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ABSTRACT

A growing number of applications can be modelled using
spatial agent systems or animats. Typical animat simula-
tions model collective macroscopic phenomena using en-
coded individual behaviours for microscopic agents. In
spatial agent systems there are well known problems that
occur if agent cells are updated in a sequential order. This
is known as the sweeping problem and it also occurs in
other numerical simulations such as differential equation
solvers and leads to observable macroscopic effects in the
simulated system that are solely artifacts of the implemen-
tation algorithm. We explore various strategies to remove
these artifacts including multi-phase updating. We find that
in some models that include non-diffusional effects such as
predator-prey interactions, a two-phase update is not suffi-
cient and a three-phase update strategy is necessary to pre-
serve model semantics, particularly when concurrency is
used to speed up the model. We discuss the computational
implications of this for animat agent simulations.
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1 Introduction

Agent-based modelling [21, 22, 29] is a powerful con-
struct for tacking many complex-systems problems [11] in:
physics; sociology; finance; and other areas where emer-
gent properties [37] arise from relatively simple individ-
ual agent properties. Simulations of multi-agent systems
can be readily constructed in general purpose programming
languages. Spatial agents - or animats as they are often
described - are agents that have some spatial position and
therefore can move around and interact with other agents.
The key idea for spatial agents is usually that individual
agents only interact with those local to them rather than
with the entire population.

An important aspect of modelling spatial animat agents
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Figure 1: Animat model configuration step 1000 of a multi-
phase run of a predator-prey model. Predators are black and
prey are white.

is to unambiguously specify how the agents are updated or
evolved in the model. Updating might mean each agent is
selected in turn or at random and given the option to ex-
ercise its microscopic behavioural rules. It might move,
eat, kill, breed, grow, die, buy, sell, communicate, or exer-
cise whatever other individual actions are open to it in the
particular model being studied. The update is typically ap-
plied iteratively to evolve the whole model system through
its phase or state space [31,40].

Usually a particular multi-agent model will have some
constraints such as conservation laws, or other global laws
that cannot be sensibly violated by individual agent up-
dates. Different models can be expressed using different
sorts of update algorithmic procedures. These are often
categorised as synchronous - where every agent is effec-
tively updated at once or asynchronous - where individual
updates are only loosely coupled to model time.

In automaton models [41] such as Conway’s Game of
Life [14] a fully synchronous update is part of the model



definition. In stochastic models such as the Metropolis
Monte Carlo dynamics applied to the Ising model of a
magnet [18,27] other factors allow a partially synchronous
update. Other models require an asynchronous updating
scheme. The idea of using asynchronous updating is not
new [4, 10] and has been explored and debated in the com-
plex systems literature [16] for a number of different mod-
els including multi-agent systems [9]; random boolean net-
works [17]; automata [28]; and asynchronous cellular au-
tomata [24,25]

Many large scale models make use of parallelism and
therefore need an appropriate form of concurrency con-
trol [13] to exploit parallel hardware without changing
the model semantics. Asynchronous update issues also
arise in some numerical methods such as successive over-
relaxation [2].

In this paper we explore the practical issues behind using
a multi-phase update for agent-based models such as one of
the various artificial life [3] animat models. Agent-based
models have contributed significantly across a wide range
of distinct areas, from Artificial Life [1, 23, 38] through
ecosystems [33] and trading and economics [8,26] to mili-
tary combat [6,7].

All agent-based models require some form of interac-
tion between agents, for example in a predator-prey model
[19, 35] predators attempt to catch prey and also to breed
with other predators. It is these micro-interactions that lead
to the well-known emergent macro-properties of such mod-
els, for example the emergence of spiral patterns in the
predator-prey model shown in Figure 1. We are primarily
interested in animat models of this category in this present
paper (Section 3), although we do draw comparisons with
simpler deterministic models such as the Eden/Epidemic
model in Section 2

An important part of the interaction between agents is
the order in which such interactions are executed and this
can have a significant effect on the observed patterns of
behaviour. The interaction between agents becomes more
complicated when agents are developed to perform a range
of “higher-order” behaviours such as trading [34] or sig-
nalling [36]. In this article we critique the known solutions
to this problem and suggest some practical approaches to
how best to incorporate this important process into agent-
based models.

Our paper is structured as follows: In Section 2 we re-
view some update effects and artifacts that arise from a sin-
gle phase update approach in a well defined example model
such as the Eden/Epidemic growth model. We discuss sim-
ilar issues in animat models such as our own in Section 3.
We review some key update algorithmic ideas in Section 4.
We discuss some statistical ideas concerning updates and
multi phase algorithms in Section 5 and summarise some
pragmatic advice to model practitioners in Section 6.

