
Towards Making SELinux Smart
Leveraging SELinux to Protect End Nodes in a Federated Environment

L. Markowsky
School of Computing and Information Science, University of Maine, Orono, ME USA

Abstract – This paper describes an intelligent, active,
real-time, risk adaptable access control (RAdAC) system
designed to extend the benefits of the National Security
Agency's Security-Enhanced Linux (NSA's SELinux) by
using SELinux not only as a secure base, but also as a
source of input features to a Support Vector Machine
(SVM) that will classify events/attacks in several
categories. By enhancing SELinux with intelligence, it is
hoped that the design will lead to real-time, non-signature
based defensive systems capable of detecting and taking
action against hostile users in the earliest stages of an
attack.

Keywords: support vector machine, machine learning, risk
adaptable access control, RAdAC, SELinux

1 Introduction
The transformative vision of the Department of

Defense's decentralized Global Information Grid (DoD's
GIG) and the nation's dependence on Supervisory Control
and Data Acquisition (SCADA) systems present
challenging security issues. Effective security in these and
many other federated environments is best implemented in
layers, employing intelligent security mechanisms both
centrally and on the end nodes.

The proliferation of cyberattacks will eventually
overwhelm signature and rule-based approaches [1], and
many critical applications and files must be permitted to
continue to run or exist even when under attack. Many
current solutions, however, rely on signature-based
detection, kernel modifications, prevention of selected
system functions while critical applications are running, the
deletion or encryption of sensitive material while selected
system functions are permitted, or computationally
expensive data mining for anomalies [2][3]. Each of these
approaches fails to meet at least one of the following
desirable goals: detection of zero-day attacks, continuous
operation of critical systems while under attack, widespread
applicability of the technique, and real-time protection.

New approaches using machine learning and a
focused set of input features [4] promise to revolutionize
defensive systems. Support Vector Machines (SVMs) are

among the best (and many believe are indeed the best) ‘off-
the-shelf’ supervised learning algorithms [5].

This paper describes a prototype of an intelligent,
active, real-time, risk adaptable access control (RAdAC)
system designed to extend the benefits of SELinux by using
SELinux not only as a secure base, but also as a source of
input features to an SVM that will classify events/attacks in
several categories. The system is designed to be integrated
into an end node in any environment, including end nodes
in federated environments such as DoD's GIG and SCADA
systems. By enhancing SELinux with intelligence, it is
hoped that the design will lead to real-time, non-signature
based defensive systems capable of detecting and taking
action against hostile users in the earliest stages of an
attack.

Specifically, the prototype of the defensive system is
designed to be:

• Integrable into Nearly Any Computerized Device –
The defensive system is designed to be integrated into
nearly any Linux-based end node (any Linux system
running a 2.6 kernel and using a filesystem with
extended attributes), including hand-held devices,
servers, workstations, notebooks, and dedicated single
purpose devices;

• Zero-Impact on Protected Applications and Files –
The defensive system requires no modifications
whatsoever to the software and files to be protected;

• Configurable for Critical Systems – The defensive
systems can be tailored to create a focused defensive
system for critical files and applications and for known
personnel;

• Risk Adaptable – The defensive system is an RAdAC
system in which an administratively-controlled
“Current Operational Need” and the attacks and events
detected by the system itself together designate the
current risk level;

• Modular – The defensive system is modular in order to
facilitate future extensions;

• Real-Time – By leveraging SELinux, the defensive
system is designed to be lightweight enough to run in
real time; and

• Compatible with National Security Goals – The
defensive system is designed to parallel the National
Security Agency (NSA) Information Assurance
Directorate’s vision for securing content in DoD’s
GIG.

2 Prototype – A smart, active,
SELinux-based RAdAC defensive
system

2.1 Modular defensive system design
The modular defensive system (Figure 1) features

machine learning to overcome the limitations of signature
and rule-based defenses and input from SELinux to enable
the system to run in real time.

Module 1 uses SELinux denials generated by local
and remote system requests to produce feature vectors
suitable as input to an SVM. Module 2 then uses a
previously trained SVM to classify attacks/events in several
discrete categories in real time. Module 3, a graded
response system, provides feedback to Module 2 and
selects a response appropriate for the detected event, the
history of events on that system, and the current operational
need.

