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Abstract - Sequentiality and reactivity are features that have 
been deemed important for cognitive architectures[1]and 
recent emphasis has been put by the community on their 
development in cognitive architectures. However, the 
cooperation and competition dynamic between reactivity and 
sequentiality remains an open issue in the domain [2]. In this 
paper, we present a three level cognitive architecture for the 
simulation of human behaviour based on Stanovich’s 
Tripartite Framework [3], which provides an explanation of 
how reflective and adaptive human behaviour emerges from 
the interaction of three distinct cognitive levels. We use two 
classical psychological tasks to study the 
reactivity/sequentiality dynamic in our architecture. These 
show that the two features collaborate in interesting and 
psychologically plausible ways. 

Keywords: cognitive architecure; hybridism; sequentiality; 
reactivity 

 

1 Introduction 
  A cognitive architecture is “the overall, essential 
structure and process of a domain-generic computational 
cognitive model, used for a broad, multiple-level, multiple 
domain analysis of cognition of behaviour” [1] (p.4). 
Psychologists and other cognitive scientists can use these 
architectures to study the mechanisms responsible for 
observed behaviour, and engineers can employ them to 
endow their systems with cognitive (e.g. decision-making) 
capacities. Theoretical studies of cognitive architectures [1,3, 
4] have identified many general features that architectures 
should have if they are to efficiently play these roles. Two 
such features, reactivity and sequentiality [1], have proven 
difficult to integrate in well-unified cognitive architectures, 
and, emphasis has recently been put on the development of 
these features (especially in the guise of reactive abilities and 
of reflective/deliberative). It is difficult to integrate reactivity 
and sequentiality because the two features appear to be 
functionally incompatible: designs that favour one almost 
inevitably hinder the other. As a result, integration of reactive 
and sequential processing remains a challenge in the domain 
[2]. In this paper, we address the challenge by introducing a 
new architecture, one that implements Stanovich’s [3] 
Tripartite Framework: a framework that aims to explain how 

reflective (characterized by sequentiality) and adaptive 
(characterized by reactivity) human behaviour emerges from 
the interaction of three distinct cognitive levels 
(autonomous/reactive, algorithmic/cognitive control, and 
reflective). To demonstrate the flexible and coherent 
behaviour of the resulting architecture, we study its 
performance on two classical psychological tasks: the Stroop 
task, which requires perceptual attention and cognitive 
control, and the Wisconsin card sorting task, which requires 
cognitive flexibility and efficient collaboration between the 
reactive and sequential elements of the architecture.  

2 Related Work 
  
2.1 Cognitive architectures 
 Although there are now a variety of cognitive 
architectures (see for a review [3]), we chose here to focus on 
three of the most widely used: ACT-R, SOAR, CLARION 
[1]. 
 
ACT-R (Adaptive Components of Thought-Rational) [5] is a 
cognitive architecture whose development is oriented towards 
the understanding of human cognition. ACT-R’s components 
are a set of perceptual-motor modules, memory modules, 
buffers, and a pattern matcher module, which finds 
productions that match the current state of the buffers. There 
are two types of memory modules in ACT-R: declarative 
memory and procedural memory, consisting of chunks or 
production (for the procedural memory) and associated sub-
symbolic values (connectionist hybridism). A long-term 
memory of production rules coordinates the processing of the 
modules. Each module has a chunk holding a relational 
declarative structure. Each chunk has a set of sub-symbolic 
parameters reflecting its past activity and influencing its 
future retrieval from long-term memory. Adaptation in ACT-
R occurs thanks to a top-down learning approach. ACT-R has 
been used to simulate a large number of cognitive phenomena 
but has seldom been used for the simulation of extended 
metacognitive processes. Further effort has been put into 
implementing a unified theory of cognition, perception, and 
action by integrating perceptual and motor modules working 
in parallel with cognition; however, cooperation between 
these modules is limited since their content (perceptual, 



motor, declarative memory) is still processed using distinct 
buffers.   

