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Abstract— In this article, a model free adaptive control with developed to tune all adjustable parameters inside MiFREN.
the estimated pseudo partial derivative (PPD) is introdiice Thus, the time variation of PPD can be directly estimated by
by multi-input fuzzy rules emulated network (MiFREN) forMiFREN according to our proposed cost function. Moreover,
a class of discrete-time systems. The resetting mechanigime resetting algorithm, which is needed for tuning PPD
can be relaxed in this adaptation scheme. Human knowlf7], can be relaxed in this work because of MIFREN'’s
edge about the controlled plant is rearranged to defineproperty [8] which is directly related on the change of input
the IF-THEN rules directly. Those fixed parameters arerespectively to the plant's output. All fixed parameters are
designed according to guarantee the convergence relatedesigned to guarantee the convergence which can affect the
on the controller performance. All adjustable parametersperformance of controller.
inside MiIFREN are tuned by the proposed on-line learn- This paper is organized as the follows. Section 2 intro-
ing algorithm. The design example and simulation resultsiuces the problem formulation and some details about the
demonstrate the performance of the proposed controlledynamic linearization equivalent model. The control law is
under the nominal system and system with disturbances. proposed with the estimated PPD based on MiFREN in
section 3. Section 4 presents the MIFREN configuration
Keywords: Fuzzy logic; Model-free adaptive controller; Pseudo- together with the parameters adaptation. The design exam-
partial derivative; Discrete-time ple and simulation results are demonstrated in section 5
. including the consideration of disturbance effect. Secto
1. Introduction

represents our conclusions.
Model free adaptive control (MFAC) has been continu-
ously developed for _several systems w!th unkn_own or iII.-2_ Problem Formulation
defined model especially for a class of discrete-time domain
[1], [2]. With out any mathematic model of the plant, a lin-  In this work, the nonlinear system for a class of discrete-
earization concept based on pseudo-partial derivativ®)PP time domain can be described by
is composed as the equivalent system. Due to the comparison
with other adaptive controllers, only real time measuredy(k +1) = F(y(k), - . y(k —ny), u(k), -, u(k = nu)),
data of the controlled plant is necessary to establish MFAC. @
Unlike model reference adaptive control based on neurd¥herey(k) € R andu(k) € R denote as the time index
networks, the off-line tuning phase can be excluded becaude System output and input, respectively with the unknown
the time-varying PPD can be tuned by real time measuremeffdersn, andn,,. The nonlinear functiorf(-) is definitely
data only [3]. unknown. Agcordlng to the conventional MFAC algorithms,
In general, The control law has been determined by PPi10se following assumptions are stated. _
under some necessary constrains and the resetting teeanig@SSuUmption 1The partial derivatives of () are continuous
It's clear that the control system performance depends oith respect to the control effort(k). o _
the accuracy of PPD estimation. The compensation systefSSumption 2:The nonlinear system described in (1) is
based on an artificial neural network has been discussed fifneralized Lipschitz. That means the positive constant
[4] by the additional of another control effort. By using the ! must be defined whetAy(k + 1)| < I[Au(k)|, when
on-off controller [5], the system dynamic can be considered ¥ (k+1) = y(k+1) —y(k) and Au(k) = u(k) —u(k—1).
as the unknown system when the switching sequence can be
adapted by a feedback controller. According to those upper assumptions, the following
According to the controlled plant, in practice, PPD seemdémMma can be obtained.
like the system sensitivity which can be understood by-eémma 1:The nonlinear system (1) satisfied assumption 1
human knowledge related on input-output behavior. In thigind 2 with| Au(k)| # 0 for time indexk, can be transformed
work, this knowledge can be reformulated into IF-THENiNto the equivalent compact form dynamic linearization
rules for an adaptive network called multi-input fuzzy rule (CFDL) as
emulated network(MiFREN) [6]. The on-line adaptation is Ay(k+ 1) = (k) Au(k), 2



when ®(k) denotes the pseudo partial derivative (PPD). Lemma 2:According to assumption 2 and the MiFREN’s
Proof: The proof is omitted here. Reader can refer to [3]property, the maximum of<i>(k) must be existed as
for more details and complete proof. &),k € N and both parameterg and A are designed