Testing and analysis will include study of the input
feature set selection, the graded response system, and the
tradeoffs between error rates and performance (false
negative/positive rates vs. throughput and load on the
system).

2.2 Extending Module 1
Module 1 may be extended to protect critical

applications and files, to detect keyloggers, and to detect

attackers with physical access (Figure 2). To protect critical
applications and files, application-specific and file-specific
raw input would be used in addition to SELinux denials in
order to generate input feature vectors for the SVM. For
example, to configure the input feature extractor to protect
a web server, messages from Apache2, ModSecurity, and
messages specific to the protected web pages would be used
as raw input to the feature parser. Keystroke dynamics [6]
[7] may be used to implement detection of keyloggers and
attackers with physical access. While these extensions may
enhance security, the input feature extractor will be tied to
particular applications, files, and users, making this design
suitable only for critical systems.

2.3 Design goals
The design of the defensive system (Figure 1) adheres

to DoD’s Three Tenets of Cyber Security. First, SELinux’s
mandatory access control mechanism (MAC) limits “access
points to only those necessary to accomplish the mission
[thereby making] critical access points and associated
security less accessible to [the] adversary.” Second,
dynamically relabeling the SELinux context of a critical
application “moves it out of band” when under attack.
Third, the graded response system “denies [the] threat
capability [by imposing] appropriate penalties when [an]
attack is detected” [8].

Also, the design of the defensive system supports
users of end nodes in federated systems by protecting “edge
users who must operate across multiple domains and
communications paths, on less hardened networks, to reach
other tactical mission players, and to access protected core
information systems and data warehouses” [9]. The
defensive system achieves this goal by using a graded
response module that neither suspends critical applications
nor deletes critical and files – except in the most extreme
circumstances – enabling end node systems to prevent “an
attack from becoming successful while allowing the
executing software and associated data being protected to
remain operational and trustworthy” [10][11].

Figure 1. An Intelligent, SELinux-Based, RAdAC Defensive System

 Module 1: Input Feature Extraction Input Feature
 Vectors Risk Classification

 Module 2 Module 3 active response
 appropriate

 local and for the detected
 remote . attack/event
 requests : and the current

 operational
 need

 Current and Previous
 States of the Graded Current
 Response System Operational Need

SELinux or
SELinux Userspace

Object Manager

Protected
Applications

and Files

Input
Feature
Parser

SVM
Attack/Event

Classifier

Graded
Attack/Event

Response
System

Figure 2. An Application-Specific, Personnel-Specific,
Intelligent, SELinux-Based, RAdAC Defensive System

Figure 3. NSA's Vision for Access Control in DoD's GIG [12]

Finally, the design of the extended defensive system
(Figure 2) parallels the NSA Information Assurance
Directorate’s vision for securing content in DoD’s GIG
(Figure 3). Modules 2 and 3 are analogous to the Security
Risk Measurement Function and the Access Decision
Function of Figure 3, respectively; Keystroke Dynamics,
SELinux, and the Target Application messages in Module 1
are all analogous to the Characteristics of People (or other
entities) [13]. The modular design facilitates future
extensions that might incorporate Situational Factors or
automate the current Operational Need.

3 User interface
The user interface is database-driven website designed

to be friendly but restricted to authorized administrators.
The main menu consists of: System, SVM, Packet
Captures, Datasets, Analysis, Documentation, and Database
Administration.

3.1 System submenu
The System submenu provides forms that enable the

administrator to start or stop selected modules of the

defensive system (Figures 4 and 5). To facilitate testing and
analysis, the system permits Module 1 alone, Modules 1 and
2, or the entire defensive system to be run.

