
Improved Mobile and Web Accessibility of Unstructured

Web Table

Pauli P. Y. Lai

Department of Computer Science, The University of Hong Kong, Pokfulam, Hong Kong

Abstract - Web table understanding is usually difficult for

blind people. They depend on screen readers to convey the

table information. However, if the table is large, the user may

have long forgotten the heading before the last row is read.

On the other hand, it is also difficult for users to view a large

web table on a small-screen device. It usually requires

extensive scrolling to view a large table with small-screen

display. When the last row or last column is reached, the

associated headers are probably out of screen and thus the

meaning of data values is lost. These unstructured web tables

arises a need for mobile and web accessibility improvements.

In this regard, we propose a method to extract the structure

from these tables and perform adaptation so that the mobile

and blind users can perceive and retrieve information from

the web table more easily and conveniently.

Keywords: Web Table, Web Accessibility, Mobile

Accessibility, Blind, Content Adaptation, Mobile Web

Browser

1 Introduction

 How do blind people read a web page? Since blind

people cannot see, they can only perceive webpage by

alternative sensory channels such as auditory channel or

through tactile devices. The most common way for them to

access the Internet is to use a Web browser and text-to-speech

software [1]. However, screen readers present content linearly

to users. This contrasts with the way in which sighted people

use visual interfaces. The linear presentation of web content

imposes difficulty on web table understanding by the blind.

Therefore, we need to seek way to improve presentation of

web tables to the blind.

 On the other hand, it is also difficult for users to view a

large web table into a small screen device. It usually requires

extensive scrolling to view a large web table with small screen

display. When the last row or last column is reached, the

corresponding column headers or row headers are probably

out of screen and thus the meaning of the data values is lost.

 A web table is an HTML table that is enclosed between

two HTML tags: <table> and </table>. There are two types of

web table. A data table is that used for conveying the

contents’ information, and its contents’ meaning depends on

its structure. It is also called genuine table or meaningful table.

A layout table is that used in constructing the layouts of

HTML documents and its contents’ meaning does not depend

on its structure. It is also called non-genuine table or

decorative table. A data table is usually equipped with column

headers, row headers or both. In some cases, a data table may

miss an explicit header but there is an implicit existence of

eclipse abstractions for the table cells. In contrast, layout

tables do not have logical headers that can be mapped to

information within the table cells [2, 3].

 There are some guidelines for web developers to create

accessible web table [3]. However, this is not a compulsory

requirement and thus there are lots of legacy web tables that

are not designed with accessibility in mind. These tables are

not well structured, i.e. they are not marked up properly. For

example, the authors do not make of <THEAD> or <TH> tags

to indicate column headers. Therefore, there is a need arisen

to improve mobile and web accessibility for these

unstructured web tables.

 In our paper, we will describe how to extract table

structure from unstructured data tables for better presentation

to the blind and mobile users. The rest of the paper is

organized as follows. Section 2 will present the process of

analyzing table structure. Section 3 and 4 will discuss how to

improve web accessibility and mobile accessibility of web

tables respectively. Finally, section 5 will conclude our work.

2 Table Structure Analysis

2.1 Identifying Table Direction

 In the area of table structure recognition research, many

papers need to classify tables into genuine (also called data or

meaningful table) or non-genuine (also called layout or

decorative table) first [4, 5]. We do it by identifying Hparallel

and Vparallel relationships among table cells. Hparallel

relationship means that the table cells are horizontally similar

whereas Vparallel relationship means that the table cells are

vertically similar.

 In [4], the authors also measure the cell similarity to

determine whether a table is genuine because they assumed

that value cells under the same attribute names demonstrate

similar concepts. The metrics that they employ to measure the

cell similarity includes string similarity, named entity

similarity and number category similarity. They count how

many neighboring cells are similar. If the percentage is above

a threshold, the table tags are interpreted as a genuine table.

This is similar to our approach but we use more metrics

including the type of the node (e.g. text or anchor node), the

font family, the font size, the font weight, the font style, the

color, the background color, the content length, the hyperlink

address, etc. to measure similarity. Also we would not assume

that the value cells are number category which is not always

true in fact.

