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Abstract - Invasive Weed Optimization is a recently proposed 

population based meta-heuristic that mimics the colonizing 

action of weeds. In this article, an improvement to the 

classical algorithm has been proposed by introducing a 

constriction factor in the seed dispersal stage. Temporal 

Difference Q-Learning has been employed to adapt this 

parameter for different population members through the 

successive generations. The proposed memetic approach, 

named Intelligent Invasive Weed Optimization (IIWO) has 

been tested extensively on a set of 15 benchmark functions as 

well as the real world Circular Antenna Array Design 

problem. The results indicate the efficacy of our proposed 

approach. 

Keywords: Invasive Weed Optimization (IWO), Memetic 

Algorithms, Q-Learning 

1 Introduction 

Invasive Weed Optimization (IWO) [1] is a derivative-

free optimization technique that mimics the ecological 

behavior of weeds. This meta-heuristic algorithm has attracted 

researchers because of its reduced computational cost and 

efficiency in tackling real world optimization problems. 

However, it is not free from the problems of stagnation and 

pre-convergence. We attempt to improve the performance of 

the traditional IWO algorithm by incorporating a learning 

strategy in the weed population to efficiently disperse seeds 

throughout the problem space during the reproduction phase. 

Such a memetic learning technique helps in balancing the 

exploration and exploitation capabilities of the weeds which is 

necessary for providing precise solutions to global 

optimization problems.  

Coined by Dawkins[2] in 1976, the term “meme” refers 

to the basic unit of cultural transmission or imitation [1]. 

Memetic Algorithms (MAs) are population-based meta-

heuristic search algorithms that combine the composite 

benefits of natural and cultural evolution. Natural evolution 

realized by Evolutionary Algorithm (EA) works on the 

Darwinian principle of the struggle for existence, and aims at 

determining the global optima in a given search landscape. 

Traditional EA usually takes an excessively large time to 

locate a precise enough solution because of its inability to 

exploit local information. Cultural evolution, on the other 

hand, is capable of local refinement. MA captures the power 

of global search by its evolutionary component and local 

search by its cultural component. 

The early research on MA was confined in manual 

crafting of dedicated memes for a given problem.  A paradigm 

shift in research to adaptively select a meme from a pool of 

memes for application to an individual member of the 

population has been observed during the new millennium. The 

class of algorithms incorporating the adaptive selection of 

memes is referred to as Adaptive MA (AMA). AMAs 

“promote both cooperation and competition among various 

problem-specific memes and favors neighborhood structures 

containing high quality solutions” to be attained at low 

computational costs. Usually, the selection of the meme for an 

individual member of the population is done based on its 

ability to perform local improvement. 

Several variants of AMAs are found in the literature [4-

5]. The one we would use in this paper is Roulette-Choice 

strategy based Hyperheuristic AMA [4]. In the Roulette-

choice strategy, a meme Me is selected with probability 

relative to the overall improvement. Given that g(.) is a choice 

function, then the probability of selection of Me is  ������� �����	�
�   where n is the total number of memes 

considered. 

The AMA to be proposed, named Intelligent Invasive 

Weed Optimization (IIWO) includes an Invasive Weed 

Optimization (IWO) algorithm for global search and a 

Temporal Difference Q-Learning (TDQL) [6-7] for local 

refinement. A constriction factor has been included in the 

expression for standard deviation for dispersal of seeds. It is 

important to mention here that the constriction factors for all 

members of the population should not be equal for the best 

performance. A member with a good fitness should search in 

the local neighbourhood, whereas a poor performing member 

should participate in the global search. A good member thus 

should have small constriction factors, while worse members 

should have relatively large constriction factors. This is 

realized in the paper with the help of TDQL. 

