
Comparison of Learning Rules for Adaptive Population-Based
Incremental Learning Algorithms

F. Bolanos1, J. E. Aedo2, and F. Rivera3
1School of Mecatronics, Universidad Nacional de Colombia - ARTICA, Medellin, Colombia

2Electronics Department, Universidad de Antioquia - ARTICA, Medellin, Colombia
3Computer Science Department, Universidad de Antioquia - ARTICA, Medellin, Colombia

Abstract— This paper describes the adaptive approach of
the Population-based Incremental Learning (PBIL) algo-
rithm, and proposes several Learning Rules aimed to im-
prove its performance. The assessment of such alternatives
was made in terms of both the convergence time and of the
quality of the achieved solutions. Two classical optimization
problems were used for the tests: The Job Shop Scheduling
problem and the Traveling Salesman problem. The obtained
results are very promising and suggest that some of the pro-
posed learning rules have a superior performance, without
degrading drastically the quality of the solutions.

Keywords: Optimization, Adaptive algorithms, Incremental
Learning, Learning Rules

1. Introduction
The use of population-based algorithms has been suc-

cessful in solving highly complex optimization problems,
as reported on literature [1], [2]. The success of this kind of
optimization tools refers to their ability to use a population
of potential solutions, to perform a parallel exploration. This
parallel approach helps to avoid the local-optimum problem.

Among the different kinds of population-based ap-
proaches, Evolutionary Algorithms (EAs) are the most often
used. A given EA works with a population of individuals
and some rules for changing those individuals in order
to reach acceptable solutions. Those rules are inspired on
evolutionary processes of biological beings. Multi-Objective
Evolutionary Algorithms (MOEAs) are particularly useful
when optimizing several figures of merit is required, since
such figures of merit are often in conflict with each other
[3], [4].

PBIL optimization algorithms work also with a population
of potential solutions. The main differences with respect to
EAs are related with the representation and the updating
process of the population [5]. In PBIL, population is rep-
resented by means of a probability array. Each probability
value in the array, is related to whether a given attribute must
be part or not of the final solution. The way in which the
probabilities of the PBIL array are updated, in order to find
an optimal, is referred as Learning Process. The updating
of each probability in the PBIL array is often performed by
means of an approach based on the Hebbian rule [6]. Such

updating depends on a parameter called Learning Rate (LR),
which controls the speed of the convergence process.

This paper describes several variations of an Adaptive
Population-Based Incremental Learning (APBIL) algorithm,
which adjust the learning rate parameter dynamically, in
order to speeding up the convergence time. The idea is to test
several learning rules (i.e. the way in which the learning rate
must be modified) in order to find the best trade-off between
speed of convergence and quality of the solutions. The pro-
possed learning rules are compared with that one presented
in [7], where a bell shape is suggested to change the learning
rate as a function of the probability array’s entropy. Although
optimization algorithms may behave different when used to
solve different optimization problems [8], this work provides
some insight into the APBIL performance and highlights its
main advantages.

This paper is organized as follows. Section II shows some
previous works related to PBIL optimization algorithms.
Section III shows some fundamentals about the adaptive
PBIL algorithm and the learning rules proposed to im-
prove its performance. Section IV describes the Job Shop
Scheduling problem, which will be used to test the PBIL
optimization approaches. Section V shows the comparison
of the results provided by different approaches in terms of
speed of convergence and quality of the solutions. Finally,
section VI shows the concluding remarks and future work.

2. Related Work
Several works have proposed the use of PBIL for solving

optimization problems [9], [10], [11]. In [10], the effect
of the LR parameter on the algorithm’s performance is
analyzed. The design of a Power System Stabilizer (PSS)
is used as case of study. This work shows that smaller
learning rates, results in a high diversity of the population
of solutions. Such a diversity implies a slower convergence
time. On the other hand, when LR increases, the exploitation
(i.e. improving and intensifying the features of the best
solutions found so far) of the design space is favored and
the convergence speed grows, but also may lead to find local
optimals instead of the global one.