 To determine whether a web table is data table or layout

table, we compare the cell similarity to identify Hparallel and

Vparallel relationships. First we need to determine whether a

row is Hparallel or whether a column is Vparallel. If the

proportion of Hparallel cells to the total number of cells in a

row is greater than some threshold (th_cell), then the row is

regarded as Hparallel row. Similarly, if the proportion of

Vparallel cells to the total number of cells in a column is

greater than some threshold (th_cell), then the column is

regarded as Vparallel column. After identifying the Hparallel

rows and Vparallel columns, we can check whether a table is

a data table or not. If the proportion of Hparallel rows to the

total number of rows or that of Vparallel columns to the total

number of columns is greater than some threshold (th_rowcol),

then this is a data table. Otherwise, this is a layout table. The

formulas for determining Hparallel rows, Vparallel column,

row-wise data table and column-wise data table are shown in

Figure 1. The details of the relationship identification process

can be found in our previous work [6].

Figure 1. The formulas for determining Hparallel rows,

Vparallel column, row-wise data table and column-wise data

table.

 If two neighboring cells are similar, they are considered

as parallel cells. If two neighboring cells are parallel in the

same row (Ci,j and Ci,j+1), they are said to be horizontally

parallel (Hparallel). Similarly, if two neighboring cells are

parallel in the same column (Ci,j and Ci+1,j), they are said to be

vertically parallel (Vparallel). A web table with table cells Ci,j

is shown in Figure 2.

Figure 2. A web table with table cells Ci,j.

 Since the values under an attribute are usually similar in

terms of visual properties, we determine whether the table is

column-wise or row-wise by the Hparallel or Vparallel

realationships identified. If most of the columns are vertically

parallel (Vparallel), then the table is row-wise. Similarly, if

most of the rows are horizontally parallel (Hparallel), then the

table is column-wise. In some cases, the table cells exhibit

both Hparallel and Vparallel relationship, which means that

the data records can be read in both directions. In these cases,

attributes are on both rows and columns, and the table is

therefore called row-column-wise or both-wise. The idea is

illustrated in Figure 3. Figure 4 and Figure 5 show examples

of a row-wise table and column-wise table respectively.

Figure 3. A table is row-wise if most columns are vertically

parallel whereas it is column-wise if most rows are

horizontally parallel.

Figure 4. An example of a row-wise table with table caption

and footer.

Figure 5. An example of a column-wise table with table

caption.

2.2 Identifying Table Structure

 A simple web table consists of row(s) and column(s)

defined by <tr> and <td> tags respectively. A more complex

web table may include caption, header, body, footer defined

by <caption>, <col>, <colgroup>, <thead>, <tbody>, and

<tfoot> elements. The web developers are encouraged to

mark up the table properly so that the screen readers can read

properly [7]. However, many authors may not design the web

table with accessibility in mind and they simply use <tr> and

<td> tags to construct a web table. Instead of using proper

tags, they use visual properties to differentiate between header,

body, and footer sections. This gives challenges to screen

readers to interpret the web table properly. Moreover, to my

best knowledge, there is no HTML tag available to signify

row header which is usually found in both-wise table.

Therefore, we propose a method to identify table caption,

column header, row header, and footer sections.

 We first create a character matrix to indicate the

relationship exhibited by each table cell. We use ‘v’ to denote

Vparallel relationship, ‘h’ to denote Hparallel relationship, ‘b’

to denote both relationships, ‘n’ to denote no relationship, and

‘e’ to denote empty cell due to column span or row span. If a

table cell in the first row spanning all columns or a table cell

in the first column spanning all rows, then it is regarded as

table caption. If a table cell in other row (or other column)

spanning all columns (or all rows), then it is regarded as a

caption of a sub-table. If the table cell spanning all columns

(or all rows) is in the last row (or last column), then it is

regarded as table footer. An example is shown in Figure 6.

Figure 6. Conversion of a web table to a character matrix. The

web table is adopted and adapted from www.amazon.com.

