
Norm-Based Behavior Modification in Reflex Agents

Gustavo A. L. de Campos, Emmanuel S. S. Freire, Mariela I. Cortés

Computer Science Department

Universidade Estadual do Ceará (UECE)

Fortaleza, Brazil

gustavo@larces.uece.br, savio.essf@gmail.com, mariela@larces.uece.br

Abstract—Norms in multi-agent systems are used to regulate the

behavior of agents, organizations and sub-organizations in their

environments during a period of time. Much of the work on

norms focuses on the specification and maintenance of normative

system. Little work concentrate on the level of individual agents

as the impact of norms on the different types of intelligent agent

programs, as the internal modifications in the agents´ decision

processes and the background information necessary for

rationality in an environment governed by rules. This paper is a

contribution in this direction to the case of simple reflex agent

based on condition-action rules. An approach to extend this type

of agent was formalized and validated it in an implementation of

a simple world in the Prolog System. The results demonstrate

that the approach is adequate and must be extended to consider

other kinds of intelligent agents, as is the case of the goal-based

agents and the utility-based agents.

Keywords- Reflex agent architectures; Deontic concepts; Norms

I. INTRODUCTION

Multi-agent Systems (MAS) are becoming an interesting
research in computer science area as a paradigm for development
and creation of software systems [1] [2]. Long time MAS have
been successfully applied to the development of different types of
software in academia and industry [1] [2], a fact that encourages
the use of this technology in complex systems.

MAS can be understood as societies in which autonomous
and heterogeneous entities can work together. The main
element of MAS is the agent entity and very different
definitions are proposed to its concept. According to [3], an
agent is an entity capable of perceiving its environment through
sensors and acting upon that environment through actuators.
Unlike objects, agents are entities (i) autonomous and not
passive, and (ii) able to interact through messaging and not the
explicit invocation of a task, as in the case of objects [4].

There are several ways of classifying agents, but the most
accepted classifies agents according to their architecture [3].
The agent architecture specifies how is the process of
deliberation and choice of action to be taken, according with
the agent perceptions [5]. Internal architectures play a central
role in the development process of agents, because it is used as
a guide that determines its properties, attributes, mental and
behavioral components, determining thus a different
implementation for each case.

The creation of the agent function, which sets the mapping
between the channels of perception and action, is one of the

important contributions of Artificial Intelligence. Depending
on its function on the environment, the choice of the agent
architecture may not be a trivial task. Mainly, the
appropriateness of the properties associated with the internal
architecture of the agent and the properties of the external
environment where the goals should be conducted is crucial.

In order to cope with the heterogeneity, autonomy and
diversity of interests among the different members, governance
(or law enforcement) systems have been defined. The
governance systems define a set of norms (or laws) that must
be followed by the entities in the system. Norms provide a
means for regulating the agents’ behavior by describing their
permissions, prohibitions and obligations [6].

Norms are used to regulate the behavior of the agents in
MAS by describing the actions that can be performed or states
that can be achieved (permissions), actions that must be
performed or states that must be achieved (obligations), and
actions that cannot be performed or states that cannot be
achieved (prohibitions). Thus, norms represent a way for
agents to understand their responsibilities and the
responsibilities of the others. Norms are used to cope with the
autonomy, and are useful to regulate the different interests and
desires of the agents that cohabit the system.

As claimed by [7], much of the work developed on norms
focuses on the specification and maintenance of normative
system, i.e., the research efforts has been concentrated at the
macro level of the MAS. Noticing that very little work has
been done on the level of individual agents, they proposed
some adaption in BDI agents to solve tasks in open
environments with the presence of norms of four types.

We believe that there is a demand for similar work for the
cases of other different types of intelligent agent programs, that
the effort of research must be concentrated on the internal
modifications in the agents´ decision processes and the
background information, that are necessary for an rational
agent in an environment governed by rules. So, this paper is a
contribution in this direction to the case of simple reflex agent
based on condition-action rules. It describes an adaptation in
the internal architectures of these reflex agents so as they can
comply with two types of norms.

We formalize the approach employing the Prolog System.
It was validated in an implementation of a simplified version of
a vacuum cleaner where the agent can be obligated and/or
prohibited to perform some actions in the environment. The

results demonstrate that the approach is adequate and must be
extended to consider other kinds of intelligent agents, as is the
case of the goal-based agents and the utility-based agents.