SOAR (State, Operator And Result) [4] is also a rule-based 
cognitive architecture aimed at the modelization of general 
intelligence. Knowledge is in the form of production rules, 
arranged in terms of operators acting in the problem space 
(set of states representing the task). Operators provide the 
system with adaptation since they can externally as well as 
internally modify the system’s state. The primary learning 
mechanism is chunking, which allows the extraction of rules 
from problem solving traces. A basic processing cycle 
repeatedly selects, and applies operators, achieving one 
decision at a time. In SOAR, different types of learning are 
applied to different types of knowledge: reinforcement 
learning to adjust preference values, episodic learning to keep 
track of the system’s evolution, semantic learning for 
declarative knowledge. SOAR is able to perform high-level 
reasoning task (planning, problem solving …). 
 
As opposed to ACT-R and SOAR, CLARION requires less a 
priori knowledge. CLARION (Connectionist Learning 
Adaptive Rule Induction ON-line) [6] is a hybrid architecture 
with explicit (symbolic) and implicit (sub-symbolic) 
processes. CLARION is made of four memory modules, with 
dual explicit–implicit representation: action-centered 
subsystem, non-action-centered subsystem, motivational 
subsystem, and metacognitive subsystem. Action and non-
action centered knowledge are stored in implicit form (using 
neural networks) and in explicit form (using symbolic 
production rules). Two types of learning support the team 
work of implicit and explicit processes : bottom-up 
learning (reinforcement learning methods are used to acquire 
implicit knowledge, the resulting knowledge is used to 
modify explicit knowledge at the top level through bottom-up 
learning mechanism ), and top-down learning (extracting 
knowledge by observing actions guided by these rules). As in 
dual-process theories of mind, two levels (a meta-cognitive 
subsystem and a motivational subsystem) cooperate to 
produce behaviour by combining the action recommendations 
from the two levels or combining bottom-up and top-down 
learning. CLARION has often been used for the simulation of 
higher level cognitive phenomena. . However, CLARION’s 
sensory-motor modules are not as developed as one would 
wish. 

The architectures presented above exhibit many of the 
desiderata [1] for cognitive architectures, but none support all 
of them, often because of the theoretical orientation took as 
foundation (strong symbolism in ACT-R, high modularity in 
CLARION). Several issues for further research were thus 
identified; here we highlight specifically two of them [2]: 
(1) Effectors and perceptual attention: the need for ”expanded 
frameworks that manage an agent’s resources to selectively 
focus its perceptual attention, its effectors, and the tasks it 
pursues” [2]. In SOAR and ACT-R, perceptual systems are 
isolated channels providing the information from the 
environment to the Working memory of the system, but their 

activity is not regulated by the Working memory, like the 
activity of other productions. Also, in SOAR, perceptual cues 
match on separate perceptual working memory elements that 
are independent of context (matched by the other 
productions). As we will see below, perceptual information 
processing in our architecture depends on the current task and 
the context (environment and long term memory of the 
system). (2) Combination of deliberative problem solving 
with reactive control: the need for architectures that can 
combine deliberative problem solving with reactive control 
by changing their location on the deliberative vs. reactive 
behaviour spectrum dynamically based on their situation. 
CLARION, as well as other architectures (see CogAff, 
Sloman [7]), has chosen to address this problem by using a 
dual-process theory of mind [1]. It is this duality that allows 
CLARION to achieve high level reasoning; however, strong 
modularity prevents the system from really achieving strong 
reactive/dynamic processing. In our architecture, thanks to the 
unified cognitive model we chose, we are able to preserve 
dynamic processing while maintaining a robust (reflective) 
behaviour. In this paper, to design an architecture that meets 
the duality challenge with a clear answer to the interface 
problem, we have modeled our system after Stanovich’s 
Tripartite Framework [3]. We chose this model, precisely 
because it provides a good account of dynamic of duality 
(sequentiality/rule-following and reactivity/dynamicity) in 
human cognition. 

