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Abstract - The goal of configuring a massive, complex multi-
agent system can be viewed as a distributed search problem 
in which each agent attempts to choose a correct 
configuration.  This research presents a technique that can 
simultaneously function as the problem decomposition and 
solution aggregation components in such a distributed search 
environment.  The method is tested in a number of large 
multi-agent simulations to demonstrate its feasibility.  The 
agents in the system are shown to achieve optimal or near 
optimal configurations in significantly less time than agents 
configuring themselves individually. 
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1 Introduction 

Distributed search is an open problem in AI research.  At 
its core, it is a problem involving efficiently decomposing or 
partitioning a problem into sub-problems and allocating those 
sub-problems to one or more computational elements.  
Ideally, these elements would then be able to explore their 
much more limited search space in parallel.  Research in 
distributed search can be broadly classified as dealing with 
one or more of the following: finding algorithms for 
appropriate decomposition of problems [1], distribution of 
sub-problems to computational elements [2], synthesizing 
results of sub-problems [3], and coordination between 
elements [4].  The research in this paper proposes a technique 
that will simultaneously handle problem decomposition and 
result synthesis.   
 

In this research, a massive multi-agent system has been 
given the goal of configuring its constituent elements (i.e., the 
individual agents) for optimal performance of the tasks 
assigned to those elements.  In this scenario, we make several 
assumptions: 

• The size of the organization is such that 
micromanagement of individual agents is infeasible. 

• The complexity of the organization and its operating 
environment is such that the desired configuration of 
the average agent is unknown. 

• Individual agents may already possess some method 
for learning. 

• In the course of performing tasks, agents will 
communicate or deal with each other, but agents are 
not required to be benevolent.  They are allowed to 
choose an appropriate configuration for themselves 
without considering the needs of other agents. 

 
2 Approach 

To facilitate the speed of the search, a key observation is 
made regarding the performance of the agents.  If all other 
factors are held constant, an agent that is more successful at 
completing its tasks will typically be better configured for the 
task than an agent that is less successful.  Therefore, when 
agents interact, the more successful agent will pass 
appropriate traits to the less successful agent.  The greater the 
relative success, the more strongly the trait is adopted or the 
more likely the trait will be adopted. 
 

Formally, agent Ai has a Sending function Fi
S: 

 
     Oj(T + 1) ← Fi

S(xi(T), ∃! x ∈{C, S}).     (1) 
 

This function sends a configuration C or success score S to 
the observation list of the receiving agent, Aj, where it can be 
processed.  Similarly, a Receiving function, Fi

R, is defined: 
 
    Oi(T + 1) ← Fi

R(Fj
S(xj(T), ∃! x ∈{C, S})).    (2) 

 
This function receives a configuration C or success score S 

from agent Aj and stores it in the observation list where it can 
be processed.  Finally, a Processing Observations function, 
Fi

P, and an Updating Configuration function, Fi
U, are defined: 

 
      Bi(T + 1) ← Fi

P(Oi(T), Bi(T)).        (3) 
      Ci(T + 1) ← Fi

U(Ci(T), Bi(T), Si).      (4) 
 

In Fi
P, agent Ai merges its list of observations with its 

beliefs to create new or updated beliefs.  Similarly, Fi
U 

utilizes agent Ai’s current configuration, its success score, and 
its beliefs, including its beliefs regarding other agents’ 



configurations and their success scores, to determine its new 
configuration. 
 

In the BDICTL model, agents will only execute their 
intentions if there is one plan available.  When more than one 
plan is present, noting is done.  Some research (CITATION) 
proposes that this could be modified to have the agent pick a 
random plan.  We propose that the random selection could be 
more appropriately performed by the viral trait model.  To do 
so, the beliefs about the agent’s internal decision-making 
process can be modeled as traits.  To illustrate, let the 
following variables be defined: 
 

• Ei ::= set of events associated with the execution of a 
task by agent Ai 

• Ej ::= set of events associated with the execution of a 
task by agent Aj 

• Ci ::= set of configurations of Ai 
• Cj ::= set of configurations of Aj 

 
Then, the BDI formalization of the trait adoption process of 

agent Ai becomes: 
 
   BEL(( ∑succeeded(Ei) / ∑done(Ei)  

