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Abstract— New methods are presented for the machine
recognition and learning of categories, patterns, and knowl-
edge. A probabilistic machine learning algorithm is de-
scribed that scales favorably to extremely large datasets,
avoids local minima problems, and provides fast learning
and recognition speeds. Templates may be created using
an evolutionary algorithm described here, constructed with
other machine learning methods, designed by a human
expert or synthesized using a combination of these methods.
Each template has a prototype and matching function which
can help improve generalization. These methods have appli-
cations in bioinformatics, financial data mining, goal-based
planners, handwriting recognition, machine vision, natural
language processing / understanding, search engines, strat-
egy such as business and games and voice recognition.
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1. Introduction
New machine learning methods and knowledge represen-

tation have sought to provide superior technology appli-
cations. In this regard, Machine Learning with Templates
pertains to recognizing categories and predictive modelling,
which can be important components of advanced software
technology.

Machine Learning with Templates was designed to use the
advantages of bottom-up and top-down methods. Over the
last few decades, some practitioners in AI, cognitive psychol-
ogy, machine learning and neurobiology have observed that
some cognitive tasks are better suited to bottom-up methods,
while other tasks are better performed by top-down methods
(See [1], [7], [10], [11], [18], [19], [20]).

An example of a bottom-up representation is a feedfor-
ward neural network that uses a gradient descent learning
algorithm ([1], [12]), applied to handwritten digit recognition
[17]. Other types of tasks use top-down methods. For exam-
ple, IBM’s Deep Blue software program plays chess [15].
Hammond’s CHEF program creates new cooking recipes by
adapting old recipes [23].

2. Summary of Useful Properties
Machine Learning with Templates has some useful prop-

erties.

1) Categorization is probabilistic and polymorphous (See
[5], [24], and pages 26-31 in [7]).

2) Learning algorithm 5.1 is extremely fast. It takes less
than one minute – for a 5 Ghz Intel Pentium 4 com-
puter – to build templates that successfully recognize
handwritten letters with an error rate less than 0.5%.
Some neural network training times for handwriting
recognition take considerably more time. Further, the
design of the neural network architecture may take
human researchers many weeks.

3) Learning algorithm 5.1 does not use a greedy optimiza-
tion algorithm such as gradient descent [1], so it avoids
local minima problems. On extremely large datasets,
locally greedy algorithms may not adequately train in
a practical amount of time.

4) Each template has a prototype and matching function
which can help improve generalization. In some appli-
cations, the use of prototypical examples and templates
designed by a clever human expert can substantially
increase machine learning accuracy and speed.

5) Recognition algorithm 4.1 is extremely fast. It scales
well on huge datasets and large numbers of cate-
gories because it exploits exponential elimination. As
an example, consider the task of recognizing Chinese
characters [25]. Some estimates state that there are 180
million distinct categories of Chinese characters. When
the learning algorithm builds a set of templates that on
average eliminate 1

3 of the remaining Chinese character
categories, then one trial of the recognition algorithm
on average uses only 46 randomly chosen templates
to reduce 180 million possible Chinese categories to
a single category. (46 is the largest natural number n
satisfying inequality 180, 000, 000 ∗ ( 2

3 )n < 2.)

6) Machine Learning with Templates is flexible enough to
create useful applications in bioinformatics, financial
data mining, goal-based planners, handwriting recogni-
tion, information retrieval, machine vision, natural lan-
guage processing / understanding and voice recognition.

3. Definitions and Template Structure
The space C is called a category space. Sometimes a space

is a mathematical set, but a space may have more structure
[21]. If the category space is about concepts that are living



Fig. 1: Shapes with loops and no loops

creatures, then typical members of C are the categories:
dog, cat, animal, mammal, lizard, starfish, tree, barley.
A different category space is the letters of our alphabet
{a, b, c, . . . , y, z}. Another abstract type of category space
may be the functional purpose of genes. One category is
any gene that influences eye color; another category is any
gene that codes for enzymes used in the liver; and another
category is any gene that codes for membrane proteins used
in neurons. In short, the structure of the category space
depends upon what set of possibilities that you want the
software to retrieve, recognize or categorize.