The System submenu consists of:

• Reset the SELinuxSVM Defensive System

• Start the SELinuxSVM Defensive System

• Stop the SELinuxSVM Defensive System

Figure 4. Starting the SELinuxSVM Defensive System

Operational
Need

Determination
Function

Decision
and

Supporting
Rationale

Operational
Need

Security Risk
Measurement

Function

Security Risk
Level

Digital Access Control Policies

 Access Authority Interaction
Access Request

Access
Decision
Function

Characteristics of People
Characteristics of IT Components

Characteristics of Content Objects
Environmental Factors

Situational Factors
Heuristics

 Module 1: Input Feature Extraction Input Feature
 Vectors Risk Classification

 Module 2 Module 3 active response
 appropriate

 local and for the detected
 remote . attack/event
 requests : and the current

 operational
 need

 Current and Previous
 States of the Graded Current
 Response System Operational Need

SELinux or
SELinux Userspace

Object Manager

Protected
Applications

and Files

SVM
Attack/Event

Classifier

Graded
Attack/Event

Response
System

Input Feature
Parser

Keystroke
Dynamics

Figure 5. Stopping the SELinuxSVM Defensive System

3.2 SVM submenu
The SVM submenu provides forms that enable the

administrator to select optimal SVM training parameters
and dataset features as well as forms to train and test the
SVM (Figure 6).

The SVM submenu consists of:

• Select Dataset Features Used to Train the SVM

• Select Parameters (Grid Search for Optimal C and
gamma)

• Train the SVM

• Classify Data Points

Figure 6. Training the Support Vector Machine

3.3 Packet captures submenu
The Packet Captures submenu provides forms to

enable the administrator to view, replay, and filter packet
capture files (Figure 7). These forms feature packet
captures collected during the 2009 and 2010 Northeast
Collegiate Cyber Defense Competitions (NECCDC), which
are discussed in Section 7.

The Packet Captures submenu consists of:

• Filter an NECCDC 2009 Packet Capture File

• Filter an NECCDC 2010 Packet Capture File

• Filter a PREDICT Packet Capture File

• Replay a Packet Capture File

• View a Packet Capture File

Figure 7. Filtering an Existing Packet Capture File

3.4 Datasets submenu
The Datasets submenu provides forms to enable the

administrator to generate a dataset from a packet capture
file, scale a dataset (Figure 8), and relabel and edit datasets.
Generating datasets from packet capture files is discussed
in Section 7.

The Datasets submenu consists of:

• Generate a Dataset from a Pcap File

• Scale a Dataset

• Relabel a Dataset

• Edit a Dataset

Figure 8. Scaling a Dataset

3.5 Analysis submenu
The Analysis submenu provides three performance

metrics, which are discussed in Section 7, and two methods
for the user to view results. “View Results” and “Plot
Results”, respectively, are tools to visualize and plot two-
dimensional slices of the SVM together with training or
testing datasets, regardless of the number of the input
features.

Figure 9. Module 1: Input Feature Extraction

The Analysis submenu consists of:

• Performance Metric 1: V-Fold Cross Validation
Accuracy

• Performance Metric 2: SVM Training Time

• Performance Metric 3: SVM Prediction Time

• View Results (in Two Dimensions)

• Plot Results (in Two Dimensions)

4 Module 1 – Input feature extraction
Module 1, the Input Feature Extractor, automatically

generates input feature vectors suitable for an SVM from
local and remote requests (Figure 9). Audispd (an audit
event multiplexer) and rsysogd (an extended message
logging utility) are configured to enter copies of SELinux
denials in a temporary MySQL database table called
selinux_audit_log (Figure 10). When an entry is made in
selinux_audit_log, a stored MySQL trigger parses the
message to create a more useful table entry in
selinux_denials (Figure 11). Offloading the parsing from
the system logging mechanism to MySQL is designed to
avoid a bottleneck, since parsing using rsyslogd involves
time-intensive regular expression pattern matching, which
is likely to be slower than MySQL stored programs.
Similarly, aggregated data is collected by MySQL stored
programs and entered in the selinux_aggregated table.

5 Module 2 – SVM attack/event
classifier

The SVM attack/event classifier uses input from
Module 1 and feedback from Module 3 in order to classify
events in several discrete categories:

• Origin – an authenticated user on a tty, a user on the
LAN, or a remote request;

• Number of Sources – single source vs. distributed
attack;

• Target – the defensive system itself, SELinux, the
operating system, the protected critical process, the
protected executable, or protected files associated with
the critical system;

Figure 10. The SELinux Audit Log Database Table

Figure 11. The SELinux Denial Database Table

Linux (Fedora) Server
Running SELinux
in Enforcing Mode

Apache2
Web Server

With ModSecurity
Web Application

Firewall

audispd
and rsyslogd

MySQL
Stored Programs

And Trigger

Aggregator

OpenSSH Server

BIND9
Domain Name

Server

local and
remote
requests

audit
events

records in temporary
database table:
selinux_audit_log

parsed records in
database table:
selinux_denials

parsed records in
database table:
selinux_denials

aggregated data in
database table:
selinux_aggregated

input
feature
vectors
(to SVM)

• Time Span – single burst, an hourly or daily recurring
event; and

• Type/Severity – single read attempt, a copy attempt
over the Internet, a malicious write attempt, an
unauthorized SELinux relabeling attempt, or an
unauthorized attempt to transition into the SELinux
sysadm_r role.