In [12], a comparison between Breeding Genetic Algo-
rithm (BGA) and PBIL approach is performed, for the

design of a Power System Controller. BGA is a modern
version of traditional evolutionary algorithms which uses the
survival of the fittest as optimization mechanism, but allows
a mechanism similar to artificial insemination on living
beings, where the offspring may take the best attributes of
its parents. Results of this work show that PBIL has almost
the same performance when optimizing the power controller.
The main advantage of PBIL is that it is computationally
simpler and has fewer genetic operators when compared with
BGA. Results also show that PBIL algorithm requires less
memory and computational resources, which makes it very
suitable for online implementations.

In [5], a Dual PBIL (DPBIL) algorithm is presented in
order to solve a partitioning problem. As defined on that
work, partitioning has the form of a binary optimization
problem. The dual form of the PBIL implementation allows
to improve the speed of the algorithm for finding optimal
solutions. This allows the implementation of DPBIL ap-
proaches in dynamic environments, in which the optimiza-
tion objective’s changes over the time.

In [13], a system-level partitioning problem is solved
using a PBIL approach. Unlike the DPBIL algorithm, where
a probability vector is used, the non-binary nature of the
system-level partitioning problem requires using a different
representation for the probability array. The results show that
by adjusting the learning rate parameter, convergence time
is speeded up at the expense of the quality of the obtained
solutions. Tuning this parameter becomes a key issue in the
PBIL optimization process.

Some efforts have been conducted in order to formal-
ize the PBIL convergence process [14], [15]. In such ap-
proaches, PBIL algorithm is modeled by means of a Markov
Chain and its behaviour is approximated by using an ordi-
nary differential equation (ODE). The idea is to prove that
the corresponding ODE has only stationary points which
corresponds to the optimals of the configuration space of the
PBIL algorithm. These works has proven that eventually, the
ODE and the associated PBIL, will converge to one of those
stable points.

3. The PBIL approach
The PBIL algorithm is a stochastic search method that

obtains its directional information from the previous best
solutions [16]. As mentioned before, PBIL algorithms rep-
resent the population of solutions by means of an array
of probabilities. In the case of binary problems, the PBIL
array takes the form of a vector, which stores a probability
value for each attribute of the problem to be optimized. In
the case of non-binary problems, it is necessary to work
with a probability matrix, in order to take into account the
whole solutions space. In both cases, the idea is to update
iteratively the probability values in the array, in order to that
the population converges to an optimal solution.

A basic version of the APBIL approach is shown in
Algorithm 1. As shown on Algorithm 1, all the values in
the probability array (namely P) are initialized to 1/N ,
in order to take into account all the potential solutions.
At each algorithmt’s iteration, a new population (Pop)
is generated, based on the probabilities of the array, by
means of the Create_Population routine. The attributes
with the highest associated probability values, will appear
with more frequency in the populationt’s individuals. All
the individuals of the population are assessed, using the
Evaluate_Population routine. For the sake of choosing
the more suitable solutions to the optimization problem at
hand, the Choose_Best routine uses information about the
fitness of each potential solution in the population.

In the adaptive approach of the PBIL algorithm, the
Learning Rate (LR) parameter must be adjusted in order to
allow both exploration and exploitation of the search space.
This task is performed by the Learning_Rule routine. The
Entropy (E) of the probability array is calculated and used
as an estimation of the population’s diversity. Once the LR
parameter is calculated, the P array must be updated in order
to adjust the probabilities, according to the best solution
found in the population. Function Update_Array is used
with this aim.

Entropy decreases as the probabilities in the PBIL array
tend to concentrate on single entries of each column of
the P array (i.e. when an optimal solution becomes more
probable). Then, when entropy value becomes less than
a given tolerance, the algorithm may stop. The optimal
solution can be easily derived of the probabilities on the
P array.