2.2 Cognitive Model 
 We base our cognitive architecture on Stanovich’s 
tripartite framework [3]. This allows us a complete model of 
the cognitive mind, from automatic and implicit processes to 
explicit processes involving control (attention and executive 
functions) to more abstract planning and reasoning. 
Stanovich’s tripartite framework belongs to the “dual-process 
theories” family of cognitive models, where cognition is 
characterized by the opposition (duality) between two types 
of processes or systems [8]. We will follow the latter usage, 
which often dubs the dual systems “System 1” (fast and 
automatic reasoning) and “System 2” (abstract and 
hypothetical reasoning). Stanovich’s System 1, which he calls 
the “Autonomous Mind,” includes instinctive behaviours, 
over-learned process, domain-specific knowledge, emotional 
regulation and implicit learning. His tripartite framework 
differs from other dual-process theories in its description of 
System 2. He divides processes usually ascribed to System 2 
in two classes of processes, respectively called the 
“Algorithmic Mind,” responsible for cognitive control, and 
the “Reflective Mind,” responsible for deliberative processes. 
The Algorithmic Mind acts upon information provided by the 
Autonomous Mind thanks to two sets of pre-attentive 
processes (perceptual processes and “processes which access 
memories and retrieve memories and beliefs” – [9] (p 43), 
both of which supply content to Working Memory. The 
Algorithmic Mind  is the locus of three processes, each 
initiated by the Reflective Mind: (1) inhibition of 
Autonomous Mind processes, (2) cognitive simulation 



(decoupling), and (3) serial associative cognition. 
Performance of these processes leads to an activation of the 
anterior cingulate cortex (ACC). Decoupling, which seems to 
be supported by the dorsolateral prefrontal cortex (DLPFC) 
[3], consist in the creation of temporary models of the world, 
where different alternative scenarios can be tested. The 
temporary models created through decoupling do not affect 
the system’s current representation of the world but the 
decoupling process, however, has a cognitive cost: it is 
difficult for the Algorithmic Mind to perform other processes 
while decoupling takes place. Decoupling does not occur in 
every situation where it would be useful, and when it does 
occur, it is sometimes incomplete. In these cases, subjects 
simply apply simple models (rules) that appear appropriate 
for the situation. Serial associative cognition supports the 
implementation of these simple models. The simple model 
chosen does not in general provide the best solution in a given 
situation: a better solution could have been found through 
decoupling, but the cognitive load of decoupling is higher 
than that of serial associative cognition and thus subjects will 
often satisfy themselves with less optimal but cognitively 
easier solution provided by serial association. Operations 
supported by the Reflective Mind define the subject’s 
cognitive style. The Reflective Mind performs three 
processes: (1) initiation of inhibition of Autonomous Mind 
processes by the Algorithmic Mind (i.e., it tells the 
Algorithmic Mind: “Inhibit this Autonomous Mind process”) 
and (2) initiation of decoupling in the Algorithmic Mind (i.e., 
it tells the Algorithmic Mind: “Start Decoupling”) and (3) 
interruption of serial cognition, either by sending a new 
sequence to the Algorithmic Mind or by initiating a full 
simulation of the situation through decoupling. According to 
Stanovich, the division of human cognition into three sets of 
processes, instead of the traditional two of dual-process 
theories, provides a better account of individual cognitive 
differences. Individual differences with regard Algorithmic 
Mind processes are linked to cognitive abilities and fluid 
intelligence, while Reflective Mind differences are observed 
in critical thinking skills. We chose the tripartite model 
Stanovich, precisely because it provides a good account of the 
diversity in human behaviour. 

3 Architecture 
 Our architecture is implemented in a multi-layer multi-
agent simulation platform [10]. As shown in figure 1, each 
level presented is composed of groups of agents acting in 
parallel, each agent having one or more role (an abstract 
representation of their functionality). 

3.1 Reactive level 
 The Reactive level in our model corresponds to 
Stanovich’s Autonomous Mind. The main roles assigned to 
agents within this level are “sensor” (C –letters in parenthese 
in this section appear in figure 1), “effector” (D) and 
“knowledge” (A).  

 

Figure 1: Architecture 

The network of Knowledge agents (agents assigned with the 
“knowledge” role) is initialized with a knowledge base that 
makes up the system’s declarative knowledge (semantic 
memory): a conceptual map made up of concepts and the 
semantic links between them. Knowledge agents therefore 
have two attributes: “knowledge” and a word from the 
knowledge base (e.g., “Red”); knowledge agents are also 
connected together according to the links in the conceptual 
map. Upon receiving a message from a Sensor agent or from 
another Knowledge agent, Knowledge agents send a message 
to those Knowledge agents they are connected to, therefore 
spreading activation in the network (a process similar to that 
of semantic memories, [11]). The number of messages 
exchanged between the agents, and therefore their activation, 
is at first determined by the distance between them in the 
conceptual map (later on, it will also be determined by the 
activation signals from higher levels – see below). The 
system’s environment is similar to (portions of) human 
environments. In the Stroop task simulation described below, 
the system is presented with cards identical to those human 
subjects see in real Stroop task experiments. Each Sensor 
agent is sensitive to some particular type of information in the 
environment (colors, sounds, texts, etc.). If the type of 
information to which they are sensitive to is present in the 
environment, Sensor agents will (at short intervals) extract it 
and send messages to Knowledge agents with a role 
associated with the sensor’s function ("read" for Knowledge 
agents connected to Sensor agents reading characters, 
"recognizeColor" for Knowledge agents connected to Sensor 
agents recognizing colors). Activation in the network 
therefore depends on the number of messages sent by the 
Sensor agents and the activation of the Knowledge agents in 
the conceptual map. Taken together, the action of Sensor and 
Knowledge agents make up the system’s sensory motor level. 
This means that the system’s sensory abilities are always a 
function of the Sensor agents’ information extracting 
capacities and of the system’s knowledge about the 
environment: the system is fully situated. Effectors agents 