 To explore the boundary between headers (attributes)

and data (values), we create two integer matrixes namely

Hdiff and Vdiff to indicate the relationship difference between

horizontal rows and between vertical columns respectively.

This is because if the values demonstrate Vparallel

relationship for a row-wise table, the corresponding attributes

are usually Hparallel. The difference in relationship between

table cells implies the boundary between headers and data. ‘1’

in Hdiff means that the relationship of current cell is different

from the neighboring cell in the next row while ‘1’ in Vdiff

means that the relationship of current cell is different from the

neighboring cell in the next column. ‘0’ means there is no

difference. Since there is no next row (or next column) in the

last row (or last column), we use ‘2’ to indicate last row (or

last column). Examples of converting character matrix into

Hdiff and Vdiff matrix are shown in Figure 7.

 To identify column headers, we find the first-appeared

boundary of ‘1’ and ‘0’ in the Hdiff matrix for each column

from top to bottom. Whenever a caption of sub-table is hit,

the row(s) before would be set as the boundary. When the

lowest boundary among all columns is found, the row(s)

before which would be regarded as column headers. The row

headers are identified in the similar approach with the row(s)

of column headers excluded. An example is shown in Figure 8

and Figure 9. When searching boundary of ‘1’ and ‘0’ in the

Hdiff matrix for each column from top to bottom, a horizontal

caption (Hcaption) is hit at the fourth row, and hence the first

three rows are regarded as column headers. To search row

header, the three rows are excluded since they are column-

header rows. For the rest of the rows, the caption rows at 4th

and 7th row are also skipped. As a result, only 5th, 6th, 8th

and 9th rows are searched and from these rows, the lowest

boundary of ‘1’ and ‘0’ happens to be before the 2nd column.

Hence the first column is regarded as the row headers.

Figure 7. Conversion of a row-wise table to Hdiff matrix and

conversion of a column-wise table to Vdiff matrix.

Figure 8. An example of complex table adopted from

http://www.usability.com.au/resources/tabletest.cfm.

Figure 9. A character matrix, Hdiff matrix, Vdiff matrix

converted from the web table in Figure 8.

3 Improved Web Accessibility of

Unstructured Web Table

 The above table structure analysis can be applied to

improve Web accessibility of unstructured web table for the

blind. In our previous work [8], we have described how to

improve web accessibility by converting a webpage into an

Interactive Voice Response Systems (IVRS) so that the blind

people can access the webpage using mobile phone by

listening to the index page and getting into details by pressing

the corresponding number on the key pad. We would like to

extend our previous work with web table adaptation included.

 As discussed before, there are two types of web table

namely layout table and data table. For layout table, since

there are no attribute-value pairs, it could only be rendered in

two ways: organizing by rows and organizing by columns.

The table is read row by row if it is organized by rows and it

is read column by column if it is organized by columns. We

offer both options to user because in different cases the web

table is organized differently.

 For data table, the table structure is analyzed and it is

organized by records. For row-wise table, it is read row by

row; for column-wise table, it is read column by column. If

there exists any header, it would be associated with the

corresponding table cell and read together. For both-wise

table, it would be organized by rows with row header being

read first, and followed by the column header and its

associated data.

 For complex table like that in Figure 8, since there are

multiple rows for column headers, the column header for each

column is integrated first. For example, the integrated column

header for 2nd column is “Imported-Apricots” and that for

3rd column is “Imported-Cherries-A Grade”. Also, there are

two sub-tables which would be abstracted under the

corresponding captions “Perth” and “Adelaide”. The structure

of the web table is shown in Figure 10 and the levels of

abstractions are shown in Figure 11. The blind users can then

listen to the web table level by level through a mobile phone

and select their interesting option by pressing the

corresponding number on keypad. Hence, the web

accessibility of the web table has been greatly improved.

Figure 10. The structure of the web table in Figure 6 is

illustrated as tree level by level.

Figure 11. The levels of abstraction for the web table in Figure

8.

