [10].  However, our 
problem formulation does not require that we 
cover the entire region.  We only need to 
provide a covering set for a set of n points in the 
region, representing SNs.  We abstractly 
generate a cover of the region by overlaying a 
tessellation of hexagons of circumradius 1 with 
centers at each point on a triangular grid of edge 
length √3.  The hexagons in the region appear as 
in Figure 3.  A hexagon of circumradius 1 is a 
regular hexagon inscribed in a circle of radius 1.  
Potential RN locations are only at the points on 
the triangular grid.  Each RN only receives 
messages from SNs within the RN's 
corresponding hexagon.  The algorithm iterates 
through the n SNs and adds the nearest point on 
the triangular grid to a solution set.  By placing a 
unit disk at each point in the solution set, we 
produce an approximation to the minimal unit 
disk cover of the n points.  

Problem Statement: given a region R 
containing a set P with n points, generate an 

 
 

Fig. 2.  A triangular grid of RNs. 
 
 

 
  

Fig. 3.  A hexagonal cover of RNs. 
 



approximation C to the minimal covering set of 
unit disks such that for each p Є P,  c Є C such 
that p ϵ c. 

Table 1 provides the notations used.  Given a 
region filled with n SNs, we approximate a 
covering set.  For the purpose of this 
formulation we will assume we are given a 
square region containing the SNs.  In practical 
problems, the region would be defined as the 
minimal square that contains the set of SNs.  
Label this square region R with side length s.  
Our objective is to approximate the minimal 
cover of the SNs using a triangular grid of RNs. 

The RN-SN transmission range r forms a 
convenient non-dimensional scaling for this 
problem.  We call the non-dimensionalized 
region Rn, with side length sn.  In this region, the 
RN-SN transmission range is 1.  By scaling all 
distances involved by r, the algorithm generates 
a cover for any size region efficiently. 

We abstractly tessellate the non-
dimensionalized region Rn with hexagons of 
circumradius 1.  The RNs at the centers of the 
hexagons form a triangular grid.  Each SN in R 
will be mapped to points in Dn via the 
transformation 
 

           
(1)

 
where (xp, yp) is the location os the SN p. 

Given any square or rectangular region, we 
may orient the hexagons as in Figure 6, such that 
the hexagons fit neatly in the upper left corner of 
the region with minimal waste.  We can then 
compute the coordinates of any RN.  
Tessellating the square region Rn this way 

requires no more than  columns and 

 rows of hexagons of circumradius 1.  
Implementing the algorithm does not actually 
require the generation and storage in memory of 
the entire set of hexagons, merely the conceptual 
knowledge that we have overlaid it on the 
region. 

We iterate through each SN and select the 
nearest hexagon in the grid.  The regular nature 
of the tessellation makes finding the nearest RN 
a constant time arithmetic process.  These RNs 
locations do not need to be pre-computed and 
then selected, as they can be computed on the fly 
using arithmetic and rounding. 
 

Table 1. Variable definitions. 
 
Variable Description 
R The 2D region. 
Rn The non-dimensionalized 2D region. 
s The side length of R. 
sn The side length of Rn. 
r RN – SN transmission range. 
C An approximation to the minimal disk cover. 
P The number of sensor nodes. 
n The number of SNs. 
xp The x-coordinate of sensor p. 
yp The y-coordinate of sensor p. 
x(n,p) The non-dimensionalized x-coordinate of 

sensor p. 
y(n,p) The non-dimensionalized y-coordinate of 

sensor p. 
 

The RNs, as they are set up in this problem, 
form a triangular grid.  Each row on the 
triangular grid has the same y-coordinate.  Every 
second row has an offset x-coordinate.  We can 
immediately eliminate all but two potential 
candidates for the nearest RN to a SN by simply 
looking at the coordinates of the sensor.  The 
sensor will fall between two rows of relays.  
Counting from the top, odd numbered rows will 
have a horizontal offset of √3 / 2 from the even 
rows.  Within each row, the x-coordinate of the 
SN will be closer to either the RN on its left or 
on its right.  Each row then has a closest RN to 
the SN, and the closer of these two RNs is 
chosen to cover that SN. 