The TDQL works on the principle of reward and 

penalty. It employs a Q-table to store the reward/penalty given 

to an individual member of the population. Members are 

assigned suitable values of their constriction factors from a 

given meme pool before participation in the evolutionary 

process. After completion of the evolutionary process, 

members are rewarded based on their fitness, and the 



reward/penalty given to the member  depending on the 

improvement/deterioration in fitness measures of the trial 

solution is stored in the Q-table. The process of evolution and 

Q-table updating thus synergistically helps each other, 

resulting in an overall improvement in the performance of the 

AMA. 

The rest of the paper is organized as follows. Sections 2 

and 3 provide an overview of the Classical IWO algorithm 

and Differential Q-Learning. Our proposed approach has been 

described in Section 4. Extensive experimental results 

comparing the IIWO algorithm with IWO as well as other 

popular meta-heuristic algorithms namely Particle Swarm 

Optimization (PSO) [8] and Differential Evolution (DE) [9-

10] have been presented in Section 5. Comparative results 

have been presented on a set of 15 benchmark functions as 

well as the Circular Antenna Array Design problem. 

2 An Outline of Iwo Algorithm 

2.1 Generation of Initial Population 

 IWO starts with a population of NP D-dimensional 

parameter vectors or weeds representing the candidate 

solutions. We shall denote subsequent generations in IWO by 

G = 0, 1, …, Gmax. We represent the i-th vector of the 

population at the current generation as:   

���� � ������� � ������ � ������ � � � ������� 
 The initial population (at G = 0) should cover the entire 

search space as much as possible by uniformly randomizing 

individuals within the search space constrained by the 

prescribed minimum and maximum bounds: 

���	 � ������	� �����	� �� � �����	� 
 and   ���� � �������� ������� ��� ������� 
So we may initialize the j-th component of the i-th vector as 

 ������ �������	  !"#$����%�&�' (������ ) �����	*���&�   
where !"#$����%�&�  is a uniformly distributed random 

number lying between 0 and 1 and is instantiated 

independently for each component of the i-th vector.  

2.2 Reproduction 

The plants will produce seeds depending on their relative 

fitness which will be spread out over the problem space. Each 

seed, in turn, will grow into a flowering plant. Thus, if Smax 

and Smin denote the number of seeds produced by plants with 

best and worst fitness respectively then seed count of plants 

will increase linearly from Smin to Smax depending on their 

corresponding fitness values. The number of seeds produced 

by the  i-th weed ����� is therefore given by, 

 

 

 

+��� � ,-����� ) .(�����*-����� ) -��	�� ' �/��� ) /��	�0����1� 
where -�����  and -��	��  are the maximum and minimum 

fitness values at the G-th generation of the weed colony. 

2.3 Dispersal of Seeds through Search Space 

The produced seeds are randomly distributed over the D 

dimensional search space by random numbers drawn from a 

normal distribution with zero mean but with a varying 

variance. However, the standard deviation (SD), �, of the 

normal distribution decreases over the generations from an 

initial value, �max, to a value, �min, and is determined by the 

following equation, 

2 � 34��� ) 44��� 5	 ' �2��� ) 2��	�  �2��	����6� 
where � is the SD at the current generation and Gmax is the 

maximum number of iterations while n is the non linear 

modulation index. This is the adaptation property of the 

algorithm. 

2.4 Competitive Exclusion 

 If a plant does not reproduce it will become extinct. 

Hence this leads to the requirement of a competitive 

exclusion in order to eliminate plants with low fitness values. 

This is done to limit the maximum number of plants in the 

colony. Initially fast reproduction of plants take place and all 

the plants are included in the colony. The fitter plants 

reproduce more than the undesirable ones. The elimination 

mechanism is activated when the population exceeds a 

stipulated NPmax. The plants and produced seeds are ranked 

together as a colony and plants with lower fitness values are 

eliminated to limit the population count to NPmax. This is the 

selection property of the algorithm. The above steps are 

repeated until maximum number of iterations is reached.. 