4 Improved Mobile Accessibility of

Unstructured Web Table

 As discussed before, there are two types of web table

namely layout table and data table. Layout table is used to

organize the presentation of information in grid format but

there are no attribute-value pairs. Therefore, the table cells do

not have any association with headers. Thus, the adaptation of

layout table is to present each individual table cell from left to

right and then from top to bottom. But since the screen estate

for the mobile device is limited, whenever the accumulated

width of the table cell to be printed exceeds the maximum

screen width, a linebreak would be inserted so that the next

table cell would be printed on a new line. Also, if the

accumulated height of the table cell to be printed exceeds the

maximum screen height, the next table cell would be printed

on a new page so as to reduce the amount of vertical scrolling.

 On the other hand, the above table structure analysis can

also be applied to improve mobile accessibility of

unstructured web table. Browsing a web table in a small

screen device is a difficult task for users especially if the table

is very large. Previous researches have various proposals for

improving the ways of browsing large web table within

limited screen estate. In [9], Tajima and Ohnishi propose

three modes for browsing tables: normal mode, record mode,

and cell mode. Normal mode renders tables in the ordinary

way, but provides various useful functions for browsing large

tables, such as hiding unnecessary rows and columns. Record

mode regards each row (or column) as the basic information

unit and displays it in a record-like format with column (or

row) headers, while cell mode regards each cell as the basic

unit and displays each cell together with its corresponding

row and column headers. In [10], Potla, et al. adapt a HTML-

based Web table into two adaptive styles: Single Narrow

Layout and Multi page Layout . Single Narrow Layout offers

one-dimensional browsing (either browsed by rows or by

columns) within page by generating navigational hyperlinks

based on row header and/or column header. In Multi page

Layout, a hyperlink is generated for each <td> tag with the

corresponding row header or column header or both (for

multidimensional tables), which navigates to a new Web page.

Except for the normal mode browsing proposed by Tajima

and Ohnishi, all the above ways are limited to one-

dimensional presentation even for multi-dimensional tables.

Though users are guided with the column header and/or row

header, it is easy for them to forget the navigational path

before they reach the final data cell. Despite the normal mode

browsing proposed by Tajima and Ohnishi offers two-

dimensional browsing and provides function of folding

unnecessary columns/rows, it is still difficult for users to

manage and browse a large table with many columns and rows.

In this regard, we propose a novel approach for browsing a

large web table in small screen devices.

 For a large web table that is not small enough to fit for a

small screen display, the table would be partitioned into

various sub-tables which are then distributed to multiple sub-

pages such that each of which approximately occupies the

whole screen of the device, and thus no scrolling is required.

Each sub-table contains different data values with their

associated column/row headers replicated. The idea is

borrowed from a function which is already supported in some

spreadsheet programs—freeze pane. After identifying column

headers and row headers in section 2, we can adopt freeze

pane approach to lock the column headers and/or row headers

and allow navigation only for data values. Then the users can

freely navigate any data cell with its associated column/row

headers displayed together.

 Figure 12 demonstrates the idea of browsing the web

table from Figure 8 using the freeze pane approach. Since the

table contains some column headers that span several columns

such as “ Imported”, “Domestic” and “Cherries”, the

spanning cell needs to be split into some pseudo-cells

according to the number of cells it spans. Each pseudo-cell is

duplicated with the name of the column header so that when

the table is partitioned in the middle of the spanning cell, the

name of column header would still be present. When the user

wants to see the next few columns, he/she can press the right

navigation key, the data values with their associated column

headers would be displayed while the row headers would be

fixed. When the user wants to see the next few rows, he/she

can press the down navigation key, the data values with their

associated row headers would be displayed while the column

headers would be fixed.

Figure 12. Browsing the web table from Figure 8 using the freeze pane approach.

 To print the sub-table pages, first we need to compute

the number of rows and columns for each sub-table page.