The paper is structured as follows. Section 2 briefly
presents the reflex agent architecture. The concepts related to
norms are detailed in Section 3. Section 4 describes how to
combine rightly the use of reflex agent architectures with
norms. A case study is showed in Section 5 and, finally,
conclusions and future works are discussed in Section 6.

II. SIMPLE REFLEX AGENT

The internal architectures of agents can be categorized
based on reactive and proactive foundations. A reactive agent
must attend continuously to changes in their environment,
through the selection of actions, typically based on the current
perception of the environment and additional knowledge about
the possible actions that are best suited to different conditions
in which the environment can be.

A proactive agent can take the initiative and select actions
from a set of possible atomic actions or plans, and create
sequences of actions that attain goals in the environment task. In
this context, [3] describe the principles underlying almost all
intelligent systems through programs for reactive and proactive
agents. This paper focuses norms related to reflex agent, thus,
the main characteristics of the simple reflex agents are briefly
presented below.

According to [3], a simple reflex (or reactive) agent is the
simplest type of agent. This architecture assumes that at any
time, the agent perceives information about the state of the
environment through sensors and based on rules in the form “if
condition then action”, it selects the most adequate action for
the current perception. The agent performs the selected action
upon the environment through actuators. The Figure 1 presents
a schematic diagram of the simple reflex agent, synthesizing
the Russell&Norvig´s ideas related to reactive agent program,
as well as the abstract architecture of the this agent, which was
proposed by Wooldridge in [8].

Figure 1. Schematic diagram of the simple reflex agent

This synthesis assumes that at any instant K:

(1) through sensors, the agent receives information from the
environment, i.e., perceptions defined on a set, P =
{Perception1, ..., Perceptionn}, of n possible perceptions from
the environment (Env);

(2) a perception subsystem, see: P → S, that processes each
perception in P and maps to one of m possible states, S =
{State1, ..., Staten}, that are representations of aspects in the
perceptual information that are accessible to the agent;

(3) a subsystem for decision making, action: S → A, that
processes the states in S and selects, according to an specific rule
of the set of condition-action rules, one of the l actions in the set
of possible actions for the agent, A = {Action1, ..., Actionl};

(4) through actuators, the agent sends the selected action for
the environment;

(5) in the interaction K+1, the agent initiates another cycle
involving the perception of the world through the function see
and the selection of an action to be executed by the function
action.

The condition-action rules consist in supplemental
information that the agent uses during the decision making
process. They can be seen as a set of common associations
which are observed between certain conditions established
from the descriptions of States in S and certain Actions in
A. The information about the agent´s goals is not explicitly
considered in this architecture, but implicitly in the
condition-action-rules. Thus, the agent´s designer defines
these rules having in mind the performance measure that
will be applied to the agent. In this context, it is expected
that, in an adequate environment, if the rules are adequate,
then the agent will achieve its objectives and, consequently,
it will be well evaluated.

III. NORMS FOR AGENTS

The norms are used to restrict and guide the behavior of
agents, organizations and sub-organizations during a period of
time. In this sense, a norm includes a set of sanctions applied to
the entities that violated or fulfilled the norm [9]. In this section,
the main elements that compose the norm are explained
considering the types of norms and their representation.

A. Elements of Norms

Bellow we describe the main elements which compose a
norm, based on a survey of existing specification and
implementation languages for norms [9].

• Deontic Concepts: the deontic logic refers to the logic
of requests, commands, rules, laws, moral principles
and judgments [10]. In multi-agent systems, such
concepts have been used to describe the constraints for
the behavior of agents in the form of obligations (what
the agent must execute), permissions (what the agent
can execute) and prohibitions (what the agent cannot
execute).

• Involved Entities: considering that the norms are
defined to restrict the entities´ behavior, the
identification of related entities is essential. The norm
may regulate the behavior of individuals (for example,
a particular agent, or an agent, while playing a
particular role), or the behavior of a group of
individuals (for example, all agents playing a particular
role, groups of agents, groups of agents playing roles
or all agents in the system).