Let’s suppose that an optimization problem can be stated
as a collection of M attributes, namely Q1, Q2, ..., QM . For
each attribute, there are up to N choices, in order to solve
the problem. Figure 1 shows a suitable probability array, for
such an optimization problem. In Figure 1, P(i,j) represents
the probability of the j attribute to be optimized using the

Algorithm 1 Basic PBIL Algorithm
Input: An N ×M probability array P
Output: An optimized solution

1: P (i, j) = 1
N ;∀ 1 ≤ i ≤ N and 1 ≤ j ≤ M

2: repeat

3: Pop = Create_Population (P) ;
4: Fitness = Evaluate_Population (Pop) ;
5: Best = Choose_Best (Pop, F itness) ;
6: E = Entropy (P) ;
7: LR = Learning_Rule(E);
8: P = Update_Array (P,Best, LR) ;

9: until {E < Tolerance} ;

Fig. 1: A non-binary PBIL probability matrix

associated choice i. Since a single column of the matrix
of Figure 1 represents the joint probability of all potential
choices for a given attribute, the sum over a single column
must be equal to one.

Let’s suppose that after assessing a given population, it
was found that for a given attribute Qj , the best (optimal)
choice is the option k. According to this, the probabilities in
the array must be updated using a modified version of the
Hebbian rule [17], as shown in Equation (1).

P(i,j)New =

P(i,j)Old +

(
1− P(i,j)Old

)
× LR, for i = k(

1− P(k,j)New

)
× P(i,j)Old

1−P(k,j)Old
, for i ̸= k

(1)
In Equation (1), LR corresponds to the learning rate

parameter. The higher the LR parameter, the fastest shall
be the convergence of the algorithm, at the expense of a
poorer quality of the found solutions. The adjusting of the
LR parameter requires a good trade-off between quality and
speed. Instead of giving to the LR parameter a fixed value,
an adaptive approach varies the LR parameter whilst the
algorithm converges to an optimal. The best way to do that
is by calculating the systemic entropy over the PBIL array
of Figure 1 [18]. In this case, systemic entropy, or simply
entropy (E), may be calculated as shown in Equation (2).

E = −
N∑
i=1

M∑
j=1

[
P(i,j) × log

(
P(i,j)

)]
(2)

When all problem choices are equally probable, all prob-
abilities on the array have a value of 1/N . In this situation,
the population represented by the PBIL array has the highest
diversity. Under these conditions, the maximum value of
Entropy can be calculated as shown in Equation (3).

EMax = −M × log

(
1

N

)
(3)

When one of the choices becomes more probable than
the others, entropy value decreases, meaning that the array

0 0.2 0.4 0.6 0.8 1

0.1

0.15

0.2

0.25

0.3

E/E
Max

Le
ar

ni
ng

 R
at

e

Linear
Exponential
Sigmoidal
Bell Shape

Fig. 2: Learning rules for LR between 0.1 and 0.3

provides less information, since some of the available op-
tions have being discarded. A value of 0 for the entropy,
implies that all the attributes of the associated solution are
completely defined, i.e. the PBIL algorithm has reached a
unique solution.

The APBIL algorithm starts with high values of entropy,
and they decreases as the APBIL array converges to an op-
timal attributes combination. Figure 2 shows three learning
rules, namely linear, exponential, and sigmoidal. As shown
on Figure 2, the learning rate parameter is kept at low
values at the beggining of the algorithm (when entropy has
maximum values), for the sake of allowing high population’s
diversity and exploring over all the solutions space. As
the entropy decreases, as a result of the probability array
updating process, the LR parameter increases, in order to
improve the speed of convergence of the algorithm, and
to reach the optimal solution quicker. This means that the
search process allows high diversity at early iterations of
the APBIL algorithm, and once the array seems to be
oriented toward a given solution (low entropy), the algorithm
changes the learning rate parameter, in order to speed up the
convergence. Figure 2 also shows the bell shape learning
rule, like that one proposed in [7]. In this case, the learning
rate is kept low both at the beginning and at the end of the
APBIL algorithm. The idea is to allow high population’s
diversity in both situations, and avoid the local optimum
problem.