by following this relation

O
2\
The parameter PPD can be estimated by several learning 0<p< —, (9)
algorithm such as the modified projection. On the other hand, oum

in this work, PPD is determined by the adaptation networkhus, the control effort from (8) is bounded.
MiIFREN which can be operated under the human knowledge Proof: Substitutey(k) = ®(k—1)[u(k—1) —u(k—2)] —

according to the controlled plant. y(k — 1) into (8), we have
3. Control law wk) = u(k—1)—L2WEE=D 0y
2
In this section, the control effoet(k) will be formulated. ) A+ @2(k)
Let define the cost function as +/\ i éfgk) [r(k 1) 4 (k- ulk—2)
J(u(k)) = [r(k+1) =y (k+ 1) + Mu(k) —u(k=1)]%, (3)
-1
when ) is a designed weighting constant. By using (2), the y(k )}’
cost function can be rewritten as = Au(k)u(k —1) + &u(k), (10)
J(u(k)) = [r(k +1) —y(k) — ®(k)Au(k)]* + \[Au(k)]?.  where .
(4) Ay(k) =1 L2BOEk—1) (11)
Differentiating (4) with respect ta(k), we have A4 d2(k)
%((kk))) = ok + 1) — y(R)B(K) + 20°(K) Au(k) O s
Pk A
+2)\Au(k). 5) &ulk) = /\iT%[r(k+1)+<1>(k—1)u(k—2)+y(k—1)}.
Let Wb — ¢ thus (12)
du(k) ’ Substitute (9) into (13) and use assumption 3, it is clear tha
_ O(K)[r(k+1) —y(k)]
Au(k) = STy . (6) Ay (k) < 1. (13)
The idea control law can be obtained as O

‘I’Uf)[?;(’i;zk; vl 7y 4. MIFREN for pseudo partial derivative

In practice, the outpuj(k) can be measured b@(%) cannot 4.1 PPD based on MiFREN

be directly determined because of the unknown nonlinear MiIFREN is an adaptive network which can be operated
system f(:). To realize this control law,®(k) will be by human knowledge in the format of IF-THEN rules. The
estimated by MiFREN a@(k), thus, the control effort can design of IF-THEN rules is also a key of the performance.
be generated by The knowledge based on the controlled plant is roughly
. necessary. Due to (2), we can rearrange the relatich( b}
Rk —y®)] g a

A+ ®2(k) B = _Dvk) 14

u(k) =u(k—1) +

uk)=ulk—1)+p

whenp is a step-size constant. Boghand A\ are designed

parameters which can be given by the following lemmawhen Au(k) # 0.
to guarantee the convergencedfk). Before the proof of According to the upper relation, we can define some
control effort boundary, the follow assumption is necegsar example IF-THEN rules as the followings:

Assumption 3:The direction of ®(k) or sign{cb(k)} is o IF Ay(k) is Positive Large and\u(k — 1) is Positive
unknown but it doesn’t change such as s{gin(k)} = Large THI_EN(I)(IC.). should be Positive sma}II, -

A o IF Ay(k) is Positive Large and\u(k — 1) is Positive
sign{@(k - 1)}. small THEN & (k) should be Positive Large,
Remark:This assumption can be existed in several practical « ...,
systems such as the chemical process, robotic system and sa IF Ay(k) is Negative Large and\u(k — 1) is Positive
on. Moreover, this assumption will be proved again by the Large THEN<i>(k) should be Negative small,
experimental results next. .« ...,



o IF Ay(k) is Negative Large and\u(k — 1) is Negative whenp; is a Linear Consequence (LC) parameter for THEN-

small THEN & (k) should be Positive Large, part linguistic variabled;. The function F;(-) is the i*h
« IF Ay(k) is Negative Large andhu(k —1) is Negative rule relation determined by membership functions related
Large THEN®(k) should be Positive small. on the i*® rule. For example, according to Table 1, we