• Actions: once a norm is set to restrict the behavior of
the entities, it is important the clear specification of the
actions that are being regulated. Such actions may be
communication, usually represented by sending and

receiving a message, or non-communicative actions
(such as access and modify a resource, get in an
organization, move to another environment, etc.).

• Activation Constraints: a norm have a period of time in
which its restrictions must be fulfilled, but only when
this norm, is active. Norms may be activated by a
constraint or a set of constraints that can be: the
execution of actions, the definition of specific time
intervals (before, after or in between), the reaching of
system states or temporal aspects (such as dates) and
also the activation/deactivation of other norm and
fulfillment/violation of a norm.

• Sanctions: when a norm is violated the entity may
suffer a punishment, and when a norm is fulfilled, the
entity involved may receive a reward. Rewards and
punishments are referred to as sanctions and should be
related to the norm specification.

• Context: the norms are usually defined in a determined
context that determines the application area. The norm
may, for example, be described in the context of a
specific environment and must be filled only by agents in
execution in the environment. Similarly, a norm can be
defined in the context of an organization and fulfilled
only by the agents that play a role in the organization.

B. Norm Types and Representation

This paper considers two types of norms of four
possibilities discussed in [7]. The classification scheme
considers whether norms are obligations or prohibitions, and
whether they refer to states of the world or to particular actions.
In this context, Table 1 presents the four types of norms
obtained and a description about what the agent should do
when accepting a norm type.

TABLE I. THE TYPES OF NORM AND THEIR DESCRIPTIONS

Norms Types Description

1 obligation(p) agent must try to achieve certain

world state p

2 obligation(a) agent must try to execute certain

actions a

3 prohibition(p) agent must try to refrain from

achieving a state p

4 prohibition(a) agent must try to refrain from

executing an action a

Each type of norm has activation and expiration conditions as,
for instance, a well defined validity period of time, indicating
when the norm is in force and when it ceases to be in force. In our
approach, as [7], we leverage representational concepts from the
formalization of [11]. This formalization includes notions of
activation and expiration of a norm: norm(Activation, Expiration,
Norm), where Activation is the activation condition for the norm
to become active, Expiration is the expiration condition to
deactivate the norm, and Norm is the norm itself.

It is important to note that we are not concerned, at this
point, with handling more complex norm representation
schemes. Moreover, in order to facilitate the creation of

concrete agent behaviors, in compliance with a set of norms,
this paper approaches only norms of Types 2 and 4.

IV. MODIFYING REFLEX AGENTS TO ADOPT NORMS

In this section we examine how norms can influence the
choice of actions according to the internal architecture of a
simple reflex agent.

A. An Outline of the Approach

Purely reflex agents should be able to quickly respond to
changes in the environment. This kind of agent may be inserted
into an environment that has a specified set of norms that
restrict their actions. As defined by [9], the norms are intended
to restrict the behavior of agents applying sanctions when they
are violated or fulfilled. Therefore, the norms of an
environment should not be able to avoid the execution of
certain action, but rather to penalize or reward an agent if the
action taken by it is prohibited or obligated. Therefore, if the
set of norms defined in the environment is not considered in
the condition-action rules, an agent can be penalized if it
performs a prohibited action.

In order to avoid the violation of the simple reflex agent
architecture, our approach proposes to consider the information
about the set of norms as an extension of the condition-action
rules. It involves the definition of three different groups of
condition-action rules. Each group is associated with one deontic
concept and considers the sanctions linked to each norm, that is:

• Obligation Rules Group: specifies the rules related
with the actions that must be performed by the agents.
If an event of environment matches with a rule in this
group, it must necessarily be performed by the agent;

• Prohibition Rules Group: specifies the rules that are
related with the actions that cannot be performed by the
agent. If an event of environment matches with a rule in
this group, the rule will not be executed by the agent;

• Permission Rules Group: specifies the rules related
with the actions that can be executed. If an event of
environment matches a rule set out of this group, it
may or may not be executed by the agent.