< BEL ( succeeded(Ej) / done(Ej)))  
→optional ◊ INTEND(∀ cj ∈ Cj , ∀ ej ∈ Ej   
∩ (context(cj) = context(cj)), ∀ ci ∈ Ci , ∀ ei ∈ Ei   
∩ (context(ci) = context(ci)) (does(BEL(cj))  
∧ does(¬BEL(ci) ))).               (5) 

  
This definition assumes the existence of the helper function 

context which returns the contextual component of the 
variable.  In essence, the formalization states that if Ai 
believes its average success on a particular task is less than 
what it believes Aj’s average success to be, then it has the 
option of eventually intending all planning beliefs of Cj as 
long as those beliefs have the same context as events 
associated with the task in question.  It will not take any 
belief that is not in the same context.  Additionally, Ai would 
intend to remove any existing beliefs that have the same 
context as the task.  This has the effect of adopting the 
beliefs, including potential action plans, of a perceived 
superior peer. 
 
 
3 Experimentation 

To investigate the viability of the model, a simulation was 
created to examine several environments and scenarios in 
which the agents could operate.  A screenshot of this 
simulation is shown in Figure 1.  To get a feel for the ability 
of the model to handle a variety of peer networks, three 
different network types were utilized.  These network types 
are representative of the types of networks found in natural 
and artificial systems.  Possible configurations were a grid 
network with each agent connected to its four neighbors, a 
scale-free network in which a minority of agents have the 
majority of connections [5], and a completely random 

network.  Each network was populated with 10,000 agents 
that then linked to other agents in the prescribed manner.  
These connections represented communication links between 
peer agents. 
 

The multi-agent system was tested in a sales staff scenario.  
The environment simulated a large department store where 
the agents acted as the sales staff.  The agents were given 
personality vectors containing five of a possible 100 
randomly selected personality characteristics.  These five 
parameters constituted the set of agent Ai's configurations, 
Ci.  In this simulation personality was defined as a set of 
characteristics that uniquely influence cognitions, 
motivations, and behaviors in various situations [6].  
Although there are many different theories on what 
characteristics constitute one's personality, this research 
simply assumed the characteristics are those that related to 
the ability to sale products. 
 

The agents were placed in random departments to await 
customers.  The number of customers was significantly 
greater than the number of sales agents so that a random 
"customer drought" would not influence an agent's success 
rates.  Like the sales agents, each customer was given a 
random personality vector.  Customers tended to gravitate 
towards particular departments based on their personalities 
and were programmed to be more likely to be persuaded to 
buy from an agent whose personality was likewise 
compatible.  Therefore, agents with a personality compatible 
with its assigned department were more likely to be 
successful than agents with a significantly different 
personality. 
 

The goal of the system of agents was to have each agent 
learn and utilize those personality traits that were most 
appropriate for their department.  Each agent was able to 
perceive the personalities of their peers as the other agents 
made sales.  Essentially, each agent would utilize the Sending 

Figure 1: Screenshot of simulation 



function, FS, to transmit its current personality configuration 
after each successful transaction.  
                        5 

 Si(T + 1) ← Fi
J(Si(T ), 1 - Σ | Ccust(x) – Ci (x) | )     (6) 

                       x=1                            

 Si(T + 1) > Si(T ) →  Ox(T + 1), ∀ x ∈ Pi ← Fi
S(Ci(T )) (7) 

  
Agent Ai's performance of its job function, Fi

J, is based on 
the differences between its personality configuration Ci and 
the customer's configuration Ccust.  If its score increases, it 
will send its current configuration to the observation lists of 
all agents in its peer list, Pi. 
 

When adopting the personalities of successful peers, the 
agent has a chance to assume any of personality traits of the 
peer.  The chance of assuming a trait is based on the 
difference in the two agents’ success rates: 

 
 Randomx(1:100) ≤ (Sj – Si) → Ci

x ← Cj
x, for x = 1,2,..,5. (8) 

 
The agents within this simulation were initialized with 

random values and allowed to transfer their traits to each 
other.  When the system had converged with no more 
spreading of trait solutions, the simulation stopped, and the 
results were recorded.  Of interest was the system’s overall 
ability to spread the best solutions and the time it took to 
stabilize. 
 