Concerning a multi-objective implementation of a APBIL
algorithm, the main idea consists of working with several
arrays (populations) independently, as is done in the island-
model PBIL or IMPBIL approach [19]. As a result, at the end
of the algorithm’s execution, there will be several optimal
solutions with different trade-offs among the objectives
being optimized. There will be as much solutions as PBIL

arrays on the implementation. This implies that the learning
process must be performed over several arrays, which may
reduce the algorithm’s performance.

Maintaining different PBIL populations generates addi-
tional problems. The first one is that a mechanism is neces-
sary to avoid that several populations converge to the same
optimal solution. As explained in [20], this may be done
by using a kernel approach based on distance. The idea is
that the distances among potential solutions becomes a new
objective to maximize in the optimization process, in such
a way that the solutions similar to an optimal in a given
population, are pruned on the remaining ones.

The second problem concerning multi-objective PBIL is
related to the stochastic nature of such algorithm. The
random operators that are present in PBIL algorithm can lead
to loosing good optimal solutions. A buffering strategy must
be implemented in order to store global optimal solutions
and to integrate them into the learning process while the
algorithms works. Given an optimization objective, if an
optimal solution is found and is better than the stored one,
the previous solution is discarded and the new best solution
is saved.

4. The Job Shop Scheduling optimiza-
tion problem

Job Shop Scheduling [21] is a combinatorial optimization
problem, which was formulated in the middle of the twenti-
eth century. As many combinatorial optimization problems,
Job Shop Scheduling is considered a NP problem, which im-
plies that practical algorithms are aimed to find good-enough
solutions instead of finding the best solutions. Scheduling is
a concept related with a plethora of different optimization
problems, with different levels of complexity and diverse
structures too.

In order to test our adaptive PBIL algorithms, a Job Shop
Scheduling problem will be used. Such a problem implies
the scheduling of executable tasks in a multi-processor
architecture, with several objectives to be satisfied. Three
objectives were considered for optimization: the cost of the
solution (N), i.e. the number of Processing Elements (PEs)
required for implementing a given scheduling solution; the
scheduling penalty (SP), related with tasks priorities and
execution delays, and the processor occupancy (PO), which
assess the eficiency in the resources usage.

The problem is stated as follows. Let’s suppose a set of
M independent tasks, which are going to be scheduled for
their implementation over a set of up to N PEs. Although
the number of tasks is well-known in advance, the number
of PEs represents the first objective to be optimized in order
to reduce the cost of the solution. The cheaper solution in
terms of hardware cost, consists of using a single PE, which
will lead to higher delays when executing the tasks. The
more expensive solution implies using a single PE for each

task. This enhances the performance of the designed system,
because response time for each task is minimized. Due to
the fact that the target architecture is homogeneous, each PE
has the same cost and the execution time for a single task
does not change from one specific PE to another.

A given task (Ti) has its own execution time (ti) and a
priority value (Pri), which ranges between 1 and PrMax.
If a specific PE is assigned to execute more than one task, it
is assumed that tasks will be served sequentially, using their
priorities as ordering criterion. Tasks with higher priority
are served before those with lower ones. The penalty for
delaying a given task is calculated by means of its priority
and delay to be executed. Equation (4) shows that the penalty
for a specific scheduling scheme is the sum of the penalties
for each task, which is defined as the product between its
priority and its delay.

SP =
M∑
i=1

Di × Pri (4)

In Equation (4), Di represents the delay that a specific
scheduling solution produces to the task Ti, and Pri is its
associated priority. The system penalty (SP) is the second
objective to be optimized (minimized) in the proposed
scheduling problem.

Finally, the third objective to be optimized corresponds to
the processor occupancy (PO) which can be simply calcu-
lated as the mean percentage of time in which processors
are performing useful work (i.e. processing tasks). In this
case, the PO objective must be maximized, in order to fully
exploit the system’s resources.