Figure 2 shows the schematic diagram of the simple reflex
agent in an environment with norms. We added two new groups
in the agent´s action selection mechanism, corresponding to the
representation of the information about its obligations and
prohibitions. Our approach considers that if an action is obligated,
then the agent must perform that action only if it is not prohibited.
If an action is prohibited, then the agent must perform another
action, different from the prohibited action, which is permitted
and rational. If there is not an action that is obligated and
prohibited, then the agent must perform a permitted action which
is rational, as would do a well designed simple reflex agent in an
environment without norms.

The function Simplex-Reflex Agent outlined in the
sequence of five steps in Section 2 must be adapted to become
valid in the case norms were activated. In order to avoid
conflicts between rules from the different groups, Step 3 of the
sequence must respect the following rules:

Figure 2. Schematic diagram of the simple reflex agent with norms

 (3.1) first, it searches for rules in the Obligated Rules
Group to find those actions that must be performed in the
environment and are not prohibited;

(3.2) if there is some prohibited action, then the function
inhibits rules in the Obligated Rules Group and searches for
rules in the Prohibited Rules Group to find those actions that
are not prohibited and can be performed, according with the
environment estate conditions;

(3.3) if there are not any prohibition, the function selects the
action that must be performed as indicated by the obligation
norm; and

(3.4) finally, in the case where there not exist any
obligations and prohibitions, the function searches for rules in
the Permission Rules Group in order to find some action that
can be performed, according with the environment estate
conditions.

The strategy to select the action that is implicit in the
approach considers that the rational behavior is achieved when
the agent is able to maximize the rewards that are
consequences of: (a) the selection of an obligatory and not
prohibited action; (b) the non-selection of a prohibited action,
and (c) the selection of permitted actions, those which are
adequate with the environment state conditions and with the
agent´s performance measure.

B. Norms Outcomes

In this section, we consider the agent accepts a norm
immediately as it perceives it and that the behavior
modification must ensue according to activation and expiration
conditions of the norm. More specifically, the required change
in the behavior of the agent that accepts a particular norm
should occur according with the conditions of activation and
expiration. For instance, in the case of an agent that is goal
oriented, it can be necessary that the agent add the goal of
achieving a state p, when a particular norm of obligation is
activated, and then, when the norm is expired, delete this goal.

In the case of simple reflex agents, Tables 2 and 3 summarize
all norm combinations of activation conditions (AC) and
expiration condition (EC), and their outcomes respectively for
norms Types 2 and 4, considered in this paper and highlighted in
Table 1. The AC and EC columns give the truth-value of these
conditions at the time the agent accepts the norm.

When both AC and EC are true (row 1 in Tables 2 and 3)
results in the norm being ignored, as its expiration condition
has already elapsed. When AC is false but EC is true (row 4 in
Tables 2 and 3), norms are also ignored since, again, they have
already expired. When an agent accepts an obligation, if the
AC is already true (row 2 in Table 2) it must react to execute
the action specified in an obligation(a) if the action is not

specified in an prohibition(a). While for a prohibition (row 2 in
Table 3), it must refrain from executing the offending action,
and try to execute an action that is permitted and adequate to
the environment conditions and to its performance measure.

TABLE II. NORM TYPE 2 - OBLIGATION(A).

AC EC Outcome

True True (1) Ignore norm

True False (2) Execute action a if a is not prohibited;
otherwise execute an action that is not
prohibited, but is permitted and adequate

False False (3) Ignore norm

False True (4) Ignore norm

TABLE III. NORM TYPE 4 – PROHIBITION(A).

AC EC Outcome

True True (1) Ignore norm

True False (2) Suppress rules in the Permitted
Group that include action a and
execute an adequate permitted action

False False (3) Ignore norm

False True (4) Ignore norm

We are considering, the agent must ignore the norm, if AC
and EC are false (row 3 in Tables 2 and 3). We are considering
that in the situation that the norm has not yet been activated,
the agent has already been programmed for the activation of
the norm in the future. Therefore, we are not considering the
situation that the agent is able to include the proposed scheme
at the moment it perceives a norm, that is, when both AC and
EC are false.

