
A Security Mechanism for Web Servers Based on
Deception

Constantine Katsinis1 and Brijesh Kumar2

1Computing and Security Technology, Goodwin College, Drexel University, Philadelphia, PA, USA
2Security Research Group, Rapidsoft Systems, Inc., Princeton, NJ, USA

Abstract - The use of deception to deal with an adversary
has been a tool for military strategists, intelligence
agencies and law enforcement authorities for a long time.
In computer security, deception includes actions taken to
deliberately mislead attackers and to thereby cause them
to take (or not take) specific actions that aid in the
defense of a computer system. In recent years, honeypots
have helped strengthen computer security through basic
deception, by using them to study various  attacks and
monitor the way in which they were being accessed by an
intruder. However, despite the importance of deception in
computer security, deploying deception in modern web
servers and web-based applications has not been
extensively studied beyond deploying honeypots. In this
paper, we examine the use of deception in the case where
an intruder attacks a web server as a first step of an
intrusion designed to access data sources on an internal
network. We examine the development of a deception
module which can be hooked into the Apache web server
to detect malicious use of scripts and provide a deceptive
response as necessary.

Keywords: Deception, Intrusion Detection, Intrusion
Response, Information Security, Information Warfare.

1 Introduction

Web services are becoming more ubiquitous and
complex, making it more difficult to consider all possible
exceptions of the proper behavior of web servers and
applications, and leading to important security problems.
Attacks against web applications constitute more than
60% of the total attack attempts observed on the Internet.
Web application vulnerabilities such as SQL injection and
Cross-Site Scripting flaws in open-source as well as
custom-built applications account for more than 80% of
the vulnerabilities being discovered [1]. However, an
attack on a web servers is often only the first step of an
intrusion designed to access data sources on the internal
network [2,3].

Intranet websites can be attacked from the outside
indirectly by first attacking a web browser on an internal
network. Because corporate users sit behind firewalls they
often have the access that is needed to attack intranet

applications on behalf of an attacker. A victim visits a
malicious web page, which assumes control of the
victim's web browser. Subsequently, the victim's web
browser can be instructed to make connections to servers
on the internal IP range on behalf of the attacker.
Essentially, the web browser of a user on an internal
network becomes a launch platform for attacks against
internal targets.

In this paper we focus on a similar case, where an
intrusion starts with an attack on the front, internet-facing
web servers of the enterprise. Because they cannot be
relied upon to be completely secure, web servers are
commonly located in demilitarized zones where they
communicate with data sources on protected networks. In
a DMZ, web servers are protected by IP/port-based
filtering and can connect to machines on the Internet as
well as other servers on the internal network which are
usually less hardened due to cost/benefit tradeoffs. If an
attacker gains control over the web server, then he can
execute commands on these servers the same way that
anyone at the keyboard of the server could. Initiating an
effective attack requires interactive terminal access which
can be accomplished by copying the shell interpreter to a
folder within the document root of the web server. Several
exploitation techniques exist for this purpose, including
exploiting URL parsing, SQL injection, or targeting
applications that validate input parameters poorly.
Subsequently, the shell interpreter can be invoked by a
URL to gather information about the internal network and
attempt to escalate the attacker’s privileges for the internal
network.

Potential ways to reduce the effect of the attack may
include prohibiting the web server from accessing the data
source with the data source frequently updating the web
server, or segmenting the network, placing the data source
on a separate segment and limiting communications to the
rest of the network. However, these measures do not
eliminate the risks of an attack.

2 Deceiving the attacker

When an intrusion is detected, there are three options
on how we might respond: 1) we may block the intrusion,



2) we may counterattack, trying to identify the adversary
and neutralize his ability to attack, or 3) we pretend to be
affected by the attack, leading the adversary to conclude
that he has been successful, when in fact he is not.