With this implementation, unlike the conventional algonits ~ have Fi(k) = upr(Ay(k))ppr(Au(k — 1)) at rule # 1,
to determined(k), the sign ofd(k) is directly determined Fis(k) = pns(Ay(k))ppr(Au(k — 1)) at rule # 16 and
by those IF-THEN rules. To simplify, those IF-THEN rules £25(k) = pnz(Ay(k))pnr(Au(k — 1)) at rule # 25. In

can be defined by Table 1. this work, we can set those membership functions and LC
parameters o3; by the human knowledge based on the
Ay(k) controlled plant. More explanations with example will be
PL| PS | AZ | NS | NL || Au(k—1) discussed in the next section.
Py Ps | Ci1 | Nig | Nog PL
Po | Pr | Ciz | Nur | N PS 4.2 Parameters adaptation
€3 €8 €13 €18 £923 AZ
Na | No | Cia | Pio | Py NS The on-line learning algorithm will be applied in this work
N5 | Nio [ €15 [ Poo | Pos NL for LC parameters. Thus, the estimated PPD in (15) can be
Table 1: IF-THEN rules rewritten by
25
The linguistic variables PL, PS, AZ, NS and NL denote as o(k) = 2} Fi(k)Bi(k), (16)
P

Positive Large, Positive Small, Almost Zero, Negative Smal
and Negative Large, respectively. In this case, the number avheng; (k) denotes the LC parameter for tié rule attime
IF-THEN rules is 25 and the relation the THEN-part can beindex k. To tune this parameter, the cost functidt®(k))

given by other linguistic variable d3; fori = 1,2,---,25.  can be given as the following:
The variables P, C and N stand for Positive, Close to zero and . 1 .
Negative, respectively. Unlike the conventional techeiqu J(@(k) = E[Ay(k) — ®(k)Au(k — 1)]?

whenAw nearly reaches to zero or stays in the range to AZ-
membership function, the designed parametisrdefined as
a small positive constant angd = eg = 13 = €14 = €23 =
€. Moreover, the parameters can be given by difference
values with the on-line learning algorithm which will be
discussed next. dJ(
According to those IF-THEN rule, the network architec- 3B;
ture of MIFREN can be constructed in Fig.1. The estimated

+3 18 (k) - Bk ~ 1), (17)

when+ is a positive defined constant. Determine the deriva-
tive with respect tq3;(k), thus, we obtain

(k) _ 9J (®(k)) 0 (k)
(k) od(k) 9Pi(k)
[y + Au?(k — 1)]® (k) — v®(k — 1)

— Ay (k) Au(k — 1)} Fi(k). (18)
According to gradient search, the tuning law can be defined
by
dJ(®(k))
Bk i(k+1) = 6;(k) —ng————-—-, 19

wherenj is the learning rate which can be designed as a
small positive constant. By using (19) and (18), the tuning
law can be formulated as

Bilk+1) = Bik) —ms|[y + Au’(k — 1)@ (k)

—y®(k — 1) — Ay(k)Au(k — 1)]Fi(k).
(20)

Figure 1: MIFREN networking structure.

) The designed parametefsand nz can effect to the con-
PPD or®(k) can be obtained by vergence of3. The following lemma introduces the relation
25 which guarantees the convergence of tuned paramgters
@(k) _ ZFi(Ay(k),Au(k —1))8, (15) Lemma 3:The LC parameterg; for i = 1,2,---, Np,
Pl when Np denotes the number of IF-THEN rules, are



bounded with the tuning law given by (20) when the learning [ .. N - N\ o
rate andy are all satisfied this following requirement |
2 0.7~ -
—_—. 21 e
Ry NS @D g :
Proof: Rearrange (20) in vector format, we obtain g
Bk+1) = [1—ngly+Au?(k=1)]||F(k)|* (k)] B(k)+&(k), ]
(22) 0.2 4
when¢(k) stands for the remain terms which are not relatec  **f ’
on f(k). Let A =1—ngly + Au>(k — D]|[F(®)|P(k), we = =5 — & e 5o i s =
have
Bk +1) = AB(k) + (k). (23) Figure 3: Membership function ahy(k).

[|F(K)||? (k) is the multiplication of two membership grades,
thus0 < ||F(k)|[>(k) < 1 and substitute with (21) it can be
obtained

A<l (24)
O

Member ship functions
)
o
T

The relation of the learning ratg,.;, and~y obtained
by this lemma can be used to support the design of bot .-
parameters which will be demonstrated in the next sectior .-

Furthermore, this result can be valid evAm(k — 1) =0 1
or the previous control effort is constant. o = 5 f A 2
d(k) .
MiFREN Figure 4: Membership function ahu(k — 1).
Zero order Zero order
v hold and A Au(k _ 1) Ay(k) hold and A
/} )\

r(l”—l)» Control law sl PLANT y(’; +1) According to (9) and (21), those designed parameters can

(®) u(k) be given ap =0.35, A = 0.75, ng = 1.5 andy = 0.1.