C. Formal Description of the Approach

This section presents, first, a declarative description of the
reflex agent program shown in Figure 1, that is, in an
environment without norms and, second, an extension of this
description for the case in which the agent perceives norms
Types 2 and 4, as shown in Figure 2. The Prolog language was
employed to formally describe the agent programs in both
cases. The Prolog definition agent/2 describes the agent
program discussed in Section 2:

 agent(P,A):- see(P,S), action(A).

where the definition see/2 implements the perception
subsystem, as indicated by Step 2 of the sequence of five steps
illustrated in Section 2, it inserts, in the Prolog´s base, some
predicates employed to represent the environment state; and the
definition action/2 implements the decision-making subsystem
of the agent program, as indicated by Step 3 in the sequence, i.e.:

 action(A):- do_permission(A),!.

The definition do_permission/1 implements the Permission
Rules Group for the agent in an environment without rules,
which are condition-action rules highlighted in Figure 1. As
mentioned, these rules depend of the agent´s task environment
and must be defined according with the available knowledge
about the actions that are most adequate to be executed when
the environment is under certain conditions. The next section

of this paper illustrates this group of rules for the case where
the agent is a vacuum cleaner in a very simple environment.

As the Subsection 4.1 indicates in the extension of Step 3 in
Section 2, that is, Steps 3.1-3.4, in the case there are norms in the
environment, the definition do_permission/1 will be accessed by
the decision making subsystem only when active norms of Type 2
are not available. When some active norm is available, the action
must be executed immediately if it is not a prohibited action by a
norm of Type 4. If some action is a prohibited action, the rules in
the do_permission definition must be accessed in order to indicate
for the agent those not prohibited actions that are adequate with
the environment conditions.

So, in order to implement the above procedure, our
approach proposes that, instead of access exclusively the rules
in do_permission/1, the decision making subsystem considers
the three groups of rules illustrated in Figure 2 and the
sequence of steps 3.1-3.4. The definition do/1 below consists of
an extension in the action function, i.e:

 action(A):- do(A),!.

to consider these new possibilities:

 do(A):- do_obligation(A).
 do(A):- do_prohibition(A).
 do(A):- do_pemission(A).

where the definitions do_obligation/1 and do_prohibition/1 can
be declared without concern with a specific domain and are
related, as we saw that the agent will execute an action which is
obligated only if it is not prohibited.

The three rules bellow compose the Obligation Group and are
in accordance with what was discussed in the Section 4.2 and,
more specifically, in the Table 2, that identifies the changes that
are necessary to a simple reflex agent program for the case in
which the environment imposes norms of Type 2 for the agents:

 do_obligation(A):-
 norm(AC1,EC1,obligation(Ac)),
 is_True(AC1), is_False(EC1),
 norm(AC2,EC2,prohibition(Ac)),
 is_True(AC2), is_False(EC2),!,
 do_prohibition(A).
 do_obligation(A):- norm(AC,EC,obligation(A)),
 is_True(AC), is_False(EC),!.

 do_obligation(A):- norm(_,_,obligation(_)),
 do_prohibition(A).

where the predicates is_True/1 and is_False/1 must be
specified according, respectively, with the activation or
expiration conditions being considered in the arguments of the
predicates stating norms.

The two first rules of the above definition are related to the
situation described in row 2 of Table 2, that is, in which the
activation condition (AC1) is True and the expiration condition
(EC1) is False in some norm of Type 2. The first rule considers
the case in which another norm of Type 4 is in the same
situation (AC2 = True and EC2 = False) and the action which
is obligated is, simultaneously, prohibited. The outcome of this
situation is that the agent must perform an action (A) that is not
prohibited, but is permitted and adequate.

The second rule considers the case in which none norm of
Type 4 is active, that is, in which the agent must perform the
action that is obligated by the active norm of Type 2. Finally,
the third rule in the definition is related with the rows 1, 3 and
4 of Table 2. In these situations the agent must ignore the
obligation norm and perform an action that is permitted and
adequate, according with the conditions of the environment and
the rules in the definition do_permission/1.

The two rules bellow compose the Prohibition Group and are
in accordance with what was discussed in the Section 4.2 and,
more specifically, in the Table 3, that identifies the changes that
are necessary to a simple reflex agent program for the case in
which the environment imposes norms of Type 4 for the agents:

 do_prohibition(A):- norm(AC,EC,prohibition(Ac)),
 is_True(AC), is_False(EC),!,
 do_permission(A), not(A=Ac),!.

 do_prohibition(A):- norm(_,_,prohibition(_)),
 do_permission(A),!.