Attempting to block the intrusion is the current
standard practice, but the attacker quickly realizes that his
intrusion is failing. In addition, although critical to
network defense, access controls based on authentication
and authorization can be defeated or circumvented. As a
result, secondary lines of defense are also critical once
access controls have been breached. Intrusion-detection
systems, computer forensics, and honeypots are secondary
lines of defense, but they are relatively passive and
focused on data collection. Closing connections, ports,
and services automatically during attacks stops them, but
signals the attacker we recognize the attack and
encourages a different attack.

Cyberattacks have been considered extensively
within the context of large scale cyberconflict [4]. A
general conclusion is that, although possible, a
cyberattack (or counter-cyberattack in the subject of this
paper) is not necessarily the best response to the intrusion;
one reason is that unless it is completely successful, the
attacker will immediately realize that his attack is failing
and will switch to a different mode of attack [5,6]. An
even more fundamental difficulty lies in the fact that
cyber-attacks take place in an environment where
attackers are connected to neutral third parties; a
counterattack on a legitimate target may unavoidably
damage a neutral party. This possible unpredictable
damage, as well as weak attribution (identities are easily
concealed or fabricated in cyberspace) reduce the
effectiveness of counterattacks in cyberspace. Even
worse, deterrence in cyberspace becomes more difficult
since we cannot threaten unknown attackers and it is
counterproductive to threaten the wrong party.

Option 3 is based on deception and can be the most
beneficial, if the deception is maintained successfully for
the proper amount of time. In its simplest form, deception
occurs defensively, for example when a server increases
processing times pretending to succumb to a
denial-of-service attack so the attacker goes away. In
general, deception is an extension of the concepts of
intrusion detection and intrusion prevention. Intrusion
Detection Systems issue alerts when they identify a
potential threat in traffic patterns or when they detect in
system logs a deviation from what is considered normal
activity. Intrusion Prevention Systems have the ability to
respond automatically to threats, taking some specific
action such as dropping packets, terminating a connection
or blocking network traffic from one or more hosts that
are suspected to be malicious.

2.1 Beyond honeypots

For a long time honeypots have been used to simulate
some parts of or a full operating system in order to collect
data and study specific types of attacks. They are intend
to be probed, attacked, or compromised. By definition
they are computers connected to a network that no one is
supposed to use; any connection is the result of an error or
an attack. Therefore, honeypots have no production value
allowing reliable forensic analysis of data with fewer false
positives [21]. For example, [21] emulates the presence of
multiple hosts to deceive attackers scanning a victim
network. In [22] a honeypot is described which is used to
analyze the behavior of an attacker after he breaks into a
machine. The authors make it easy for an attacker to break
in: they use weak passwords for ssh user accounts. In [23]
a low-interaction honeypot platform (emulating only the
vulnerable parts of a relevant service) is described which
is used to collect information on self-replicating malware.
Similarly [24] uses honeypots to collect malware data. In
[25] a low-interaction web-application honeypot is
described that emulates vulnerabilities to gather data from
attacks that target web applications. It is designed to
appear vulnerable to the attacker by providing the proper
reply to the attacker’s requests.

2.2 Intrusion Deception

The deployment of honeypots provides invaluable
information on the behavior of attackers which can be
used to improve Intrusion Deception techniques, but
Intrusion Deception goes far beyond the deployment of
honeypots. While honeypots are computers that no one is
supposed to use, Intrusion Deception applies to fully
productive computer systems that an authorized group of
users is supposed to use.

Intrusion Deception goes beyond the basic security
paradigm of detecting and reacting to threats. It comes
from the realization that the basic security paradigm
allows the attacker to always be one step ahead and plan
his attack well in advance of our reaction. It attempts to
be proactive and take advantage of the attacker’s
mentality and weakness. The understanding of the typical
mentality of an attacker, his desire to cause damage, the
use of attack tools, the way he probes a system after the
initial intrusion, all can be used to create effective
defensive deceptions as generic scenarios of excuses
rather than isolated actions which may not be sufficiently
convincing.

