
Emergent Distributed Problem-solving Technique
for Self-configuring Systems

Brian McLaughlan1 and Henry Hexmoor2

1Department of Computer and Information Science
University of Arkansas – Fort Smith, Fort Smith, AR, USA

2Department of Computer Science
Southern Illinois University – Carbondale, Carbondale, IL, USA

Abstract - The goal of configuring a massive, complex multi-
agent system can be viewed as a distributed search problem
in which each agent attempts to choose a correct
configuration. This research presents a technique that can
simultaneously function as the problem decomposition and
solution aggregation components in such a distributed search
environment. The method is tested in a number of large
multi-agent simulations to demonstrate its feasibility. The
agents in the system are shown to achieve optimal or near
optimal configurations in significantly less time than agents
configuring themselves individually.

Keywords: Multi-agent systems, distributed search,
emergence

1 Introduction

Distributed search is an open problem in AI research. At
its core, it is a problem involving efficiently decomposing or
partitioning a problem into sub-problems and allocating those
sub-problems to one or more computational elements.
Ideally, these elements would then be able to explore their
much more limited search space in parallel. Research in
distributed search can be broadly classified as dealing with
one or more of the following: finding algorithms for
appropriate decomposition of problems [1], distribution of
sub-problems to computational elements [2], synthesizing
results of sub-problems [3], and coordination between
elements [4]. The research in this paper proposes a technique
that will simultaneously handle problem decomposition and
result synthesis.

In this research, a massive multi-agent system has been
given the goal of configuring its constituent elements (i.e., the
individual agents) for optimal performance of the tasks
assigned to those elements. In this scenario, we make several
assumptions:

• The size of the organization is such that
micromanagement of individual agents is infeasible.

• The complexity of the organization and its operating
environment is such that the desired configuration of
the average agent is unknown.

• Individual agents may already possess some method
for learning.

• In the course of performing tasks, agents will
communicate or deal with each other, but agents are
not required to be benevolent. They are allowed to
choose an appropriate configuration for themselves
without considering the needs of other agents.

2 Approach

To facilitate the speed of the search, a key observation is
made regarding the performance of the agents. If all other
factors are held constant, an agent that is more successful at
completing its tasks will typically be better configured for the
task than an agent that is less successful. Therefore, when
agents interact, the more successful agent will pass
appropriate traits to the less successful agent. The greater the
relative success, the more strongly the trait is adopted or the
more likely the trait will be adopted.

Formally, agent Ai has a Sending function Fi
S:

 Oj(T + 1) ← Fi

S(xi(T), ∃! x ∈{C, S}). (1)

This function sends a configuration C or success score S to
the observation list of the receiving agent, Aj, where it can be
processed. Similarly, a Receiving function, Fi

R, is defined:

 Oi(T + 1) ← Fi

R(Fj
S(xj(T), ∃! x ∈{C, S})). (2)

This function receives a configuration C or success score S

from agent Aj and stores it in the observation list where it can
be processed. Finally, a Processing Observations function,
Fi

P, and an Updating Configuration function, Fi
U, are defined:

 Bi(T + 1) ← Fi

P(Oi(T), Bi(T)). (3)
 Ci(T + 1) ← Fi

U(Ci(T), Bi(T), Si). (4)

In Fi
P, agent Ai merges its list of observations with its

beliefs to create new or updated beliefs. Similarly, Fi
U

utilizes agent Ai’s current configuration, its success score, and
its beliefs, including its beliefs regarding other agents’

configurations and their success scores, to determine its new
configuration.