The example space E represents every conceivable exam-
ple. Consider a software program that recognizes handwrit-
ten letters used in the English language [17]. The example
space is every handwritten a; . . . ; and every handwritten z.
The set of training examples {e1, e2, . . . , em} is a subset of
the example space E .

The function G : E → P(C) is an ideal map or ideal
target function [20], where P(C) is the power set of C. In
this case, each example e in E can be classified as lying
in 0, 1 or multiple categories. The goal is to construct a
function g : E → P(C) so that g(e) = G(e) for every e ∈ E .
The example e = tiger lies in the categories cat, animal and
mammal. In other words, G(e) = {cat , animal ,mammal}.
For some applications, it may impossible or extremely
difficult to explicitly describe G with a mathematical formula
or representation. In other implementations, the results of the
template recognition algorithm can interpret e as having a
probability p(c) of lying in category c for each c ∈ C. In
these cases, the goal is to build g : E :→ [0, 1]C close to G.

Templates are similar to classifiers [20], but have addi-
tional structure. Templates are used to distinguish between
two different categories of patterns, information or knowl-
edge. For example, if the two different categories are the
letters a and m, then the shape has a loop in it is a useful
template because it distinguishes a from m. (See figure 1.)

Distinct from classifiers, templates have prototype and
matching functions. Let {T1, T2, . . . , Tn} denote a collection
of templates, called the template set. Associated to each
template, there is a corresponding template value function
Ti : E → V , where V is a template value space. There are
no restrictions made on the structure of V , which may be

a subset of the real line, a subset of the integers, a discrete
set, a manifold, or even a function space.

Each template Ti has a corresponding prototype function
Ti : C → P(V). The prototype function is constructed during
the learning phase. If c is a category in C, then Ti(c) equals
the set of prototypical template values that one expects for
all examples e that lie in category c. Intuitively, the prototype
function represents how template Ti generalizes to every
example e.

For each (template, category) pair, denoted as (Ti, c),
there is a matching function M(Ti,c) : V → S , where S
is the similarity space. The matching function determines if
the template value is similar enough to its set of prototypical
values. In general, the similarity space S is the range of the
matching function, and can be the unit interval [0, 1], a subset
of Rn, a discrete set, a manifold or a function space.

Example 3.1: Boolean Matching Function
Let V = {0, 1}. Choose similarity space S = {0, 1}. If
template value v1 is similar to its prototypical set Ti(c), then
M(Ti,c)(v1) = 1. If v1 is not similar enough to its prototyp-
ical set Ti(c), then M(Ti,c)(v1) = 0. Choose two categories
{c1, c2} and two templates {T1, T2}. Define prototypical
functions for T1 and T2 as T1(c1) = {1} and T1(c2) =
{0, 1}. T2(c1) = {0, 1} and T2(c2) = {0}. There are four
distinct matching functions M(T1,c1),M(T2,c1),M(T1,c2) and
M(T2,c2).

1) M(T1,c1)(0) = 0 AND M(T1,c1)(1) = 1
2) M(T2,c1)(0) = 1 AND M(T2,c1)(1) = 1
3) M(T1,c2)(0) = 1 AND M(T1,c2)(1) = 1
4) M(T2,c2)(0) = 1 AND M(T2,c2)(1) = 0

4. Template Recognition
The template recognition algorithm categorizes an exam-

ple e from E . When finished, for each category c in C, there is
a corresponding category score sc, which measures to what
extent the algorithm believes example e is in category c.

Algorithm 4.1: Template Recognition Algorithm
Allocate memory. Read learned templates
{T1, . . . , Tn} from long-term memory.

Initialize every category score sc to zero.
Outer loop: m trials.
{

Initialize set R equal to C.
Inner loop: choose ρ templates randomly.
{

Choose template Tk with probability pk.
For each category c ∈ R

if M(Tk,c)(Tk(e)) = 0, then set R := R− {c}.
(Remove category c from R.)