Previous efforts in including deception have focused
on creating web servers or sections of web sites with
"secrets" that only a malicious intruder would be
interested in [7]. Since legitimate users would not be



looking for secrets, any access to the "secret" area is
assumed to be by an intruder, and the web server reacts
deceptively by behaving as if encountering network errors
or file retrieval difficulties. The purpose of this type of
deception is to mislead the attacker and make him waste
resources and time under the assumption that the server is
under a time-critical denial-of-service attack or an
intrusion where the attacker is relying on an unexpected
and short-lived attack.

The concept of Intrusion Deception covers a wide
range of responses, including decoy systems and fake
information. It enhances information systems enabling
them to deceive attackers to prevent them from achieving
their goals [7-11]. Since attackers rely on responses from
computer systems, such deception can be very effective
with minimal resources whether attacks are initiated by
insiders or outsiders. Its initial goal is to gather
information about the nature of the attack but, unlike a
honeypot whose goal is to lure and study attackers, its real
purpose is to confuse, misdirect and frustrate a malicious
attacker, while at the same time it collects intelligence and
forces the attacker to expose his sources and methods. It
also employs techniques to force  the attacker to perform
actions that are detrimental to his purpose, such as forcing
him to use communication protocols that make it easier
for the Intrusion Deception system to achieve its purpose.
Deception is useful even when we are very sure of an
attack, first as a delaying tactic, and by diverting the
attacker to honeynets at the proper time as determined by
the detected intrusion, until at some point it may become
safer to disconnect the attacker.

A framework for using intelligent software decoys to
deceive hackers once they have infiltrated a system is
described in [12].  The model consists of a security
contract, which when violated triggers the generation of
deceptive decoys by the software object.  The goal of this
deception is to convince the mobile agent into concluding
that it has successfully infiltrated the system.  The decoys
described simply consist of a fake java object generated
at run time with randomly permutated arguments.  Most
of these techniques have been compiled in a software
package consisting of PERL scripts called the deception
toolkit (DTK) [13].

In the Intrusion Deception architecture, we
continuously monitor network and server activities for
suspiciousness. As suspiciousness increases, we first
provide minimum deceptive measures, and then increase
their frequency and severity. Deception is used sparingly
and consistently to keep the attacker fooled as long as
possible, tying up his resources while reducing his
chances of successful attack. Thus, Intrusion Deception is
a defense mechanism implemented on a real web server

that continues to provide correct information to legitimate
users (and to benign requests of a potential attacker) and
engages deception only when an attack is verified to be in
progress. Its fundamental purpose is not to mount a
counterattack but rather to give the illusion to the attacker
that he is succeeding. Therefore, it is only an additional
level of defense of an otherwise fully functional web
server, increasing the difficulty of a successful attack. The
question of whether deception is ethical or legal has been
extensively examined in the past and most ethical theories
allow for deception against serious harm [14,15]. We
consider an intrusion into a web server to be a serious
harm. Legal issues in several countries are presented in
[16] including whether the defender has a duty to
disconnect the system under attack (to retreat from the
attack).

While the range of Intrusion Deception techniques is
extensive, in this paper we focus on engaging intrusion
deception techniques to prevent an attacker from gaining
control of a web server and using it as an intermediate
step to launch attacks into the internal network of an
organization. We focus on the situation where despite
network defenses, an attacker has penetrated the network
and has managed to install a malicious piece of software
on the web server.

3 A deception module on Apache

One way of protecting critical processes, such as the
Apache web server, is to enclose them in software
wrappers [17]. A software wrapper is basically a set of
rules for detecting and responding to suspicious behavior.
It allows the interaction between the critical process and
the external client (who might be a potential attacker), but
employs deception techniques when it detects an
intrusion. In its simplest form, the software wrapper
responds with fake error messages, keeps the attacker
occupied or redirects his traffic to a honeypot. 