Figure 3 depicts a specific scheduling solution, in an
environment of M tasks, each with a triad formed by its
priority, execution time and delay. As can be seen in Figure
3, there can be up to M active PEs (the most expensive and
fastest solution), but in a more efficient solution, some PEs
are not used at all. Since for each PE, tasks are served on
a priority basis, from the figure it can be said that priority
of task T1 is higher than priority of tasks Ti and TM . Also,
task T1 is served first on PE1, so the associated delay for
such a task is equal to zero. Delays for remaining tasks shall
depend on the subsequent execution order.

5. Experimental Results
Four APBIL Learning Rules (namely linear, sigmoidal,

exponential and bell-shape) were tested in order to compare
them and find the best trade-off between performance and
quality for the optimization problems at hand. Such learning
rules are depicted in Figure 2 and Table 1 shows their formal
specification. In order to perform an equable comparison,
this specification represents the only difference among the
implementation of the adaptive algorithms. As shown in
Table 1, LR depends on the entropy (E) of the PBIL array,
as well as on the LRMin and LRMax parameters, which

Fig. 3: A given scheduling solution

represent the minimum and maximum values for LR. For
all the executions of the APBIL algorithm reported in this
section, the LRMin and LRMax values were set to 0.1 and
0.3, respectively.

For comparison purposes, a classical Multi-Objective Evo-
lutionary Algorithm (MOEA) was also implemented [22].
Each algorithm was used to solve the Job Shop Scheduling
problem with different sizes (M).

All the algorithms were aimed to simultaneously optimize
three objectives, as pointed in previous section: scheduling
penalty (SP), processor occupancy (PO) and the number of
PEs (N). The algorithms were tested using Matlab on a PC
with an Intel Core I7 processor and 8 Gigabytes of memory.

Table 1: Formal specification of learning rules

Linear LR = LRMax − E
EMax

× (LRMax − LRMin)

Exponential LR = LRMin + (LRMax − LRMin) ×
e−4.5× E

Emax

Sigmoidal LR = LRMax − LRMax−LRMin

1+e
−10×(E

Emax
−0.5)

Bell
Shape

LR = LRMin + LRMax−LRMin√
2×π

× e−
(E
Emax

−3)2

2

Figure 4 depicts the mean convergence time for the

0 20 40 60 80 100 120

10
0

10
1

10
2

10
3

10
4

10
5

Number of tasks (M)

C
on

ve
rg

en
ce

 T
im

e
[s

]

Linear Rule
Exponential Rule
Sigmoidal Rule
Bell Shape Rule
Multi−Objective Evolutionary Algorithm

Fig. 4: Mean convergence time for the different optimization
strategies

mentioned algorithms, as a function of the optimization
problem’s size (M). As can be seen, convergence times
for MOEA and bell-shaped algorithms, becomes restrictive
when dealing with higher values of M . In such cases, the
execution of the algorithm was forced to stop.

Learning rules for the adaptive approaches in Figure 4, are
the same depicted in Figure 2. As can be seen, there is no
remarkable difference between the monotonically-increasing
learning rules (linear, exponential and sigmoidal), except for
a peak given on the exponential rule, for a problem size of
thirty tasks. On the contrary, MOEA and bell-shaped PBIL
has very poor convergence times, often several orders of
magnitud above the proposals with monotonically-increasing
learning rules.

With respect to the bell-shaped learning rule, it does
not seems logical to decrease the learning rate at the end
of the process of convergence. When a PBIL algorithm
is performing the last stages of the space exploration, the
probabilities in the algorithm’s array tend to be concentrated
on single positions of each column, which points toward the
optimal solution. The results in Figure 4 suggest that there
is no need to guarantee population’s diversity at final stages
of the PBIL algorithm’s execution.