}
For each category c remaining in R, category
score sc := sc + 1.

}

Initialize A to the empty set.



For each category c in C, if ( sc
m

) > θ, A := A ∪ {c}.
The answer is A. The example e is in the
categories that are in A.

Comments on the Template Recognition Algorithm.
1) Each template Ti has a corresponding probability pi of

being chosen during the inner loop. m is the number
of trials in the outer loop. ρ is the number of templates
randomly chosen in each trial. θ is a number in the
interval [0, 1] that is the acceptable category threshold.

2) In some applications, the category threshold is not used.
Each value sc

m is interpreted as the probability that
example e lies in category c.

3) If only the best category is returned as an answer, rather
than multiple categories, then do this by replacing the
step For each category c in C, if ( sc

m ) > θ,
A := A ∪ {c}. Instead, search for the maximum
category score if there are a finite number of categories.
The answer is the category or categories that have the
maximum category score.

4) If template space V and similarity space S have more
structure, then the test if M(Tk,c)(Tk(e)) = 0 inside
the inner loop may be replaced by the test if Tk(e)
is not close to prototype value Tk(c). In
this case, matching function M(Tk,c) measures the
closeness of Tk(e) and Tk(c).

5) In some applications, the inner loop may be exited if
R has only one element left (i.e., |R| = 1) before all ρ
templates have been applied.

5. Template Learning
The initial part of the learning phase constructs the

templates from simple building blocks, using the examples
and the categories to guide the construction. Templates can
be built with evolution, another machine learning method [1],
by a human expert with domain expertise or by a combina-
tion of these methods. In the next section, evolution algo-
rithm 6.1 builds template value functions Ti : E → V from a
collection of building block functions {f1, f2, . . . , fr}. The
rest of the learning builds the matching functions M(Ti,c),
constructs the prototype functions Ti : C → P(V), computes
the probabilities pi, and in some cases sets the category
threshold θ.

The learning starts with a collection of training examples
along with their categories. Depending on the type of tem-
plate values, there are different methods for constructing the
prototype and matching functions M(Ti,c). For clarity, the
template values used are boolean (i.e., V = {0, 1}). In the
boolean case, M(Ti,c)(v) = 1 if v lies in the prototypical set
Ti(c); M(Ti,c)(v) = 0 if v does not lie in the prototypical
set Ti(c). In a more general description of the algorithm,
the template value space V may be the interval [0, 1], the

circle S1, or another manifold, a function space, a space of
algorithms or even a measurable space (e.g., [6], [22]). When
V is a metric space [21], the matching function M(Tk,c) may
use V’s metric to measure the closeness of Tk(e) and Tk(c)
as described in recognition comment 4.

Algorithm 5.1: Template Learning Algorithm
Allocate memory for the templates.
Read from memory template set {T1, T2, . . . , Tn}.
(The templates read are user-created, created by evolution or an
alternative method as in [16].)
Outer loop: iterate thru each template Tk.
{

Initialize X := Tk(c1).
Initialize A := X .
Inner loop: iterate thru each category ci.
{

Set Eci := all learning examples in ci.
Build prototype function Tk as follows:
Set Tk(ci) := ∪{v} for each v = Tk(e) and e ∈ Eci .
Set A := A ∪ Tk(ci).
Build matching function M(Tk,ci).
(See above for boolean case.)

}

If (A == X) remove Tk from the template set.
}
Store the remaining templates.
Set each probability pk = 1

m
where m is the

number of remaining templates.

Comments on the Template Learning Algorithm.
1) The Inner loop assumes that there are a finite number

of categories.
2) In some cases, instead of a category threshold, each

score sc is interpreted as the probability that e lies in
category c. In other cases, the category threshold θ is
empirically determined.

3) For a fixed template Tk, there should be at least one
pair of categories (ci, cj) such that Tk(ci) 6= Tk(cj).
Otherwise, template Tk can not separate any categories,
so Tk should be removed.