We create a selected relays matrix M of 
booleans that stores whether or not the jth RN in 
the ith row of RNs must be selected to form a 
cover.  This has the disadvantage of taking up a 
large block of memory by requiring a matrix of 



 booleans, but avoids 
writing duplicate RNs to the solution set C.  We 
then compute the location of the jth RN in the ith 
row for each true in M.  These RNs make up C. 

To map the locations of the RNs in Rn back to 
the region R, the corresponding location in R for 
an RN at xn,yn in Rn is 
 

(x,y) = (rxn, ryn)                           (2) 
 
a set of points such that when we place an RN at 
each of these points, we have a cover of the SNs 
in R.  Each SN will be within r units of distance 
of the nearest RN.  This is an approximation to 
the minimal cover of disks of radius r.   

Due to the properties of MGDC problem and 
the formulation of the triangular grid algorithm, 
there is no simple way to compare precisely how 
accurate of a solution the algorithm provides to 
the optimal solution.  The MGDC problem is 
NP-complete, and so finding the optimal disk 
cover takes an unreasonable amount of time to 
compute for any random simulation.  
Additionally, the only mathematical bound the 
algorithm gives to the efficiency of its cover is 
that it is the most globally efficient layout of 
relays on the plane. 
 
4. Analysis and Preliminary 
Experiments 
 

The algorithm was run on a desktop machine 
using MATLAB R2011b.  A set of points are 
generated using a uniform distribution in a 
square region of side length s = 10.  This side 
length was chosen as it was large enough to see 
noticeable differences in solutions and 
computational times, as well as being small 
enough to compute in a reasonable time. The 
algorithm computes the locations of a triangular 
grid of unit disks that covers the region, then 
finds approximations to the minimal cover of 
unit disks on that grid.  

Sensor densities of (n/s2 =  .1, .25, .5, .75, 1, 
2) were considered to determine each the 
algorithm's response to networks of varying 
densities.  An example of the output for n/s2 = .5 
is shown in Figure 4.  Results of the simulation 
shows that the algorithm performed in O(n) time 
for simulations of all sizes of n.  Memory usage 
was not a concern until the input data size grew 
to a very large n. Figure 5 shows the triangular 
grid algorithm across the trials we ran. 
 

 
Figure 4. The triangular grid algorithm. 

   

 
Figure 5. Average relays to cover sensor networks of 

various densities. 
 



5. Conclusions and Future Work 
 

We presented an O(n) triangular grid algorithm 
for approximating the minimum geometric disk 
cover of a set of points in a region.  While the 
algorithm presented is not an epsilon-
approximation, its speed and practical 
performance for generating approximations to an 
NP-Complete problem in linear time makes it 
suitable for some applications including 
guaranteeing coverage in dense or rapidly 
changing wireless sensor networks.  For 
emergency situations and military applications, 
time is the primary issue for building an effective 
network, not cost.  This algorithm provides a 
method for quickly generating covering sets of 
almost any size network. 
 

The triangular grid algorithm could be 
improved.  A better approximation could be 
found by culling relays from the grid using some 
simple enumerative techniques to identify 
unnecessary relays.  Additionally, search 
techniques could be used to generate connected 
covers by finding unconnected spaces and 
connecting them with a shortest path of relays.  
While this would increase the runtime of the 
algorithm, it could provide fast solutions to the 
multiple-hop WSN problem.  The runtime 
increase would likely be dominated by the 
runtime of the search algorithm.  Common 
search algorithms, such as breadth-first and 
depth-first searches, are O(n2).  The algorithm 
would also generate an acceptable starting point 
for iterative methods for calculating a minimal 
cover. 
 
Additionally, the algorithm deserves a 
comparison to an MGDC algorithm that is not 
restricted to a triangular grid.  While the 
triangular grid algorithm provides adequate 
solutions on the grid, at this time we are looking 
at how the algorithm compares to a true MGDC 
algorithm in terms of RN-SN ratio. 
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