The SVM and kernel types are determined during
training. Default values are C-SVC (classifier) and the
radial basis function (RBF) or Gaussian kernel: exp(–γ *
║u – v║2). All SVM-related functions are implemented
using libsvm [14].

6 Module 3 – Graded attack/event
response system

The graded attack/event response system selects a
defensive action appropriate for the classification of the
attack/event as determined by the SVM, the current and
previous states of the graded response system, and the
current operational need. The response system selects
actions appropriate for the severity of the event:

• Minor Events : In response to minor events, actions
taken include alerting the administrator, filtering and
saving logs, and taking a snapshot of the process tree.

• More Severe Events : In response to more severe
events, actions taken include killing the offending
process and processes directly related to the offending
process, adding IPTables firewall rules, moving
attacked files to a secure location, and relabeling the
SELinux security context and Linux's discretionary
access control (DAC) of the applications and files
under attack.

• Extreme Events : Only in extreme circumstances (such
as evidence of an attacker with physical access to the
machine attempting to transition into the sysadm_r
role) will critical files be deleted or critical processes
terminated.

Two active responses of Module 3 specifically related
to SELinux are:

• Reconfiguring Linux’s DAC to dynamically manage
the flow of input to the defensive system, thereby
controlling the system’s throughput and load; and

• Relabeling the SELinux security context of the files
and processes under attack.

Relaxing the DAC causes SELinux’s MAC
mechanism to be consulted more frequently, increasing the
load on the operating system but also catching attempted

attacks at an earlier stage. If the load on the system is too
great, then the DAC labels are strengthened, allowing the
defensive system to continue to operate in real time. If, on
the other hand, a process or file is so critical that any
unauthorized attempt to read/write/execute that file would
indicate an attack, then the DAC is set to the most
permissive label (777) so that SELinux will be consulted
on every read/write/execute request of that file, detecting
the attacker at an earlier stage.

Relabeling the SELinux security context of critical
files and processes under attack creates a dynamically
changing protection boundary on the end node. In effect,
critical files and processes are moved out of band in order
to frustrate the attacker while simultaneously keeping the
files and processes trustworthy and operational.

The defensive system aggressively protects itself by
including the operating system, SELinux, and the system
itself in the classes of targets of detected attacks. Any
attempt to undermine the defensive system is be considered
to be an “extreme” event.

7 Testing and analysis

7.1 Packet capture files
The packet capture files provide raw input that can be

filtered and replayed to generate training and testing
datasets. Packet capture files collected during the 2009 and
2010 NECCDC are currently available via the defensive
system user interface. These defensive cybersecurity
competitions pitted “blue” teams, each of which protected a
group of servers and workstations from a “red” team
charged with attacking them. The “blue” teams were
prohibited from engaging in offense. A “black” team and
scoring engine generated friendly traffic and monitored the
services required of the blue teams' servers.

Since the IP addresses of the “blue”, “red”, and
“black” teams are known, it is possible to filter friendly and
hostile traffic using wireshark or tshark filters. In addition,
the target IP addresses of the filtered packets can be
rewritten to redirect the packets to a test host running the
defensive system prototype. The filtered packet capture
files can then be replayed to produce training and testing
datasets.

7.2 Training and testing datasets
Training and testing datasets are used to train and test

the SVM and graded response system. Dataset features
should be scaled to prevent one feature from dominating
and skewing the resulting SVM. The user interface also
permits the administrator to relabel a dataset to indicate
friendly traffic or hostile traffic in several classifications.

7.3 Time and performance metrics
Three performance metrics measure the accuracy and

time performance of the defensive system.