2 The Eden-Epidemic Model

The Eden model [12] of an epidemic or cancerous
growth consists of an initial pattern - usually a single in-
fected seed agent in a system of uninfected agents - and
whose boundary agents become infected or grow according
some probability parameter p at each update step. There are
a number of variations, but at each time step of the model,
the state of every agent site is updated. This can be done in
sequential order or as a two phase update.

In a sequential update, every agent is updated in-situ.
This means that if an agent is updated after its neighbour
then it has up to date information of any changes that have
occurred in the states of other agents within the same time
step. The order in which the agents are chosen to be up-
dated can be random or fixed. A fixed order is often re-
ferred to in the literature as a “sweep”. Iterating through the
population in a fixed order is computationally efficient as it
makes good use of memory caches, which can be highly
significant if the model size is very large. However this ap-
proach introduces some definite sweeping behaviours that
are neither physical nor correct in the sense of being what
was intended by the modeller. Often it is the temporal be-
haviour that the modeller is interested in measuring. This
might be in the form of periodic cycles of behaviour or
a growth or shrinkage exponent. If the update algorithm
is therefore unphysical the experimental simulation results
will be at best biased or at worst just wrong.
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Figure 2: The effects of a sweeping in-situ update algo-
rithm for the Eden Epidemic Model 128 x 128 across suc-
cessive time steps (cells: white empty; dark live; grey dead,
Infection probability 1.0). The simulation starts with a sin-
gle infected cell at the centre and progresses to the right.

Figure 2 shows the effects when a sequential sweep al-
gorithm is applied to a single central infected cell with in-



fection (or growth) probability p = 1.0. The sweep is es-
sentially a row-major raster and the in-situ updating and
sweeping effect causes the infection to propagate rapidly
to all the neighbouring cells that are updated strictly after
the infected cell. Infection information travels across the
model system at the maximal possible speed. When the
probability of infection is substantially less than 1, for ex-
ample with p = 0.25, the skewed results of the model are
more subtle. Figure 3 shows the ‘correct’ result on the left
and the skewed results on the right. The correct results have
been produced using a two-phase update algorithm.

Figure 3: Two-phase update algorithm (left) with a sweep-
ing in-situ update algorithm (right) for the Eden Epidemic
Model 128 x 128 across successive time steps (cells: white
empty; dark live; grey dead. Infection probability 0.25)

If constrained to a sequential update method a better way
of updating the system is to randomise the choice of sites to
update. This can either be done by randomly shuffling the
list of sites to update (perhaps using a pair-wise shuffle).
An even more random approach can be taken by perform-
ing Monte-Carlo hits on the sites: on average all sites will
be updated once every n time steps (where n is the num-
ber of sites in the system), but as the update sites are being
chosen randomly, there is a possibility some sites will be
updated more frequently than others over a short time pe-
riod. This has the effect of slightly blurring the concept of
’time’ in the simulation (see Figure 4).

Figure 4a) illustrates the cellular growth behaviour of
a variation of the Eden Epidemic model [12] when a sin-
gle infected cell at the centre of the pattern infects nearest
neighbouring cells with probability p = 0.3 at each time
step. In the model shown, infected cells die after two time
steps after being infected. Figure 4b) shows how a ran-
dom algorithm can recover spatial symmetry in the growth
model.

Figure 5 shows, by way of contrast, the highly regular
pattern that results from the Eden model when a sequential
sweep update is used. This is microscopically correct in
some sense, but is clearly dominated by the sweeping arti-
fact - and is not representative of the modeller’s intentions.
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Figure 4: A variation of the Eden Epidemic model is used
to show growth time scales and symmetries on a square lat-
tice. Sites are infected from any live nearest neighbour with
a probability p = 0.3 (left) or p = 1.0 (right), and once in-
fected, die after two time steps. The cluster is grown from
a single central infected cell. The left hand cluster shows
the two phase update algorithm and the right hand uses a
random algorithm so cells are updated once per time step
on average. Some cells are hit more often and although
spatial symmetry is largely recovered, the time scale is ac-
celerated.

Figure 5: Sequential sweep update algorithm for the Eden
Epidemic Model 128 x 128 cells: white empty; dark live;
grey dead. (Infection probability 1.0). The simulation starts
with a single infected cell at the centre and progresses to the
right.

3 The Animat Model

The animat model we discuss in this section is somewhat
more complicated than the Eden model, but is still imple-
mented on a grid of agent-hosting cells, and can have a
range of various sorts of update algorithm applied to each
microscopic agent. An agent-based prey-predator model
has been developed [35] based on “artificial animals™ or
animats [39]. Predators need to catch prey to survive and
both species can breed to produce new animats. Animats
can “die” from a lack of food (i.e. if health reaches zero)
or due to “old age” (i.e. if age reaches a set maximum for
the species). Prey animats can also die through being con-
sumed by a predator.