4) In some applications, non-uniform probabilities pk can
be selected based on template Tk’s ability to separate
categories, Tk’s computing speed or another property.

6. Designing Templates with Evolution
The use of evolutionary methods for optimizing processes

and algorithms was first introduced by [2], [3], [4] and [9]
and were further developed in [12], [13] and [14]. Building
upon this prior work, this section presents an evolutionary
method to design the template value functions Ti : E → V .

Building blocks are composed to build a useful element. In
some cases, the building blocks are a collection of functions
fλ : X −→ X , where λ ∈ Λ, X is a set and Λ is an
index set. In some cases, X is the set of computable real
numbers. In a handwriting recognition application, X is the



rational numbers and the binary functions f1 = +, f2 = −,
f3 = ∗, and f4 = / are sufficient for the building blocks.
The index set, Λ = {1, 2, 3, 4}, has four elements. In some
cases, the index set may be infinite. For example, consider
the functions f(k,b) : Z −→ Z such that f(k,b)(x) = pkx+ b
where b, k ∈ N and pk is the kth prime (i.e., p1 = 2, p2 =
3, . . . ).

Bit-sequences [b1b2b3, . . . bn], where bk ∈ {0, 1} en-
code functions composed from building block functions.
[10110] is a bit-sequence of length 5. The expression
{f1, f2, f3, . . . , fr} denotes the building block functions,
where r = 2K for some K. Then K bits uniquely represent
one building block function. The arity of a function is the
number of arguments that it requires. For example, the arity
of the real-valued quadratic function f(x) = x2 is 1. The
arity of the projection function, Pi : Xn −→ X , is n, where
Pi(x1, x2, . . . , xn) = xi.

Define the function ∨ as ∨(x, y, z) = x if (x ≥ y AND
x ≥ z), else ∨(x, y, z) = y if (y ≥ x AND y ≥ z), else
∨(x, y, z) = z. Consider the functions, {+,−, ∗,∨}. Each
sequence of two bits uniquely corresponds to one of these
functions: 00 ←→ + 01 ←→ − 10 ←→ ∗ 11
←→ ∨

Bit-sequence [00, 01] encodes the function
+(−(x1, x2), x3) = (x1 − x2) + x3, which has arity
3. For the general case, consider the building block
functions {f1, f2, f3, . . . , fr}, where r = 2K . Any bit-
sequence [b1 b2 . . . bK bK+1 bK+2 . . . b2K . . . baK+1

baK+2 . . . b(a+1)K ] with length (a + 1)K is a composition
of the building block functions, {f1, f2, f3, . . . , fr}. The
composition of these r building block functions are encoded
in a similar way, as described for functions {+,−, ∗,∨}.

The distinct categories are {C1, C2, . . . , CN}. The pop-
ulation size of each generation is m. For each i, where
1 ≤ i ≤ N , ECi

is the set of all learning examples that
lie in category Ci. The symbol γ is an acceptable level of
performance for a template. The symbol Q is the number
of distinct templates whose fitness must be greater than γ.
The symbol pcrossover is the probability that two templates
chosen for the next generation will be crossed over. The
symbol pmutation is the probability that a template will be
mutated.

The main evolution steps are summarized. For each
category pair (Ci, Cj), i < j, the building blocks
{f1, f2, f3, . . . , fr} are used to build a population of m
templates. This is accomplished by choosing m multiples
of K, {l1, l2, . . . , lm}. For each li, a bit sequence of length
li is constructed. These m bit sequences represent the m
templates, {T1

(i,j), T2
(i,j), T3

(i,j), . . . , Tm
(i,j)}. The super-

script (i, j) represents that these templates are evolved to
distinguish examples chosen from ECi and ECj . The fitness
of each template is determined by how well the template
can distinguish examples chosen from ECi

and ECj
. Using

crossover and mutation, the population of bit-sequences are

evolved until there are at least Q templates which have a
fitness greater than γ. When this happens, choose the Q best
templates from the population that distinguish categories Ci
and Cj . Store these Q best templates in a distinct set T of
templates that are used in the template learning algorithm.