The V-Fold Cross Validation Accuracy metric
prevents overfitting, that is, prevents producing an SVM
that is too specific for a particular dataset. Since the
purpose of an SVM is to predict the classification of
unknown data points, an overfitted SVM is undesirable. V-
fold cross validation is a relatively simple concept:

In v-fold cross-validation, we first divide the training
set into v subsets of equal size. Sequentially one subset
is tested using the classifier trained on the remaining
(v – 1) subsets. Thus each instance of the whole
training set is predicted once so the cross-validation
accuracy is the percentage of data which are correctly
classified [15].

The SVM Training Time measures the time to
calculate the SVM from a dataset, and the SVM Prediction
Time measures the time to make a single prediction using
an existing SVM. These metrics are included to measure
the defensive system's ability to run in real time, since one
of the goals of the project is to attempt to design a non-
signature based defensive system that can run in real time
by leveraging existing security mechanisms and by
dynamically adjusting the load.

8 Future work
The prototype is currently being developed. First, a

complete implementation of Module 1 and preliminary
implementations of Modules 2 and 3 will be completed and
the NECCDC 2009 and 2010 packet captures will be used
to generate testing datasets. Following a complete analysis
of Module 1 using the preliminary prototype, Modules 2
and 3 will be fully implemented, the PREDICT packet
captures will be added to the files used to generate testing
datasets, and the entire defensive system will be tested and
analyzed.

9 Acknowledgments
The author thanks Dr. James Fastook, Dr. Phil

Dickens, Dr. Bruce Segee, and Dr. George Markowsky of
the University of Maine and Dr. Danny Kopec of the
CUNY (City University of New York) Graduate Center and
Brooklyn College for their invaluable advice and support.

10 References
[1] Y. Song, M. Locasto, A. Stavrou, A. Keromytis, and S.
Stolfo, “On the infeasibility of modeling polymorphic

shellcode.” Presented at the 14th ACM Conference on
Computer and Communications Security (CCS 2007),
October 2007.

[2] P. Kabiri and A. Ghorbani, “Research on intrusion
detection and response: A survey.” International Journal of
Network Security, Vol. 1, No. 2, pp. 84-102, September
2005.

[3] F. H. Smith, “Defense against root.” Presented at the
2007 International Conference on Security & Management,
June 2007.

[4] B. Thuraisingham, L. Khan, M. Kantarcioglu, and K.
Hamlen, “Assured information sharing for security and
intelligence applications.” Presented at the 2009 Cyber
Security and Information Intelligence Research Workshop
(CSIIRW’09), April 2009, pp.14-19.

[5] A. Ng, “Support vector machines.” Autumn 2008, p.1.
(http://www.stanford.edu/class/cs229/notes/cs229-
notes3.pdf)

[6] F. Bergadano, D. Gunetti, and C. Picardi, “User
authentication through keystroke dynamics.” ACM
Transactions on Information and System Security, Vol. 5,
No. 4, pp. 367-397, November 2002.

[7] E. Lau, X. Liu, C. Xiao, and X. Yu, “Enhanced user
authentication through keystroke biometrics.” Computer
and Network Security Final Project Report, MIT,
December 9, 2004.

[8] Software Protection Initiative (SPI). “The three tenets
of cyber security.” (http://spi.dod.mil/tenets.htm)

[9] Office of the Secretary of the Defense (OSD). Small
Business Innovation Research (SBIR) FY2009.2 Program
Description, April 20, 2009, p.5.

[10] D. Alberts and R. Hayes, Power to the Edge:
Command...Control...in the Information Age, 3rd Printing,
April 2005.

[11] Office of the Secretary of the Defense (OSD). Op.
Cit., p.29.

[12] R. McGraw, “Securing content in the Department of
Defense’s Global Information Grid.” Presented at the
Secure Knowledge Management Workshop, State
University of New York, Buffalo, September 2004.

[13] Ibid.

[14] C. Chang and C. Lin, “LIBSVM: A library for support
vector machines,” 2001. (http://www.csie.ntu.edu.tw/~cjlin
/libsvm)

[15] C. Hsu, C. Chang, and C. Lin, “A practical guide to
support vector classification,” May 19, 2009, p. 5.
(http://www.csie.ntu.edu.tw/~cjlin)