In a concept quite similar to a software wrapper,
Apache modules have been developed to defend the
server against attacks. Two common ones are
ModSecurity [18] and ModEvasive [19]. ModSecurity
considers common types of attacks such as
variable-length buffer injection, meta character injection,
and SQL injection that pass unobstructed through
common firewall configurations, and attempts to detect
the attacks and block the related traffic. ModEvasive is an
Apache module providing evasive action in the event of
an HTTP DoS or DDoS attack. It detects certain events,
such as frequently requesting the same page, and denies
access to the corresponding IP address. It can be
configured to coordinate with firewalls and routers to
optimize its response and reduce the required bandwidth



and processor utilization. Although their purpose is to
defend the server against attacks, they both rely
fundamentally on access controls, and neither of them
attempts to use deception. 

In this paper, and as a proof of concept, we discuss a
simple implementation of a deception module as part of
the content generator module architecture of the Apache
web server. Apache is using a modular approach to
process an HTTP request allowing a module to handle a
particular task but ignore other aspects of the request that
are not relevant. At its core is the content generator.
Modules register content generators by defining a
function referenced by a handler configured by directives
in the configuration file httpd.conf.

A request goes through several phases before being
processed by the content generator. These phases examine
and change the headers of the request to verify access
rules, map the request to a file or script, and determine the
proper content generator. The logging phase takes place
after the content generator has sent the response back.

In Apache new modules can be developed and
inserted into any of the processing phases described
above. A module defines a function and, through the
proper hook, tells Apache to call the function at the
appropriate processing phase.

Although Apache allows modules to hook functions
in the phases before content generation (called metadata
modules), in this paper we present a simple example of
hooking a deception function as the very first part of the
content generator that responds to CGI requests.

Figure 1 shows the architecture and location of the
deception function, as well as other locations where more
advanced deception architectures may include additional
deception functions.

Extensive information on the design of Apache
handlers is given in [20]. A summary of creating a hook
is given below, where the basic data structure and
necessary function calls are shown.

static int deception_handler
(request_rec *r) {
  /* if we are not interested, 
     return DECLINE or ERROR */
  /* deception processing code */
  return DECLINED; /* or OK */
 }

static void deception_hooks
(apr_pool_t *pool) {
  ap_hook_handler(deception_handler,
   NULL,NULL,APR_HOOK_REALLY_FIRST);
 }

module AP_MODULE_DECLARE_DATA
deception_module = {
 STANDARD20_MODULE_STUFF,
 NULL, NULL, NULL, NULL, NULL,
deception_hooks
} ;

The module structure declares a function member to
create a request processing hook. A hook also indicates
which part of the request the module is interested in. Here
we are interested in executing our function as early as
possible in the content generator, and the
ap_hook_handler() function is called with parameter
APR_HOOK_REALLY_FIRST. Depending on the
module requirements, a function may be hooked in
different places withing the content generator, through the
use of other constants in place of parameter
APR_HOOK_REALLY_FIRST. These constants are
defined in a header file in the Apache source, however
other integers may be used within a proper range for finer
control.

In general, the handler function (deception_handler)
examines the data in the request data structure, decides
whether to respond or ignore the request, and finally
returns a code. Apache defines several return values: OK,
indicating that the function has completely handled the
request and no more processing is necessary;
DECLINED, indicating that the function is not interested
in this request and that Apache should call another
handler; or a status code indicating an error.

The deception function examines the URL of the
request and decides which steps to take next. In this paper
we are interested in CGI scripts, so the function may

Content GenMetadata Proc Logs

Request

Deception Module

Figure 1. Deception module in Apache architecture



return DECLINED very early if the current request is not
for a CGI script. Otherwise, the function examines the
script and may respond to the request and return OK to
stop Apache from executing the script or it may simply
return DECLINED to allow normal execution of the
script. The ability to create deception lies in both choices:
the deception function may completely respond to the
request in several (possibly deceptive) ways with no need
for further processing by Apache, or it may modify the
environment in which the script may run and allow
Apache to run it.