In the BDICTL model, agents will only execute their
intentions if there is one plan available. When more than one
plan is present, noting is done. Some research (CITATION)
proposes that this could be modified to have the agent pick a
random plan. We propose that the random selection could be
more appropriately performed by the viral trait model. To do
so, the beliefs about the agent’s internal decision-making
process can be modeled as traits. To illustrate, let the
following variables be defined:

• Ei ::= set of events associated with the execution of a
task by agent Ai

• Ej ::= set of events associated with the execution of a
task by agent Aj

• Ci ::= set of configurations of Ai
• Cj ::= set of configurations of Aj

Then, the BDI formalization of the trait adoption process of

agent Ai becomes:

 BEL((∑succeeded(Ei) / ∑done(Ei)

< BEL (succeeded(Ej) / done(Ej)))
→optional ◊ INTEND(∀ cj ∈ Cj , ∀ ej ∈ Ej
∩ (context(cj) = context(cj)), ∀ ci ∈ Ci , ∀ ei ∈ Ei
∩ (context(ci) = context(ci)) (does(BEL(cj))
∧ does(¬BEL(ci)))). (5)

This definition assumes the existence of the helper function

context which returns the contextual component of the
variable. In essence, the formalization states that if Ai
believes its average success on a particular task is less than
what it believes Aj’s average success to be, then it has the
option of eventually intending all planning beliefs of Cj as
long as those beliefs have the same context as events
associated with the task in question. It will not take any
belief that is not in the same context. Additionally, Ai would
intend to remove any existing beliefs that have the same
context as the task. This has the effect of adopting the
beliefs, including potential action plans, of a perceived
superior peer.

3 Experimentation

To investigate the viability of the model, a simulation was
created to examine several environments and scenarios in
which the agents could operate. A screenshot of this
simulation is shown in Figure 1. To get a feel for the ability
of the model to handle a variety of peer networks, three
different network types were utilized. These network types
are representative of the types of networks found in natural
and artificial systems. Possible configurations were a grid
network with each agent connected to its four neighbors, a
scale-free network in which a minority of agents have the
majority of connections [5], and a completely random

network. Each network was populated with 10,000 agents
that then linked to other agents in the prescribed manner.
These connections represented communication links between
peer agents.

The multi-agent system was tested in a sales staff scenario.
The environment simulated a large department store where
the agents acted as the sales staff. The agents were given
personality vectors containing five of a possible 100
randomly selected personality characteristics. These five
parameters constituted the set of agent Ai's configurations,
Ci. In this simulation personality was defined as a set of
characteristics that uniquely influence cognitions,
motivations, and behaviors in various situations [6].
Although there are many different theories on what
characteristics constitute one's personality, this research
simply assumed the characteristics are those that related to
the ability to sale products.

The agents were placed in random departments to await
customers. The number of customers was significantly
greater than the number of sales agents so that a random
"customer drought" would not influence an agent's success
rates. Like the sales agents, each customer was given a
random personality vector. Customers tended to gravitate
towards particular departments based on their personalities
and were programmed to be more likely to be persuaded to
buy from an agent whose personality was likewise
compatible. Therefore, agents with a personality compatible
with its assigned department were more likely to be
successful than agents with a significantly different
personality.

The goal of the system of agents was to have each agent
learn and utilize those personality traits that were most
appropriate for their department. Each agent was able to
perceive the personalities of their peers as the other agents
made sales. Essentially, each agent would utilize the Sending

Figure 1: Screenshot of simulation

function, FS, to transmit its current personality configuration
after each successful transaction.
 5

 Si(T + 1) ← Fi
J(Si(T), 1 - Σ | Ccust(x) – Ci (x) |) (6)

 x=1

 Si(T + 1) > Si(T) → Ox(T + 1), ∀ x ∈ Pi ← Fi
S(Ci(T)) (7)

Agent Ai's performance of its job function, Fi

J, is based on
the differences between its personality configuration Ci and
the customer's configuration Ccust. If its score increases, it
will send its current configuration to the observation lists of
all agents in its peer list, Pi.

When adopting the personalities of successful peers, the
agent has a chance to assume any of personality traits of the
peer. The chance of assuming a trait is based on the
difference in the two agents’ success rates:

 Randomx(1:100) ≤ (Sj – Si) → Ci

x ← Cj
x, for x = 1,2,..,5. (8)

The agents within this simulation were initialized with

random values and allowed to transfer their traits to each
other. When the system had converged with no more
spreading of trait solutions, the simulation stopped, and the
results were recorded. Of interest was the system’s overall
ability to spread the best solutions and the time it took to
stabilize.