The first rule of the above definition are related to the
situation described in row 2 of Table 3, that is, in which the
activation condition (AC) is True and the expiration condition
(EC) is False. The outcome of this situation is that the agent
must perform an action (A) different from the prohibited action
(Ac), but which is permitted and adequate, according with the
conditions of the environment and the rules in the definition
do_permission/1.

The second rule in the definition is related with the rows 1,
3 and 4 of Table 3. In these situations the agent must ignore the
prohibited norm and performs an action that is permitted and
adequate. So, this last rule completes the second group of rules
which the approach supposes be a necessary modification to
produce a rational behavior of a simple reflex agent in an
environment with the presence of norms of the Types 2 and 4.

V. CASE STUDY

This section describes the third group of rules, Permission
Rules Group, for a very simple problem, but still very useful to
illustrate the ideas discussed in the last section. We specify the
rules in the definition do_permission/1 for the case in which
the agent is a vacuum cleaner in a world containing only two
rooms. So, employing this specific definition, we used the
Prolog System to: (1) describe experiments involving the agent
in the world without and with the presence of norms, (2) record
the history of the vacuum cleaner in the world, and (3) measure
its performance.

Considering the vacuum cleaner world with only two
rooms, where each room can be clean or dirty, in our
experiments the perceived information of the environment
were represented by the following atoms in Prolog: roomA,
roomB, clean and dirty. So, we assume the existence of eight
possible perceptions for the environment (P), which were
represented by eight lists of three atoms in Prolog, i.e.:

 P = {[roomA,dirty,dirty], [roomA,dirty,clean],
 [roomA,clean,dirty], [roomA,clean,clean],
 [roomB,dirty,dirty], [roomB,dirty,clean],
 [roomB,clean,dirty], [roomB,clean,clean]}.

Additionally, we assume that the agent perception is local,
i.e., see/2 perceives only the room where it is located and the
state of the room. So, we assume the existence of four possible
internal states for the environment (S), which were represented
by four lists of two atoms in Prolog, i.e:

 S = {[roomA,dirty], [roomA,clean],
 [roomB,dirty], [roomB,clean]}.

In each of the eight states of the world (P), there are three
possible actions for the vacuum cleaner (A), which were
represented by three atoms in Prolog, i.e:

 A = {suck, right, left}.

In the beginning of each experiment the vacuum cleaner
does not know the world configuration in terms of dirt. We
considered that when the world is without the presence of
norms, the measure of performance evaluation offers the
reward of one point per each square clean (+1) and penalizes
with the loss of one point per each movement (-1). In the case
of the presence of norms in the world, the measure must be
adapted in order to consider the rewards (+points) and the
penalties (-points), which are consequences of the agent
accepting or rejecting some norm.

A. Environment without Norms

In the Case 1, there are no norms in the world. The Prolog
definition below describes the simple reflex vacuum cleaner:

 vacuum_cleaner(P,A):- see(P,S), action(A).

where the terms P, S and A were defined generically in Section 2
and in the specification of the environment properties outlined in
the introduction of this section; see/2 has been specialized to deal
with the atoms and lists employed to represent the sets P and S;
action/1 has been specialized to deal with the set A and with the
specific rules do_permission/1 for this world, i.e:

 action(A):- do_permission(A),!.

The definition do_permission/1 implements the Permission
Rules for the agent in an environment without norms, are the
condition-action rules highlighted in Figure 1. For this Case 1, was
sufficient to generate a definition with four Prolog phrases, i.e:

 do_permission(suck):- in(Romm), is(Room,dirty).
 do_permission(right):- in(roomA).
 do_permission(left):- in(roomB).
 do_permission(no_op).

where the predicates in/1 and is/2 were used to represent the
conditions in the antecedents of the rules and are known by the
agent at the moment when the agent perceives the environment
by see/2. Table 4 highlights the episodes performed by
vacuum_cleaner/1 in six interactions with an environment
without norms where, initially, the agent is in room-A, and
room-A and-B are dirty.