In this paper we use the experimental setup shown in
Figure 2. We are not only interested in analyzing attacks
in-depth, but also in gaining a general understanding
about the effectiveness of deception scheme when
attackers interact  with the web application. To simulate
the mounting of an attack we use three PCs running
scripts to generate various Web attacks, including a) SQL
injection attack, b) Brute force attack to break the
password, and c) attempt to access files or folders with
insufficient authorization. We assume that the initial
intrusion has been successful and that the attacker has
succeeded in either copying the shell interpreter or
installing a similar program in a folder within the
document area of the web server. Specifically, in our
experiment we use Apache 2.2 running on Windows 7
and we assume the existence of a CGI program (written in
C) that takes as a parameter one string with a DOS
command, execute it and display the result back in the
attacker’s browser. This program is in the cgi-bin folder.

One of the first actions an attacker would take after
installing this program is to examine the contents of
folders on the server file structure that he would not
normally have access to. Our deception function can

examine the parameters of every script and in this
particular case detect a suspicious DOS command. It has
the choice of allowing the request to go through and be
executed, if for example the target folder is under the
DocumentRoot structure (and folder listing is allowed), or
it may transform the string of the DOS command to a
benign command and keep the history of requests that will
maintain the deception in future requests by the attacker.

4 Use of log information by the
deception module

Log information can greatly assist the deception
function. The web server logs as well as system logs can
reveal what is actually happening on the server and
provide the history needed to create a successful
deception. The fact that logs contain information on what
has already happened may be seen as a drawback as they
are not effective in blocking a certain response or shutting
down the connection. However, the attacks considered in
this paper consist of several steps over some period of
time, during which we may have the opportunity to detect
the suspicious activities and create a response based on
deception.

Extracting information from the logs can be
implemented as additional modules in Apache, with
functions inserted before (metadata phase) and after (log
phase) the content generation phase. These functions
parse the data, extract patterns, maintain history and
context, combine information from what may seem to be
distinct attacks, decide on further deceptive actions, and
produce their own logs. 

The deception process can also benefit from more
sophisticated anomaly-based pattern recognition systems
which model normal (legitimate) traffic and intrusion
attempts (anomalous) traffic. Such systems continuously
collect a large sample of real requests on a web server and
attempt to classify the requests based on the web server
inputs, as attacks and legitimate requests, and possibly to
identify different categories of attack.

Monitoring key system files also provides substantial
information to the deception process, since most exploit
tools use one or more system files. By monitoring the
activity on such files in real time as well as the account
under which the processes execute, the deception process
may be able to substitute real data with deceptive data,
rather than block the intrusion which would be
immediately known to the attacker. These files include
cmd.exe, ftp.exe and tftp.exe, ping.exe and net.exe.

Attacker 1 Attacker 2 Attacker 3

Internet

Router/
FirewallWeb Server

DMZ Interface
DB Server File Server

Internal Network

Figure 2. Experimental Setup



5 Conclusion

It is becoming increasingly apparent that
cyberdefense based on detecting and reacting to threats is
not sufficient as it allows the attacker to always have the
initiative. Counterattacks in cyberspace are also
problematic as they carry the risk of damage to neutral
third parties. Defense techniques based on deception can
be beneficial if the deception is maintained successfully
for the proper amount of time, leading the adversary to
conclude that he has been successful, when in fact he is
not. In this paper we examine the case of using deception
to defend against an attack on a web server and further
attacks on servers in internal networks and we describe
the development of a module which can be hooked into
the Apache web server to detect malicious use of scripts.
The deception module examines the incoming HTTP
request and can analyze the web server and system logs to
decide if a deceptive response is necessary.