Next, experiments were performed to test the ability to
converge after the insertion of a new agent into the
community. A system of agents was allowed to converge,
simulating a mature organization. Then, an agent was moved
from one region to another. The time to converge and the
final fitness of the new organization were recorded.

The ability of this framework was compared to the ability
of a duplicate mature organization that utilized individual
search to converge. The agents in this organization utilized a
greedy binary search method to find appropriate
configurations:

1. Try a particular trait for a period of time
2. After the period of time, use binary search, but

randomly choose whether to go higher or lower
3. Try this new trait for a period of time
4. After the period of time, evaluate the effectiveness

of the solution. If worse than original, try the
unchosen direction. If better than original, then
continue search. If both higher and lower are worse
than original, then finished.

4 Results and conclusions

As shown in Figures 2 and 3, the framework’s ability to
stabilize at an acceptable state is quite good. The random
network had the most variance in convergence time and
accuracy, but averaged to reasonable levels. The grid’s
performance was as expected; when the “best fit” agent was

centrally located, it took approximately half the distance
across the network to stabilize, while “best fit” agents in the
corners caused propagation to take longer. The scale-free
network had more variation than initially anticipated since the
distance across a scale-free network is quite short, but this
variation can be attributed to the location of the ideal traits. If
the “best fit” agent is also one of the network hubs, the
system distributes the trait very rapidly. If the ideal trait is
located in a peripheral agent, the transfer of the trait is slow
until it hits a major communication artery.

Both the trait-spreading and binary search methods proved
successful at quickly acclimating the transported agent to its
new environment, as shown in Figure 4. However, the trait-
spreading method always succeeded in very few steps, only
taking longer when the agent is moved to a border area where
nearby successful peers are not actually operating in the same
department as the transported agent. This short stabilization
time is due to the fact that the agent didn’t have to find a
successful configuration through trial-and-error, but rather
was given a successful starting point from a nearby agent.
Additionally, the amount of time take does not depend on the

Figure 2: Number of sims obtaining a particular final fitness

Figure 3: Stabilization times

size of the problem space, unlike the individual-based binary
search.

Although it is not guaranteed to find the ideal solution, it
significantly reduces the amount of work done. It naturally
produces subproblem boundaries in which similar agents
require similar solutions and the aggregates the best known
solutions. This work could be combined with other forms of
distributed or individualized search. This would serve as the
decomposition and aggregation component of such an
amalgamation. More research into what types of search
would produce the best results is needed. Additional research
into the effects of increased parallelization is another area to
explore.

5 References
[1] Pynadath, D.V., Tambe, M., Chauvat, N., Cavedon, L.
“Toward team-oriented programming.” In Intelligent Agents
VI: Agent Theories, Architectures, and Languages. 1999.

[2] Armstrong, A., and Durfee, E. “Dynamic Prioritzation of
complex agents in distributed constraint satisfaction
problems.” In Proceedings of the 15th International Joint
Conferences on Artificial Intelligence (IJCAI). 1997.

[3] Yokoo, M., Durfee, E.H., Ishida, T., and Kuwabara, K.
“Distributed constraint satisfaction for formalizing distributed
problem solving.” In Proceedings of 12th IEEE International
Conference on Distributed Computing Systems, 1992.

[4] Shen, J., Lesser, V., and Carver, N. “Minimizing
communication cost in a distributed Bayesian network using
a decentralized MDP.” In Proceedings of the Second
International Joint Conference on Autonomous Agents and
Multiagent Systems (AAMAS), 2003.

[5] Amaral, L.A.N, Scala, A., Barthelemy, M., and Stanley,
H.E. “Classes of small-world networks” In Proceedings of
the National Academy of Sciences of the United States of
America, 2000.

[6] Ryckman, R.M. Theories of Personality. Belmont, CA:
Cengage Learning/Wadsworth. 2008.

Figure 4: Number of agents with particular stabilization times

	1 Introduction
	2 Approach
	3 Experimentation
	4 Results and conclusions
	5 References