Given the specified font family and font size, the widths and

heights in pixel for all table cells can be computed. Then, the

maximum width required by each column and the maximum

height required by each row can be obtained. With this

information, we can then calculate the available width for

displaying data cells by deducting the maximum width

occupied by the row headers from the window width. The

available width is used to compute the maximum number of

columns to be displayed in each sub-table page. Since the

maximum width for each column may be different, the

maximum number of columns for each sub-table page may

hence be different. The maximum number of rows for each

sub-table page can be found in a similar manner.

 From the above algorithm, we have made the following

assumptions:

1. It is assumed that at least two rows should be displayed

in each sub-table page even though the accumulated height

exceeds the available height.

2. It is assumed that at least two columns should be

displayed in each sub-table page even though the accumulated

width exceeds the available width.

3. For the tables without row headers, it is assumed that the

first column is the key to locate record and thus the first

column would be regarded as row header so that the first

column would also be replicated in each sub-table page.

 According to the maximum number of columns and the

maximum number of rows for each sub-table page obtained,

the data cells would be printed to each sub-table page together

with their associated row headers and column headers which

are highlighted in gray. An example of adaptation is shown in

Figure 13 and Figure 14 below with specified window

dimension of 200x200. Note that in this example, the first

column is not row header originally. It is set as row header

due to assumption 3 above.

Figure 13. Original web table for adaptation.

Figure 14. Adapted sub-table pages for web table in Figure 13.

5 Conclusion

 In conclusion, we have proposed a method to analyze

unstructured web table by identifying table direction and

extracting headers from data table. With the table structure

identified, the web table is then re-organized into multiple

levels of abstraction so that the blind users can access the

table level by level by pressing the corresponding number on

keypad. It has enhanced the table content understanding for

the blind and the users can even access the web table when

they are in mobile. Also, with the column headers and row

headers identified, the web table can be adapted to fit into

small screen display by adopting the freeze pane approach.

This has greatly improved both the mobile and web

accessibility of unstructured web table and the users are able

to perceive and retrieve information from web table more

easily and conveniently.

6 References

[1] J. Herrman. (2010), Giz Explains: How Blind People

See the Internet. Available: http://gizmodo.com/5620079/giz-

explains-how-blind-people-see-the-internet

[2] S. W. Jung and H. C. Kwon, "A machine learning based

approach for separating head from body in web-tables,"

presented at the Proceedings of the 7th international

conference on Computational Linguistics and Intelligent Text

Processing, Mexico City, Mexico, 2006.

[3] (4/2/2012). Creating Accessible Tables. Available:

http://webaim.org/techniques/tables/

[4] H. H. Chen, et al., "Mining tables from large scale

HTML texts," presented at the Proceedings of the 18th

conference on Computational linguistics - Volume 1,

Saarbr\&\#252;cken, Germany, 2000.

[5] Y. Wang and J. Hu, "A machine learning based

approach for table detection on the web," presented at the

Proceedings of the 11th international conference on World

Wide Web, Honolulu, Hawaii, USA, 2002.

[6] P. P. Y. Lai, "Reverse Engineering of Web Pages for

Logical Section Discovery," in IET Younger Members

Exhibition and Conference 2010, Hong Kong, 2010.

[7] H. Ahmadi and J. Kong, "Efficient web browsing on

small screens," presented at the Proceedings of the working

conference on Advanced visual interfaces, Napoli, Italy, 2008.

[8] P. P. Y. Lai, "Application of content adaptation in web

accessibility for the blind," presented at the Proceedings of

the International Cross-Disciplinary Conference on Web

Accessibility, Hyderabad, Andhra Pradesh, India, 2011.

[9] K. Tajima and K. Ohnishi, "Browsing large HTML

tables on small screens," presented at the Proceedings of the

21st annual ACM symposium on User interface software and

technology, Monterey, CA, USA, 2008.

[10] Y. Potla, et al., "Adapting Web Page Tables on Mobile

Devices," ed: IGI Global, 2012, pp. 1-22.

http://gizmodo.com/5620079/giz-explains-how-blind-people-see-the-internet
http://gizmodo.com/5620079/giz-explains-how-blind-people-see-the-internet
http://webaim.org/techniques/tables/