Like most agent-based models, the model is executed
as a sequence of cycles (called time-steps). Every ani-
mat is updated during each time-step and when the up-
dating is completed, the model advances to the next time-
step. The following state variables are used to maintain the



state of each animat: location in terms of x, y coordinates;
age which is increased each time-step; health which is de-
creased each time-step but increased by “eating”; neigh-
bours in terms of the location and species of nearest neigh-
bours; and the microscopic species rule set which is used
to decide which rule to execute. The rule sets used for the
experiments described in this article were as follows:
Rules for predators:

1. breed if health > 50% & mate adjacent
2. eat prey if health < 50% & prey adjacent
3. seek mate if health > 50%

4. seek prey if health < 50%

5. randomly move to adjacent position
Rules for prey:

1. breed if health > 50% & mate adjacent
2. eat grass if health < 50%

3. seek mate if health > 50%

4. move away from adjacent predator

5. randomly move to adjacent position

Most rules carry conditions usually relating to location
or current health. The rules are presented in priority order
and each animat executes the first rule in its list for which
the conditions are satisfied. The “Breed Rule” regulates the
production of new animats and when an animat is “born” it
inherits the rules of its parents. The “Breed Rule” does not
always succeed. Even if the necessary conditions are satis-
fied, there is still only a random chance that a new animat
will be produced. This chance is known as the “birth rate”
and is an abstraction of the cumulative effect of several un-
known factors including birthing difficulties, availability of
suitable shelter, etc. It would be difficult to simulate these
factors separately so it is convenient to substitute one value
which produces the desired effect in the model. Normally
the birth rate for predators is set to 15% and the birth rate
for prey is set to 40% but these can be modified to produce
different effects in the simulation.

Predators need to consume prey and prey need to eat
grass to survive. Whenever the animat successfully exe-
cutes the “eat” rule, its health state variable is increased.
Grass is placed at various points around the map and is au-
tomatically replenished. Future work will experiment with
grass that is not replenished (or is replenished very slowly).

The interaction of the animats as they execute their in-
dividual rules has produced interesting emergent features
in the form of macro-clusters often containing many hun-
dreds of animats. We have analysed and documented these
emergent clusters in [20]. The most fascinating cluster that

consistently appears is a spiral and several spirals are visi-
ble in Figure 1.

The model uses a two-phase update system so each ani-
mat carries two versions of its state variables — the “current
state” and the “future state”. A rule is selected from the
rule set and applied to the current state and this generates
the future state. At the end of each time-step the current
state is changed to match the future state.

4 Animat Model Updates

Before After: Option 0
A A
B B
y y
After: Option 1 After: Option 2
A|B A|B
y y

Figure 6: Using a 2-phase update, it is possible for preda-
tors A and B to “simultaneously” both locate and consume
the single adjacent prey animat x. This renders the model
ambiguous as it should not be possible for one prey ani-
mat to sustain more than one predator and there are three
outcomes and which is the actual one is an artifact of the
implementation.

Due to the known problems of a single-phase update sys-
tem (discussed in section 2 above), the predator-prey model
was initially constructed using a two-phase update. How-
ever it was soon discovered that the two-phase update led
to a serious problem outlined in Figure 6.

The sequence of events that caused this problem can be
summarised as follows:

e predator (current state) locates adjacent prey (current
state)

e predator executes “Eat” Rule
e predator (future state) is updated by increasing health

e prey (future state) is updated by setting health to zero
(dead)

Note that this sequence would only be executed by a
predator that had less than 50% health. However in a typ-
ical model with tens of thousands of predators — often in



close proximity as shown in Figure 1 — there is a strong
probability that two or more predators will be adjacent to
the same prey. When this occurs, both predators update
their future states to indicate an increase in health, i.e. sev-
eral predators can “eat” the same prey. Note that the current
state of the prey (and the predators) remains unchanged, al-
lowing other predators to repeat the process with the same
prey. The problem was discovered because it was noticed
that huge numbers of predators were existing off an im-
possibly small prey population. This update problem thus
rendered any results from the model meaningless.

It is not possible to solve the problem and retain a pure
two-phase update system. The solution adopted in our
model was to introduce a hybrid of the sequential and two
phase update systems. In this system every prey animat
was given an extra state variable to keep track of its cur-
rent status and the procedure outlined above was modified
as follows:

e predator (current state) locates adjacent prey (current
state)

o if prey (current state) is “dead” then abandon this
sequence

e predator executes “Eat” Rule
e predator (future state) is updated by increasing health
e prey (future state) is updated by setting health to zero

e prey (current state) is updated by changing status to
dead

Since this sequence allows the current state of the prey to
be modified, this is no longer a two-phase update. Sequen-
tial update is acceptable in these circumstances,although it
is necessary also to randomly shuffle the animats before
updating. Experiments have shown that the best system is
sequential updating but in a random order. Predator results
are shown in Figure 7. Prey results are shown in Figure 8.