The MOEA algorithm was implemented using a vector
representation for each solution on the population. Each
entry in the solution’s vector represents the implementation
resource for a given system’s task. This means that each
vector on the population has a lenght of M elements. A
single crossover operator was used for recombination, and
the mutation was made by means of a change of a single
value on a given vector position. A round-robin method and
a µ + λ strategy was used for selection purposes [23]. As
can be seen in Figure 4, MOEA’s performance is very poor

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 110
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Number of tasks (M)

S
ch

ed
ul

in
g

P
en

al
ty

 (
N

or
m

al
iz

ed
)

Linear Rule
Exponential Rule
Sigmoidal Rule
Bell Shape Rule
MOEA

Fig. 5: Scheduling penalty for several optimization ap-
proaches

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 110
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of tasks (M)

P
ro

ce
ss

or
 O

cc
up

an
cy

Linear Rule
Exponential Rule
Sigmoidal Rule
Bell Shape Rule
MOEA

Fig. 6: Processor occupancy for several optimization ap-
proaches

when compared with the best APBIL algorithms because it
does not have an adaptive behavior.

None of the results shown in Figure 4 would be relevant
without a comparison between the quality of the solutions
obtained with each approach. Figures 5, 6 and 7 show the
best solutions found by each optimization algorithm, accord-
ing to the objectives defined in the previous section. As can
be seen, there is no remarkable differences among the PBIL
algorithms, although MOEA strategy shows better solutions
concerning processor occupancy. However, MOEA’s quality
concerning the remaining criteria (SP and N) is always
poorer than those for PBIL approaches.

For the sake of providing a further insight into the perfor-

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 110
0

10

20

30

40

50

60

Number of tasks (M)

N
um

be
r

of
 P

ro
ce

ss
or

s

Linear Rule
Exponential Rule
Sigmoidal Rule
Bell Shape Rule
MOEA

Fig. 7: Number of processors for several optimization ap-
proaches

Fig. 8: A PBIL probability array representation for the TSP
problem

mance of the proposed learning rules, a traveling salesman
problem (TSP) optimization algorithm was implemented.
TSP is one of the most famous NP-complete problems [24].
Given C cities, the goal is to find a minimum lenght tour
which visits each city exactly once. The PBIL array used to
represent such an optimization scheme is shown in Figure
8. As can be seen, the PBIL array takes the form of a
C ×C probability matrix. In that figure, Pi,j represents the
probability of visiting city j in the ith place.

Three APBIL approaches were implemented in order to
solve TSPs of several sizes. These approaches correspond to
the three monotonically-increasing learning rules described
before, i.e. linear, sigmoidal and exponential. The TSPs were

20 40 60 80 100

10
−1

10
0

10
1

10
2

Size of the TSP problem (C)

E
xe

cu
tio

n
tim

e
[s

]

Linear
Sigmoidal
Exponential

Fig. 9: Execution time for the different TSPs

created by distributing randomly a total of C cities in an area
of 10000 square kilometers. In order to assess the quality
of the solutions provided by the APBIL search, the total
traveled distance by the salesman, measured in meters, was
used as a fitness value.

Figure 9 shows the mean convergence times for each
APBIL implementation, for different sizes of the TSPs.
Again, the only difference among APBIL implementations
was the learning rule used to update the LR parameter. The
sizes of the TSPs ranges from 20 to 100 cities. As mentioned
in [24], complexity of the TSP problem grows very quicly
with the value of C, so using larger sizes may be restrictive
for simulation.

Figure 9 shows that sigmoidal learning rule has a better
performance when compared with linear and exponential
rules, for TSP optimization problems. Execution times re-
lated with sigmoidal learning rule are always almost an order
of magnitud below the remaining alternatives, and such a
trend prevails over all the range of the TSP size.

Figure 10 shows the total traveled distance for the three
implementations of the APBIL algorithm. As can be seen on
that figure, total traveled distance of the solutions obtained
from sigmoidal learning rule are up to 16 % below of
traveled distance of the remaining approaches.