work similarly: a knowledge agent associated to the function 
of the effector (“sayRed”, “sayBlue”) sends messages to 
Effector agents with a similar role, which will then act on the 
environment.   

3.2 Algorithmic level 
 Corresponding to Stanovich’s Algorithmic Mind, the 
Algorithmic group is responsible for the control of the 
system. Control is achieved with the help of morphology [12]. 
RequestStatus agents (E) belong to both the Reactive and 
Algorithmic organisation. At regular intervals, they query 
Knowledge agents about their status (that is, number of 
messages they sent during that interval to each of the Agents 
to which they are connected). Status agents (F) represent the 
system’s activity at a given time in the form of a distance 
matrix that describes the (message passing) activity of the 
system at that time. The distance between two concepts in the 
conceptual map is measured by the number of messages sent 
between the Knowledge agents bearing these two concepts as 
their role. Status agents also send a reduced representation of 
the activity in the Reactive organisation to the Reflective 
level. Globally, this matrix thus represents a form or shape, 
and it is this form that will be transformed to reach the shape 
describing the goal assigned to the system. At the 
Algorithmic level, we thus find the short-term goals of the 
system in the form of a graph of Goal agents sent by the 
Reflective level. Each Goal agent (I) contains a distance 
matrix that specifies the distance necessary between each 
Knowledge agents (that is, the number of messages that must 
be sent between Knowledge agents) if the system is to reach 
goal. Graphs of short-term goals in our architecture 
correspond to Stanovich’s serial associative cognition. 
Delta agents (G) compute the difference between the matrix 
provided by the Status agents and the one provided by the 
Goal agents. The resulting difference (another matrix) is 
provided to Control agents (H), which in turn send regulation 
messages to agents in the Reactive organisation to modify 
(i.e., increase) their activation so that their global activity 
more closely matches the shape describing the current short-
term goal. Agents in the Algorithmic organisation constitute 
the system’s attention.  They activate elements of the 
system’s semantic memory in relation to its current goal. The 
system’s long term memory is made up of the Knowledge 
agents in the Reactive organisation, and the system’s working 
memory (WM) at a given time is made up of the Knowledge 
agents that are activated in the Reactive group at that time. 
This implementation of working memory is consistent with 
the work of  Engle [13], in which WM is seen as a set of 
temporarily activated representations in long-term memory.  

3.3 Reflective level 
 Each agent in this last group has a shape (a distance 
matrix) which represents the state that the system must be in 
to achieve a simple goal. Goal agents (I) are organized in a 
direct graph. A path in this graph represents a plan that can be 
applied to achieve a complex behaviour A set of Goal agents 

represents a graph of several complex plans or strategies 
decomposed into a sequence of simple objectives (steps in the 
plan). The logical and analytical skills of the system will be 
implemented at this level. A sequence of simple objectives 
path (J) will be sent to the Algorithmic level, which will take 
care of its execution. Following Stanovich’s Tripartite 
framework, agents in this last group will have access to a 
reduced representation of the environment. This 
representation is provided by the Status agents of the 
Algorithmic Group to other status agents (K) that carry the 
reduced representation and announce themselves to the goal 
agents, which in turn compute their similarity to this 
representation. The activation of the Goal agents will be 
determined by the computed similarity between these two 
matrices. Activation propagates from the Goal agent most 
matching the reduced representation to those that follow in its 
path. The last agent in the path will send the parsed path to 
the Algorithmic level. Thus, the shortest path and the most 
active (with the most messages exchanged) will be sent first 
to the Algorithmic level. The shortest path (simplest model) 
or the one the most activated (model used more recently or 
more often) will prevail over the other paths. The limited 
serial associative cognition of the Algorithmic level will 
execute this path step by step. The path executed by serial 
associative cognition provides the system with the 
sequentiality necessary to achieve complex goals. However, 
the system does not lose its dynamicity. Indeed, the reduced 
representation of the environment are sent on a regular basis 
by the Status agents so that the Reflective organisation can 
interrupt serial cognitive association either by: (1) Setting a 
new starting point in the path, or by, (2) Taking a new branch 
in the path, based on the current state of the environment  