The adjustable parametefis can be defined by Table 2
regarding to the IF-THEN rules.

0 {order bora The tracking performance can be demonstrated in Fig. 5
as plots of the desired trajectoryk) and the system output
y(k). Finally, in Fig.6, the control effort is shown.

The demonstration of robustness is introduced next. In
this setup, the time varying disturbande(k) is added in
the original system (25) as

Figure 2: Control system configuration.

Furthermore, the block diagram illustrated in Fig. 2 rep-
resents the design concept and signal flow.

y(k+ 1) = sin(y(k)) + u(k)[5 + di (k) + cos(y(k)u(k))]-.

5. Design exampleand simulation results 27
The nonlinear discrete-time system which is selected tsuch as constant parameters afidl) are same as the
demonstrate the performance is described as previous test. Fig. 7 represents the tracking performande a

. time varyingd; (k). The control effortu(k) is illustrated in
(k +1) = sin(y(k) + u(k) + coswBu()], @5) g o™ *)
wheny (k) denotes the output and k) stands for the control ~ For more complicity, another disturbandg(k) is also
effort. The desired trajectomy(k) is given by this following:  included from the nominal system (25) as

r(k) = QSin(@). (26) y(k+1) = sin(y(k) +da(k))
| T +u(R)[5 + di (k) + cos(y (k)u(k))]. (28)
To design the controller which is suitable for the system
described in (25), in this case, we have the rangAgfand  With all same initial settings, the tracking performance an
Auw in +£2, thus the membership functions can be defined bylisturbances can be shown in Fig. 9 according the control
Fig. 3 and 4 forAy and Au, respectively. effort displayed in Fig. 10.



Ay(k) Auy
PL | PS | AZ | Ns | NL | (k-1

B1(1) | Be(1) | B1a(1) | Bie(1) | B21(1) PL
=3 =1.5 =0.2 =0 =
B2(1) | Bz(1) | Bi2(1) | Biz(1) | B22(1) PS
= = 2.5 =0.5 =0 =0
Bs(1) | Bs(1) | Bis3(1) | B1s(1) | B2s(1) AZ
=0.1 =0.1 =0.1 =0.1 =0.1
Ba(1) | Bo(1) | Bra(1) | Bio(1) | B2a(1) NS
= =0 =0.5 =2.5 =4
B5(1) | Bro(1) | Bis(1) | B20(1) | B2s(1) NL
=0 =0 =0.2 =1.5 =3

Table 2: IF-THEN rules with initial parametef$(1)
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Figure 5: Tracking performancgk) andr(k).
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Figure 6: Control effortu(k).
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Remark:Any information related on those disturbances iSFigure 7: Tracking performancg(k) andr(k) with distur-

not necessary to incorporate to the controller. That mdas t
original controller designed based on the knowledge about
the nominal plant is enough to handle those disturbance.

through this work.

6. Conclusion

banced; (k).

The model-free adaptive controller with the estimation ofReferences
pseudo-partial derivation is proposed in this article. €bt-

mation of PPD is implemented by a self-adjustable network
called MIFREN. The initial setting of MiIFREN's structure [
can be given by the human knowledge according to the con-

trolled plant and the relation of plant’s input-output viith

IF-THEN rules format. Moreover, all adjustable parameters
inside MiIFREN are begun by the knowledge of the plant
directly. That can improve the system performance at thé
beginning. Other fixed parameters are designed by proved
lemmas to guarantee the convergence. The simulation systdbh
demonstrates the design example and the effectiveness of
the proposed algorithm. Both nominal system and disturbeg,
plant have been considered to validate the controller perfo

mance and robustness.
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Figure 8: Control effortu(k) with disturbancet; (k).
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Figure 9: Tracking performancg k) andr(k) with distur-

bancesd; (k) andds (k).
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Figure 10: Control effortu(k) with disturbancesl; (k) and

da (k).