According to the previous discussion, keeping low values
of the LR parameter allows high population’s diversity. As
can be seen on Figure 2, the sigmoidal learning rule allows
high population’s diversity at early stages of the exploration
process (i.e. when entropy values are near to its maximum).
Such diversity avoids the local optimum problem, and then
improves the quality of the found solutions. However, as
entropy decreases and the algorithm approximates to opti-
mal values, the sigmoidal learning rule increases the LR
parameter even more than the other rules, which implies
that sigmoidal rule improves exploitation at the end of the
process. Such exploitation speeds up the search process, as

20 40 60 80 100
1

2

3

4

5

6

7
x 10

6

Size of the TSP problem (C)

F
itn

es
s

of
 th

e
be

st
 s

ol
ut

io
n

fo
un

d
[m

]

Linear
Sigmoidal
Exponential

Fig. 10: Total traveled distance for several TSP problems

shown on Figure 10. Figure 2 shows that sigmoidal learning
rule is the second one in favoring the exploration at the
begining of the search process, and also is the one which
most favors the exploitation at the end of the convergence
process. Such a combination of features seems to be the
reason to explain why sigmoidal learning rule resulted to be
both the strategy with best quality as well as the fastest one.

6. Conclusions
An adaptive PBIL strategy has been tested using several

learning rules. The monotonically-increasing learning rules
have shown promising results in order to speed up the
convergence process. The results show that a linear or
sigmoidal relationship between the learning rate and the
PBIL array’s entropy seems to be the best option.

Results derived from the TSP optimization suggest that
sigmoidal learning rule is the best approach, in order to speed
up the convergence time. However, presented results must be
taken as an initial insight, in order to derive the features of
the learning rules tested in this paper, which will be intended
as future work.

Acknowledgment
The authors would like to thank to ARTICA, to COL-

CIENCIAS, to ICT Ministry of Colombia, to National
University of Colombia and to University of Antioquia, for
their support in the development of this work.

References
[1] H. Bai and B. Zhao, “A survey on application of swarm intelligence

computation to electric power system,” in Intelligent Control and
Automation, 2006. WCICA 2006. The Sixth World Congress on, vol. 2,
2006, pp. 7587 –7591.

[2] N. Pindoriya, S. Singh, and K. Lee, “A comprehensive survey on
multi-objective evolutionary optimization in power system applica-
tions,” in Power and Energy Society General Meeting, 2010 IEEE,
2010, pp. 1 –8.

[3] A. Godit’ andnez, L. Espinosa, and E. Montes, “An experimental com-
parison of multiobjective algorithms: Nsga-ii and omopso,” in Elec-
tronics, Robotics and Automotive Mechanics Conference (CERMA),
2010, 28 2010-oct. 1 2010, pp. 28 –33.

[4] G. B. Lamont and D. A. V. Veldhuizen, Evolutionary Algorithms
for Solving Multi-Objective Problems. Norwell, MA, USA: Kluwer
Academic Publishers, 2002.

[5] L. jun Fan, B. Li, Z. quan Zhuang, and Z. qian Fu, “An approach for
dynamic hardware /software partitioning based on dpbil,” in Natural
Computation, 2007. ICNC 2007. Third International Conference on,
vol. 5, 2007, pp. 581 –585.

[6] M. Schmidt, K. Kristensen, and T. Randers Jensen, “Adding genetics
to the standard pbil algorithm,” in Evolutionary Computation, 1999.
CEC 99. Proceedings of the 1999 Congress on, vol. 2, 1999, pp. 3
vol. (xxxvii+2348).

[7] H. Pang, K. Hu, and Z. Hong, “Adaptive pbil algorithm and its
application to solve scheduling problems,” in Computer Aided Control
System Design, 2006 IEEE International Conference on Control Ap-
plications, 2006 IEEE International Symposium on Intelligent Control,
2006 IEEE, 2006, pp. 784 –789.

[8] B. Babu and A. Gujarathi, “Multi-objective differential evolution
(mode) for optimization of supply chain planning and management,”
in Evolutionary Computation, 2007. CEC 2007. IEEE Congress on,
sept. 2007, pp. 2732 –2739.

[9] S. Baluja, “Population-based incremental learning: A method for
integrating genetic search based function optimization and competitive
learning,” Pittsburgh, PA, USA, Tech. Rep., 1994.