3.4 Simulation 
 If multiple strategies (thus two or more goal agents) are 
selected at the algorithmic level, the goal agent that belongs 
to the algorithmic and reflective level (which usually contains 
the goal matrix selected at the reflective level) triggers a 
simulation of the strategies. The simulation capacity as 
envisioned in Stanovich’s Tripartite Framework is 
implemented at the algorithmic level. When the algorithmic 
level is in simulation mode, a possible world is created thanks 
to the reduced representation sent by the Delta agents. This 
secondary representation is realized with a limited number of 
agents (20). These agents are assigned dynamically the same 
roles and links as those agents from the Reactive level they 
are replicating, as indicated by the reduced representation. 
Since this possible world is carried out thanks to distinct 
agents (SecondaryRepresentation agents instead of 
Knowledge agents) and a distinct group (Algorithmic instead 
of Reactive), we can be sure that this secondary 
representation is totally independent from the current 
representation of the world (i.e., knowledge agents from the 
reactive level). To reproduce the cognitive cost of the 
simulation operation, the cognitive operations (goal inhibition 
and selection) are carried out by the Control agents, Delta 
Agents, and the Reflective level. Messages from (L) and to 



(M) these agents are branched to the 
SecondaryRepresentations instead of the Reactive level. Once 
the simulation is completed, the activation of Goal agents is 
regulated accordingly at the Reflective level (N), therefore 
potentially replacing the next action carried out by the 
Algorithmic level (by the first rule simulated). The WCST 
realized in this paper illustrates the simulation of an opposite 
style of thinking. The system first simulates the application of 
a chosen categorization rule and its negation (negative 
feedback by the instructor), and is thus able to make a new 
categorization rule (the alternative) emerge in the simulation. 

4 Results and Discussion 

 

Figure 2: Mean response time per block for congruent and 
incongruent trials in 25% congruent conditions and 50% 
congruent condition 

4.1 Control and perceptual attention: Stroop 
task 

 The Stroop task [14] is used to test attention and 
inhibitory control. It tests a subject's ability to maintain a goal 
in mind, suppressing a familiar response in favor of one that 
is less familiar. The task illustrates the Color–Word 
Interference effect. The set of trials is a compound of 
congruent trials (the word “GREEN” written in green) and 
incongruent trials (“RED” written in green). Two experiments 
were conducted. In each one, four blocks of 100 cards with a 
word written in a specific color were shown to the system. 
25% of the cards per block were congruent in the first 
experiment while 50% were in the second. 
 
Control: Set-up this way, we find that the mean response time 
of the system is longer for incongruent trials, specifically in 
the 50% congruent condition (Figure 2) (1396 ms) as opposed 
to the 25% congruent condition (960 ms), a result also found 
in human subjects. This is because, to achieve the system’s 
goal, Control agents have to send regulation messages to the 
“recognizecolor” agents to compensate the distribution of 
agents when the system is initialized for the Stroop task (i.e., 

with a preponderance of “read” agents to reflect the 
predominance of the reading ability in normal adult subjects). 
The system provides an answer once the system has regained 
its stability, that is, once there is a sufficient difference in 
activity between the system’s two competing responses. 
During incongruent trials, this stability is harder to achieve 
(inhibition is a time-consuming operation).  Response-time 
variation is due to the action of the algorithmic level: in 
incongruent trials, it is particularly called upon to help the 
system remove perceptual focus on confusing information. 
 