Algorithm 6.1: Building Templates with Evolution
Set T equal to the empty set.
For each i in {1, 2, 3, . . . , N}
For each j in {i+ 1, i+ 2, . . . , N}
{

Initialize population A(i,j) = {T1
(i,j), . . . Tm

(i,j)}
Set q := 0.
while (q < Q)
{
Set G := ∅.
while (|G| < m)
{

For the next generation, randomly choose
templates Ta

(i,j) and Tb
(i,j) from A(i,j) where

the probability is proportional to the
template’s fitness.

Randomly choose a number r in [0, 1].

If (r < pcrossover), then crossover templates
templates Ta

(i,j) and Tb
(i,j).

Randomly choose numbers sa, sb in [0, 1].

If (sa < pmutation), mutate template Ta
(i,j).

If (sb < pmutation), mutate template Tb
(i,j).

Set G := G ∪ {Ta
(i,j), Tb

(i,j)}.
}
Set A(i,j) := G.

For each template Ta
(i,j) in A(i,j), evaluate

Ta
(i,j)’s ability to distinguish examples

from categories Ci and Cj .

Store this ability as the fitness of Ta
(i,j)

Set q equal to the number of templates
with fitness greater than γ.

}
Based on fitness, choose the Q best
templates from A(i,j) and add them to T .

}

Comments on Building Templates with Evolution.

1) The fitness φa of template Ta
(i,j) is computed by a

weighted average of three criteria.

a) The ability of a template to distinguish examples in
ECi from examples in ECj

b) The amount of memory used by the template.
c) The average amount of time to compute the template

value function on ECi
and ECj ..

A quantitative measure for criterion (a) depends on the
topology of the template value space V . If V = {0, 1},
the ability of template Ta(i,j) to distinguish examples
in ECi

from examples in ECj
equals



Fig. 2: Unbounded Crossover

1
|ECi

||ECj
|

∑
ej∈ECj

∑
ei∈ECi

|Ta(i,j)(ei) − Ta
(i,j)(ej)|.

When V 6= {0, 1}, then V has a metric D, which
measures the distance between two points in the
template value space V . In this case, the ability of
template Ta(i,j) to distinguish examples ECi

and ECj

equals
1

|ECi
||ECj

|
∑

ej∈ECj

∑
ei∈ECi

D(Ta(i,j)(ei), Ta(i,j)(ej)).

2) Figure 2 shows a crossover between bit-sequences A =
[a1a2a3 . . . aL] and B = [b1b2b3 . . . bM ]. L and M are
each multiples of K, where r = 2K and the functions
are {f1, f2, f3, . . . , fr}. In general L 6= M . Two natural
numbers u and w are randomly chosen such that 1 ≤
u ≤ L, 1 ≤ w ≤ M and u + M − w is a multiple
of K. The multiple of K condition assures that after
crossover, the length of each bit sequence is a multiple
of K. Each bit sequence after crossover is interpreted
as a composition of functions {f1, f2, f3, . . . , fr}. The
numbers u and w identify the crossover locations on A
and B, respectively. After crossover, bit-sequence A is
[a1a2a3 . . . aubw+1bw+2 . . . bM ], and bit-sequence B is
[b1b2b3 . . . bwau+1au+2 . . . aL].

3) Before mutation, the bit-sequence is [b1b2b3 . . . bn]. A
mutation randomly selects k and assigns bk the value
1− bk.

4) In the current generation, the collection
{φ1, φ2, . . . , φm} represents the fitnesses of the
templates {T1

(i,j), T2
(i,j), . . . , Tm

(i,j)}. The
probability that template Ta

(i,j) is chosen for the
next generation is φa

mP
k=1

φk

.

5) pcrossover usually ranges from 0.3 to 0.7.

6) pmutation is usually less than 0.1.

7. UCI Machine Learning Tests
Testing against the UCI Machine Learning Repository

http://archive.ics.uci.edu/ml/ is in progress.
A subsequent publication will cover these results.
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