Next, experiments were performed to test the ability to 
converge after the insertion of a new agent into the 
community.  A system of agents was allowed to converge, 
simulating a mature organization.  Then, an agent was moved 
from one region to another.  The time to converge and the 
final fitness of the new organization were recorded.  
 

The ability of this framework was compared to the ability 
of a duplicate mature organization that utilized individual 
search to converge.  The agents in this organization utilized a 
greedy binary search method to find appropriate 
configurations:  

 
1. Try a particular trait for a period of time 
2. After the period of time, use binary search, but 

randomly choose whether to go higher or lower 
3. Try this new trait for a period of time 
4. After the period of time, evaluate the effectiveness 

of the solution.  If worse than original, try the 
unchosen direction.  If better than original, then 
continue search.  If both higher and lower are worse 
than original, then finished.  

 
4 Results and conclusions 

As shown in Figures 2 and 3, the framework’s ability to 
stabilize at an acceptable state is quite good.  The random 
network had the most variance in convergence time and 
accuracy, but averaged to reasonable levels.  The grid’s 
performance was as expected; when the “best fit” agent was 

centrally located, it took approximately half the distance 
across the network to stabilize, while “best fit” agents in the 
corners caused propagation to take longer.  The scale-free 
network had more variation than initially anticipated since the 
distance across a scale-free network is quite short, but this 
variation can be attributed to the location of the ideal traits.  If 
the “best fit” agent is also one of the network hubs, the 
system distributes the trait very rapidly.  If the ideal trait is 
located in a peripheral agent, the transfer of the trait is slow 
until it hits a major communication artery.  
 

Both the trait-spreading and binary search methods proved 
successful at quickly acclimating the transported agent to its 
new environment, as shown in Figure 4.  However, the trait-
spreading method always succeeded in very few steps, only 
taking longer when the agent is moved to a border area where 
nearby successful peers are not actually operating in the same 
department as the transported agent.  This short stabilization 
time is due to the fact that the agent didn’t have to find a 
successful configuration through trial-and-error, but rather 
was given a successful starting point from a nearby agent.  
Additionally, the amount of time take does not depend on the 

Figure 2: Number of sims obtaining a particular final fitness 

Figure 3: Stabilization times 



size of the problem space, unlike the individual-based binary 
search. 
 

Although it is not guaranteed to find the ideal solution, it 
significantly reduces the amount of work done.  It naturally 
produces subproblem boundaries in which similar agents 
require similar solutions and the aggregates the best known 
solutions.  This work could be combined with other forms of 
distributed or individualized search.  This would serve as the 
decomposition and aggregation component of such an 
amalgamation.  More research into what types of search 
would produce the best results is needed.  Additional research 
into the effects of increased parallelization is another area to 
explore. 
 

 
5 References 
[1] Pynadath, D.V., Tambe, M., Chauvat, N., Cavedon, L. 
“Toward team-oriented programming.” In Intelligent Agents 
VI: Agent Theories, Architectures, and Languages. 1999. 
  
[2] Armstrong, A., and Durfee, E. “Dynamic Prioritzation of 
complex agents in distributed constraint satisfaction 
problems.” In Proceedings of the 15th International Joint 
Conferences on Artificial Intelligence (IJCAI). 1997. 
 
[3] Yokoo, M., Durfee, E.H., Ishida, T., and Kuwabara, K. 
“Distributed constraint satisfaction for formalizing distributed 
problem solving.” In Proceedings of 12th IEEE International 
Conference on Distributed Computing Systems, 1992. 
 
[4] Shen, J., Lesser, V., and Carver, N. “Minimizing 
communication cost in a distributed Bayesian network using 
a decentralized MDP.”  In Proceedings of the Second 
International Joint Conference on Autonomous Agents and 
Multiagent Systems (AAMAS), 2003. 
 
[5] Amaral, L.A.N, Scala, A., Barthelemy, M., and Stanley, 
H.E. “Classes of small-world networks” In Proceedings of 
the National Academy of Sciences of the United States of 
America, 2000. 
 
[6] Ryckman, R.M. Theories of Personality. Belmont, CA: 
Cengage Learning/Wadsworth.  2008. 
 
 

Figure 4: Number of agents with particular stabilization times 
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