6 References

[1] SANS, "The Top Cyber Security Risks 2009",
http://www.sans.org/top-cyber- security-risks/
[2] How Internal Network Becomes External,
http://www.ddosed.com/uploads/ penetration_
testing/srgn-pentest-01.pdf
[3] Grossman, J., "Hacking Intranet Websites from the
Outside Take 2", https://www. blackhat.com/
presentations/bh-usa-07/Grossman/Whitepaper/bh-usa-
07-grossman-WP.pdf
[4] Lin, H., "Lifting the Veil on Cyber Offense", Security
& Privacy, IEEE, July-Aug. 2009, v. 7  n. 4, pp. 15-21.
[5] Lewis, J. A., "The Korean Cyber-Attacks and Their
Implications for Cyber-Conflict", Oct 23, 2009, CSIS
Center for Strategic and International Studies.
[6] Owens, W.A., Dam, K.W., and Lin, H.S., editors,
"Technology, Policy, Law, and Ethics Regarding U.S.
Acquisition and Use of Cyber-attack Capabilities",
Committee on Offensive Information Warfare, National
Research Council, National Academies Press, 2009.
[7] Rowe, N.C., "A model of deception during
cyber-attacks on information systems", Multi-Agent
Security and Survivability, 2004 IEEE First Symposium
on , pp. 21- 30, Aug. 2004
[8] Rowe, N.C., "Designing good deceptions in defense
of information systems", Computer Security Applications
Conference, 2004. 20th Annual , pp. 418- 427, 6-10 Dec.
2004.
[9] Rowe, N.C., Duong, B.T., Custy, E.J., "Fake
Honeypots: A Defensive Tactic for Cyberspace",
Information Assurance Workshop, IEEE, pp. 223-230,
21-23 June 2006.
[10] Rowe, N.C., "Finding Logically Consistent

Resource-Deception Plans for Defense in Cyberspace",
Advanced Information Networking and Applications
Workshops, 2007, AINAW '07, 21st International
Conference, vol.1, pp..563-568, 21-23 May 2007.
[11] Julian, M.D.P., Rowe, N.C., Michael, J.B.,
"Experiments with deceptive software responses to
buffer-overflow attacks", Information Assurance
Workshop, 2003. IEEE Systems, Man and Cybernetics
Society, pp. 43- 44, 18-20 June 2003,
[12] Michael, J. B., Riehle, R. D., "Intelligent
Software Decoys", Proc.  Monterey  Workshop  on
Engin.  Automation  for  Software-Intensive  Syst.
Integration,  ARO/ONR/NSF/DARPA, June 2001, pp.
178-187.
[13] Cohen, F., "The Use of Deception Techniques:
Honeypots and Decoys", http://all.net/journal/
deception/Deception_Techniques_.pdf
[14] Bok, S., "Lying: Moral Choice in Public and
Private Life", Pantheon, 1978.
[15] Nyberg, D., "The varnished truth: truth telling
and deceiving in ordinary life", University of Chicago
Press, 1993.
[16] Benichou, D., Lefranc, S., "Introduction to
network self-defense: technical and judicial issues",
Journal of Computer Virology, Springer, Vol.1, issue 1-2,
pp. 24-32, Nov. 2005.
[17] Michael, J.B., "On the Response Policy of
Software Decoys: Conducting Software-based Deception
in the Cyber Battlespace", COMPSAC 2002, p 957-962
[18] http://www.modsecurity.org/
[19] http://www.zdziarski.com/blog/?page_id=442
[20] Kew, N., "The Apache Modules Book:
Application Development with Apache", Pr Hall, 2007.
[21] http://www.honeyd.org/
[22] Alata, E., Nicomette, V., Kaâniche, M., Dacier,
M.,  and Herrb, M., “Lessons learned from the
deployment of a high-interaction honeypot”, 6th European
Dependable Computing Conference, Coimbra, Portugal,
18–20 October 2006, pp. 39-46. 
[23] Baecher, P., Koetter, M., Holz, T., Dornseif, M.,
and Freiling, F.C. “The Nepenthes Platform: An Efficient
Approach to Collect Malware”, Proceedings of the 9th
International Symposium on Recent Advances in
Intrusion Detection, Hamburg, Germany, September
20-22, 2006, Springer 4219, pp. 165-184. 
[24] Leita, C., Dacier M., “SGNET: A Worldwide
Deployable Framework to Support the Analysis of
Malware Threat Models”, 7th European Dependable
Computing Conf, Lithuania, May 2008, pp. 99-109.
[25] Rist L., Vetsch S., Kossin M., Mauer M., “Know
Your Tools: Glastopf - A dynamic, low-interaction web
application honeypot”, http://honeynet.org/papers/
KYT_glastopf