The periodic boom-bust variations seen in Figures 7
and 8, showing the populations of predator and prey agents
is characteristic of this sort of spatial agent model. The pe-
riod lengths are consistent between runs and are a measur-
able property of the experiments. Phase effects - and fluc-
tuational noise however must be averaged out, and this is
usually done by averaging over many independently seeded
initial model configurations. The top trace in each of these
Figures shows the normalupdate algorithm. The second has
no random shuffle applied - which manifestly lowers the
mean value of both populations. The third case has preda-
tors given a slight advantage, which makes them overly
successful hunters and again mean populations are even
lower.
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Figure 7: Predator populations using different update meth-
ods.
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Figure 8: Prey populations using different update methods.

5 Discussion

Generally it appears that the animat model problem can
be partially fixed by introduction of a 2-phase update.
However, the 2-phase update causes other problems when
animats are involved in (a) killing other animats or (b)
bumping into objects including other animats. In these
cases it is better to use a random shuffle.

We have introduced these ideas in the context of a prag-
matic animat simulation. It is interesting to speculate about
more general implications for other models. One theoreti-
cal approach is to consider the state space of this class of
models. Each microstate X of the whole model system
is completely specified by the set of agent state variables
{a;}. Consider a probability functional P (X, ¢) be associ-
ated with the microstate X = {a;} at time ¢ and consider
the transition probability Wx _,x giving the likelihood of a
change of microstate X to X’. The following master equa-
tion can be set up, requiring that the rate of change of prob-
ability of microstate X at time ¢ be given by considering all
transitions from X and all transitions to X:
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By requiring the model update algorithm to yield
P(X) — P.4(X), the thermodynamic equilibrium proba-
bility of microstate X as ¢ — o0, as a solution of equation 1
with %&X) = 0 so that:

> Wxox P(X) =) WxxP(X) @
X/ X/
This is the condition of detailed balance [5, 30]. It is
common to use the stronger (but tractable) condition that:

Wxox _ P(X)
Wxox  P(X))

3

So that the probability of the system moving to microstate
X is increased for highly probable microstates X, and de-
creased for unlikely ones. It is then necessary to recog-
nize that for a Boltzmann statistical weighting of the mi-
crostates, the probabilities P(X) can be expressed in terms
of the Hamiltonians 7 (X).

P(X) = Ae” =T 4)

Where A is a normalising constant, k;, is Boltzmann’s con-
stant and 7' the temperature. Substituting 4 in 3 gives:

Wxrx — )X

= b

Wx sx: ¢ ©)
This does not have a unique solution but commonly used
approaches are the Metropolis [32] or Glauber functions
[15].

These or some other deterministic or stochastic proce-
dure provides a way of traversing the phase space of the
model. In the case of the animat model we have similar
concerns and goals. The procedures become more compli-
cated in that we have killing and births and other effects
that change the number of agents involved. There is poten-
tial to develop formulations for model phase state traversal
bringing these two approaches together in a unified nota-
tion.

6 Conclusion

In summary we have discussed models such as the
Eden/Epidemic model and our predator/prey animat model
and drawn out comparisons between the updating proce-
dures involved in both. We have identified in particular
that sweeping effects can give rise to the wrong model be-
haviour. This is because spatial correlations are introduced
that are solely due to artifacts of the algorithm rather than

from the thermal and other fluctuations that we desire to
simulate.

Single-phase sequential updating is shown to cause par-
ticular problems. Furthermore, in certain circumstances
(such as for more complex models like the animat system)
even an alternative two-phase update causes a different but
related set of problems. We have discussed in particular the
problem that arises when two predators would potentially
eat the same prey. There are disadvantages to the two-phase
update model - not the least of which is that the two-phase
model also wastes memory in storing two complete model
states. This is problematic for the very large model systems
sizes we generally wish to simulate.

We conclude by offering the following pragmatic advice
to model practitioners. Firstly, check if a sequential update
will cause sweeping problems in the proposed model, and
if the answer is yes, then use a two-phase update. Secondly,
check if the two-phase update will cause problems similar
to the “eating” problem we described, and if the answer is
yes, then introduce a full or partial sequential update.

There appear to be some quite profound and deeper
philosophical issues underpinning these pragmatics and we
believe there is further work to be done to unify the up-
date algorithm semantics under a single notation. This may
lead to insights into the relationships between these differ-
ent classes of simulation models.
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