Perceptual attention: the Stroop task especially illustrates the 
dual nature (orienting and being oriented) of perceptual units 
in our system.  The system gets initial information about its 
environment through its sensory agents (“recognizecolor” and 
“read”) –the system processes all stimuli in parallel. At first, 
this leads to an activation of the Knowledge agents that 
correspond to the external stimulus (e.g., the Knowledge 
agent that bears the role “Red” will be activated if Sensory 
agents detect red in the environment). As we mentioned 
above, when the system is initialized for the Stroop 
experiment, there is a preponderance of “read” agents. After 
this initial phase, Control agents, guided by information 
provided by Status agents, themselves influenced by the 
system’s current goal, can modify the message passing 
activity between the agents (by increasing the activity of the 
“recognizecolor” agents). With this experiment, we show that 
despite an initial setting favoring the “reading ” ability and its 
connected sensor (both belonging to the reactive level), the 
system is able to change its “natural” tendency (from reading 
the word to naming the color), thanks to the cognitive control 
achieved by the algorithmic level. Cognitive control favors 
the color naming ability by increasing the activation of 
relevant agents in its goal matrix. Agents connected to them 
are in turn linked to effectors, therefore achieving perceptual 
control (perceptual attention) by spreading activation. 

4.2 Flexibility: Wisconsin card sorting test  
The Wisconsin card sorting test (WCST) [17] is widely used 
to test executive functioning, especially cognitive flexibility 
and abstract reasoning. The subject is shown a set of target 
cards with figures on them, which vary in shape, number and 
color. The subject has to match stimulus cards to the target 
cards, one by one. However, he is not told what the sorting 
rule is and has to discover it. In our experiment, we used 
material adapted from Dehaene & Changeux [15] 
representing  the context effect of the four reference target 
cards by adding the following links in the system’s 
conceptual map: Red – triangle – one, Green – star – two, 
Yellow – square – three, Blue – circle – four. We also linked 
the shape, color, and number knowledge (already present in 
ConceptNet) to the sensors. A script provided the system with 
the series of cards it had to categorize and evaluated the 
system’s answer. The categorization rule was changed after 6 
consecutive successes. The experiment consisted of 128 cards 
with figures varying in shape, number and color. The script 
attempted to test 6 categorization rules ([“shape”, “color”, 



“number”] times 2) on the 128 cards. As in human trials, no 
warning was sent before a rule change: only the answer “no” 
was given to the system when his answered was wrong. 

  

Perceptual attention: (Note that numbers in this section refer 
to figure 3. Please refer to the figure while the following 
description of the system’s activity) When a new card appears 
in the environment, Sensors (1) forward the information to 
Knowledge agents in the reactive level. Activation of the 
different Knowledge agents is thus influenced by the 
environment’s state. Status Agents then (2) provide the 
algorithmic level with the status of the agents at the reactive 
level. This information is used by the Delta Agents in the 
Algorithmic level to calculate a reduced representation (3) of 
the environment, which is then forwarded to the Reflective 
level, leading to the activation of various competing rules (4). 
When there are more than one winning rule/goal (because the 
system’s working memory is loaded with contradictory 
contextual information), a process of cognitive decoupling 
(internal simulation) is launched (5) (by the Decoupling 
agents). A mini-world (decoupled world) -is thus created: 
agents in this mini-world are modeled after the reduced 
representation of the world (6) sent by Status agents. 
Decoupling agents also recreate an environment, to which the 
agents of the mini-world will react. For this Experiment, the 
environment was one in which the “no” response was sent 
after a categorization rulewas proposed by the mini-world. 
Regulating and status updating messages are rerouted (7) to 
act on the mini-world instead of the reactive level.  The rules 
that emerge from the cognitive simulation are sent (8) to the 
reflective level (with different activations) and then the 
corresponding matrix is sent (9) to the algorithmic level, 
which is in charge of regulating the reactive level towards 
achievement of the goal (encouraging agent activity – even 
agents involved in perception – according to the system’s 
current goal). The average number (for a hundred 
simulations) of rules the system (for its 128 trials) was able to 
discover and apply was 5.33; the maximum number was 6. 
Normal human subject are able to discover an average of six 
categories [16]. These results illustrate the system’s ability to 

adapt adequately to the changing situation (new card, error 
notification) in a bidirectional manner: by orienting its 
executive control according to the information in the 
environment but also by orienting its perceptual processing 
according to the goal. 