The two first columns in the table identify the perceptions
and actions of the agent in each interaction. The third and
fourth columns identify the values of performance measure per
episode (Ep) and history (H). Since the perception is local and
at the agent does not have an internal state to avoid
unnecessary movements (interactions four to six), there were

no surprises in the behavior of the agent. The set of rules
do_permission/1 provided a rational behavior for the agent,
except for the unnecessary movements that caused a negative
performance evaluation.

TABLE IV. PERFORMANCE IN A WORLD WITHOUT NORMS

P A Ep H

[roomA,dirty,dirty] suck 1 1

[roomA,clean,dirty] right -1 0

[roomB,clean,dirty] suck 1 1

[roomB,clean,clean] left -1 0

[roomA,clean,clean] right -1 -1

[roomB,clean,clean] left -1 -2

B. Environment with Norms

In the second case (Case 2), the environment is governed
by norms of the Types 2 and 4. Consider that the measure of
evaluation should apply the appropriate sanctions, as the
fulfillment or not of the established norms. In this particular
example, the measure offers with reward three-point (+3) for
the fulfillment of an obligation and two points (+2) for the
fulfillment of a prohibition. In any other situation, the measure
behaves in accordance with the specification realized for the
Case 1. In our experiments, first, we considered a norm of
Type 2 in which the environment requires the execution of a
specific action by the vacuum cleaner during a period of time.
For instance, the predicate below states that "The agent must
suck the room-A from 4:00 to 6:00 a.m.":

 norm(roomA, time([4,6]), obligation(suck)).

where the first argument of the statement identifies the condition
of activation (AC), the second identifies the condition of
expiration (EC), and the third is the action to be performed.

The definition do_obligation/1, which implements the
Obligation Rules, are necessary for the vacuum cleaner in a
simplified environment regulated by the norm stated as above.
Assuming that no prohibition norm is present, the first rule in
the definition do_obligation/1 will never be activated.
However, the other two rules will be activated according to the
truth value of AC and EC, which are obtained by the evaluation
of the predicates is_True/1 and is_False/1 specifically for the
above obligation norm in the vacuum cleaner world:

 is_True(Room):- in(Room).

 is_False(time[T1,T2]):- clock(Hour),
 Hour >= T1, Hour =< T2.

where in/1 is the same predicate which the agent employs to
represent where it is located and clock/1 is a predicate which
represents the agent´s simplified clock in the experiments.

Table 5 highlights the episodes performed by the vacuum
cleaner in seven interactions with an environment with a norm
of Type 2, as stated above.

TABLE V. PERFORMANCE IN A WORLD WITH NORM OF TYPE 2

P A Ep H

[roomA,dirty,dirty] suck 1 1

[roomA,clean,dirty] right -1 0

[roomB,clean,dirty] suck 1 1

[roomB,clean,clean] left -1 0

[roomA,clean,clean] suck 3 3

[roomA,clean,clean] suck 3 6

[roomA,clean,clean] right -1 5

The rows one to four describe the behavior of the agent in a
period in which the norm had not been activated and the agent
was governed by the rules in the Permission Group. The rows
five to six of the table (shaded) illustrate the behavior of the agent
when the norm of the type 2 was activated (AC = True and
EC=False). It is noticed that the agent was rewarded with three
points per action during the period, according with the sanctions
associated with the norm of obligation. In row 7, the norm was
expired and the agent behavior was again governed by the
Permission rules. These ideas can be extended to the case where
the environment is also governed by norms of prohibition. For
instance, consider the predicate below states that "The agent
cannot suck the room-A from 1:00 to 5:00 a.m.":

 norm(room(roomA), time([1,5]), prohibition(suck)).

Table 6 highlights the episodes performed by the vacuum
cleaner in seven interactions in the environment with both
types of norms.