[10] K. A. Folly and G. K. Venayagamoorthy, “Effects of learning
rate on the performance of the population based incremental
learning algorithm,” in Proceedings of the 2009 international
joint conference on Neural Networks, ser. IJCNN’09. Piscataway,
NJ, USA: IEEE Press, 2009, pp. 3477–3484. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1704555.1704773

[11] Q. Zhang, T. Wu, and B. Liu, “A population-based incremental
learning algorithm with elitist strategy,” in Proceedings of
the Third International Conference on Natural Computation -
Volume 03, ser. ICNC ’07. Washington, DC, USA: IEEE
Computer Society, 2007, pp. 583–587. [Online]. Available:
http://dx.doi.org/10.1109/ICNC.2007.126

[12] S. Sheetekela and K. Folly, “Power ystem controller design: A
comparison between breeder genetic algorithm and population based
incremental learning,” in Neural Networks (IJCNN), The 2010 Inter-
national Joint Conference on, july 2010, pp. 1 –8.

[13] F. Bolanos, J. Aedo, and F. Rivera, “System - level partitioning
for embedded systems design using population - based incremental
learning,” in CDES, H. R. Arabnia and A. M. G. Solo, Eds. CSREA
Press, 2010, pp. 74–80.

[14] H. Li, S. Kwong, and Y. Hong, “The convergence analysis and
specification of the population-based incremental learning algorithm,”
Neurocomputing.

[15] R. Rastegar and A. Hariri, “The population-based incremental
learning algorithm converges to local optima,” Neurocomputing,
vol. 69, no. 13-15, pp. 1772 – 1775, 2006, blind Source
Separation and Independent Component Analysis - Selected papers
from the ICA 2004 meeting, Granada, Spain, Blind Source
Separation and Independent Component Analysis. [Online]. Avail-
able: http://www.sciencedirect.com/science/article/B6V10-4J9X2VD-
2/2/503395260d19018514ab89fa4c646659

[16] E. Hughes, “Optimisation using population based incremental learning
(pbil),” in Optimisation in Control: Methods and Applications (Ref.
No. 1998/521), IEE Colloquium on, Nov. 1998, pp. 2/1 –2/3.

[17] R. White, “Competitive hebbian learning,” in Neural Networks, 1991.,
IJCNN-91-Seattle International Joint Conference on, vol. ii, July
1991, p. 949 vol.2.

[18] L. Wang, L. Ma, Q. Bian, and X. Zhao, “Rough set attributes reduc-
tion based on adaptive pbil algorithm,” in Information Theory and
Information Security (ICITIS), 2010 IEEE International Conference
on, 2010, pp. 21 –24.

[19] J. M. Chaves-Gonzalez, D. Dominguez-Gonzalez, M. A. Vega-
Rodriguez, J. A. Gomez-Pulido, and J. M. Sanchez-Perez,
“Parallelizing pbil for solving a real-world frequency assignment

problem in gsm networks,” in Proceedings of the 16th
Euromicro Conference on Parallel, Distributed and Network-
Based Processing (PDP 2008). Washington, DC, USA: IEEE
Computer Society, 2008, pp. 391–398. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1343596.1343822

[20] B. W. Silverman, Density estimation: for statistics and data analysis,
Chapman and Hall, Eds., London, 1986.

[21] M. R. Garey and D. S. Johnson, Computers and Intractability; A
Guide to the Theory of NP-Completeness. New York, NY, USA: W.
H. Freeman & Co., 1990.

[22] M. Castillo Tapia and C. Coello, “Applications of multi-objective
evolutionary algorithms in economics and finance: A survey,” in
Evolutionary Computation, 2007. CEC 2007. IEEE Congress on, sept.
2007, pp. 532 –539.

[23] A. E. Eiben and J. E. Smith, Introduction to Evolutionary Computing
(Natural Computing Series). Springer, October 2008. [Online]. Avail-
able: http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-
20&path=ASIN/3540401849

[24] S. Baluja, “An empirical comparison of seven iterative and evolution-
ary function optimization heuristics,” Tech. Rep., 1995.