Equilibrium between deliberative and reactive behaviours: It 
is the system’s design, focused on the interaction between the 
three cognitive levels, that helps preserve this equilibrium in 
the architecture to make it efficiently adaptive. 
Perseverationerror in the system are errors due to the reactive 
level. 

                                            

However, the system’s ability to achieve five categorizations  
is the result of a good interaction between reactive, 
algorithmic and reflective processing. Error notifications are 
sent from the Reactive level to the Algorithmic level, 
decreasing the activation of the now wrong classification rule, 
thereby allowing other rules/goals to take the lead. 
Activations levels of the goals are a memory of those 
classification rule that work and those that did not work in the 
past.. Although, the simulation capacity illustrates the 
interaction between Algorithmic and Reflective levels, it is 
also primordial for good cooperation between Deliberative 
and Reactive behaviour.  Decoupling helps generate a 
prediction of the behaviour at the reactive level and therefore 
prepare an adaptive plan of action (efficient trial-error 
adaptation): in the third trial of the “color” series, a cognitive 
decoupling is run because two competing answers (“color” 
and “shape”) are active. The system creates a simulation of a 
possible world where the color categorization rule is activated 
and observed as wrong; in this possible world, the second 
emerging rule was the shape categorization rule. In the first 
and second trial of the “shape” series, after a first wrong 
answer, “color” is selected, a cognitive decoupling is run 
where “shape” is first activated, since the possible world is an 
image of the system’s environment before the simulation 
process started and where “color” had been marked as a 
wrong answer, the selected second answer is “number”. 
In the third trial of the “shape” series, after a first incorrect 

Table 1: A simulation's log. 
Serie Trial Response Simulation  
Color 1 correct  

2 correct  
3 correct (1)color (2) shape 
4 Incorrect : shape  
5 correct  
… 

Shape 1 Incorrect : color (1)$shape$(2)number 

2 Incorrect : color (1) shape (2)number 

3 Incorrect : color $
4 Incorrect : color, 

number  
(1)$number(2)$shape 

5 Correct (1) shape (2)number 

… 

Figure 3: Wisconsin card sorting task simulation 



answer (color), a cognitive decoupling is run where the first 
rule activated is the “number” categorization rule, and the 
second is the “shape” rule, leading to a second error. Since 
the cognitive decoupling had activated the “shape” as second 
rule, the correct answer is produced. 

5 Conclusion and Future Work 
 Theoretical studies [2,4,1] identified sequentiality and 
reactivity as two important features cognitive architectures 
must have if they are to be useful to cognitive scientists and 
engineers [1]. It has however proven difficult to integrate the 
two features in coherent architecture due to their functional 
incompatibility. In this paper, we focused on two such issues: 
Action attention and perceptual attention and flexibility. To 
design an architecture that addresses these issues, we sought 
inspiration from natural minds and modeled our system after 
Stanovich’s Tripartite Framework [3] (reactive, algorithmic 
and reflective minds).The initial reaction of our system to 
stimuli is automatic (reactive level). However, as the task 
goes on, perceptual information processing is influenced not 
only the environmental stimuli, but by both activity in the 
reactive level and at the algorithmic level. The same goes for 
effectors. Therefore, perceptual information helps orient the 
system’s behaviour and the system’s gathering of perceptual 
information is oriented by the its deliberative level (its 
current plan). The selection of a plan itself is influenced by 
the information present in the environment. The plan thus 
depends on perception, but also influences what the system 
perceives (and of course does): perception and plan selection 
are dynamically coupled. The hybrid adaptive behaviour of 
the architecture is achieved through the cooperation of all 
three levels. Algorithmic cognition allows the system to 
achieve trial-and-error adaptation and hypothesis testing (e.g. 
simulation). Although achieved by the algorithmic level, 
decoupling is launched by the Reflective level from which 
will emerge the action to be performed by the system. 
However, achievement of a plan doesn’t cancel the system’s 
reactivity and dynamicity, since the algorithmic and 
reflective level stay up to date concerning the internal state of 
system at the reactive level, and are able to perform 
operations to adapt its long term behaviour to the constantly 
evolving environment. Dynamic behaviour emerges from the 
competition and cooperation between sequential deliberative 
processes (reflexive and algorithmic level) and reactive 
processes. In future work, we plan on addressing another 
issue which we think is also related to problem of flexibly 
integrating reactive and sequential processes: the emotional 
modulation of cognitive processes.  
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