TABLE VI. PERFORMANCE IN A WORLD WITH NORMS OF TWO TYPES

P A Ep H

[roomA,dirty,dirty] right 2 2

[roomB,dirty,dirty] suck 1 3

[roomB,dirty,clean] left -1 2

[roomA,dirty,clean] right 2 4

[roomB,dirty,clean] left -1 3

[roomA,dirty,clean] suck 3 6

[roomA,clean,clean] right -1 5

The rows one and four of the table describe the behavior of
the agent in a period in which the norm of Type 4 was activated
(AC = True and EC=False). In row four, simultaneously with the
norm of prohibition, the norm of Type 2 was activated too. It is
noticed that in both case the agent was rewarded with two points,
according with the sanctions associated with the norm of
prohibition, which has priority on any norm of obligation. In row
six only the norm of Type 2 was activated and the agent was
rewarded with three points, according with the sanctions
associated with the norm of obligation. The four remaining rows
illustrate the cases where the two norms had expired and the
agent´s behavior was governed by the rules in the Permission
Group. All rows in the table that refer to the situation in which the
two norms were not activated, the vacuum cleaner was evaluated
according to the performance measure adopted for the agent in
the world without norms.

VI. CONCLUSIONS AND FUTURE WORKS

In this work we discuss the influence of the norm concepts
related to the reflex agent architectures in order to improve the
performance of the agents executing in an environment governed
by norms. In the original conception of reflex architecture, only
permission rules are considered. Now, in the proposed approach
two new sets of condition-action rules are incorporated in order to
define prohibition and obligation rules. Additionally, the logic to
implement the behavior of the simple reflex agents is presented.
The strategy selects the actions aiming to minimize the penalties
and to maximize the rewards. The case study simulates the
behavior of a simple reflex agent in a vacuum cleaner word
governed by obligation and prohibition rules. In this simple
scenario, the proposed approach involving the implicit definition
of norms as condition-action rules provides a rational behavior in
consistency with the agent architecture specifications. Future
works include the analysis of the agent behavior for another agent
architectures in the literature, considering the influence of norms
in the decision making process so that the agents can understand
their responsibilities and the responsibilities of the others.

REFERENCES

[1] Lind, J., 2001. Issues in agent-oriented software engineering, In: P.

Ciancarini e M. Wooldride (Eds.) Agent-Oriented Software Engineering,
LNCS 1957, Germany, Springer, p.45-58.

[2] Wooldridge, M. and Ciancarini, P., 2001. Agent-Oriented Software
Engineering: the State of the Art, In: M. Wooldridge and P. Ciancarini
(Eds.), Agent-Oriented Software Engineering, LNCS 1957, Berlin:
Springer, p. 1-28.

[3] Russell, S. and Norvig, P., 2003. Artificial Intelligence: A Modern
Approach, 2nd Ed., Upper Saddle River, NJ: Prentice Hall, ISBN 0-13-
790395-2.

[4] Wagner, G., 2003. The Agent-Object-Relationship Meta-Model: Towards
a Unified View of State and Behavior. Information Systems, v. 28, n.5, pp.
475–504.

[5] Wooldridge, M. and Jennings, N. R., 1995. Intelligent Agents: Theory and
Practice. Knowledge Engineering Review, Vol. 10, No. 2. Cambridge:
Cambridge University Press, 1995.

[6] López y López, F., 2003. Social Power and Norms: Impact on agent
behavior. PhD thesis, Univ. of Southampton, Faculty of Engineering and
Applied Science, Department of Electronics and Computer Science.

[7] Meneguzzi, F. and Luck, M., 2009. Norm-based behavior modification in
BDI agents. In: 8th Int. Conf. on Autonomous Agents and Multiagent
Systems (AAMAS 2009), Decker, Sichman, Sierra and Castelfranchi
(eds.), May, 10–15, 2009, Budapest, Hungary.

[8] Weiss, G., 1999. Multiagent Systems: A Modern Approach to Distributed
Artificial Intelligence. The MIT Press.

[9] Silva, V. T. , Braga. C. and Figueiredo, K., 2010. A modeling language to
model norms. The International Joint Conference on Autonomous Agents
and Multi-Agent Systems (AAMAS'2010), 9th. Proceedings of the
International Conference on Autonomous Agents and Multi-Agent
Systems, Toronto, Canadá.

[10] Meyer, J. J. and Wieringa, R. J., 1993. Deontic logic in computer science:
normative system specification, Deontic logic in computer science:
normative system specification, John Wiley and Sons Ltd. Chichester, UK.

[11] Oren, N., Panagiotidi, S., Vazquez-Salceda, J., Modgil, S., Luck, M., and
Miles, S., 2008. Towards a formalisation of electronic contracting
environments. In Proc. 12th COIN Workshop, pages 61–68.