3 Differential Q-Learning 

 In classical Q-learning, all possible states of an agent 

and its possible actions in a given state are deterministically 

known. In other words, for a given agent A, let S1, S2,..., Sn, be 

n- possible states, where each state has m possible actions  a1, 

a2, …, am. At a particular state-action pair, the specific reward 

that the agent acquires is known as immediate reward. Let 

r(Si, aj) be the immediate reward that the agent A acquires by 

executing an action aj at state Si. The agent selects its next 

state from its current states by using a policy. The policy 

attempts to maximize the cumulative reward that the agent 

could acquire in subsequent transition of states from its next 

state. 

  



 
 

 

Let the agent be in state Si and is expecting to select the 

next best state. Then the Q-value at state Si due to action of aj  

is given by, 

 7(/�� "�* � !(/�� "�*  89:;�� 7� ��(/�� "�*� "������<� 
where 0<γ <1 and δ (Si,aj) denotes the next state due to the 

selection of action aj at state Si. Let the next state selected be 

Sk. Then Q(δ (Si,aj), a
/
)= Q(Sk, a

/
). Consequently selection of 

a
/ 

that maximizes Q(Sk, a
/
) and in turn Q(Si, aj) is an 

interesting problem.  

The classical Q-learning algorithm for deterministic 

state transitions starts with a randomly selected initial state. 

An action ‘a’ from a list of actions a1, a2, …, am is selected, 

and the agent because of this action receives an immediate 

reward r, and moves to the new state following the δ-

transition rule given in a table. The Q-value of the previous 

state due to the action of the agent is updated following the 

Q-learning equation. Now, the next state is considered as the 

initial state and the steps of action selection, receiving 

immediate reward, transition to next state and Q-update are 

repeated forever. 

Differential Q-learning is a modified version of Q 

learning. The Q-table update policy in Differential Q-learning 

is different from classical Q-learning.  It has the ability to 

remember the effect of past Q value of a particular state-

action pair while updating the corresponding Q value. The 

modified Q update equation is given by 

7(/�� "�* = �& ) >�' 7(/�� "�*  >' �!(/�� "�*  89:;�� 7� ��(/? � "�*� "��������@� 
The formula has the effect, that the Q-value Q(Si, aj) is 

incremented, when the action aj led to a state δ( Si,aj) in which 

there exists an action a', such that the best possible Q-value  

Q(δ (Si,aj), a
/
) in the next time step plus the achieved reward 

r(Si,aj)  is greater than the current value of Q(Si, aj). This is 

exactly the desired behaviour, because in such a situation, the 

old estimate of Q(Si, aj) was too pessimistic. The learning rate  

α determines the extent to which the newly acquired 

information will override the old information. A setting of α= 

0 makes the agent stop learning, while α=1 would make the 

agent consider only the most recent information. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The discount factor γ determines the importance of future 

rewards. A factor of 0 will make the agent "opportunist" by 

only considering current rewards, while a factor approaching 

1 will make it strive for a long-term high reward. If the 

discount factor is greater than or equal to 1, the Q values may 

diverge. 

 

4 IIWO: The Proposed Approach 

The modified algorithm is based on the concept that 

fitter individuals should be involved in local search while the 

remaining plants should search the problem space globally at 

a particular generation. The classical IWO algorithm neglects 

this fact by assuming the same standard deviation 2 for all the 

weeds in the seed dispersal stage. Although 2  is made to 

decay through the successive generations yet there is no 

provision for 2 to attain low values for fitter individuals at a 

particular generation to enable the local search procedure. 

Local search is initiated only when the generation count has 

increased to a large value to ensure a low value of 2. Thus in 

classical IWO, all the weeds undergo a gradual behavioral 

transformation from an explorative to an exploitive one.  In 

our proposed algorithm, we state that fitter individuals should 

behave in an exploitative manner through successive 

generations from the initialization of the weed colony and not 

wait for the standard deviation to reduce to low values. 

Following this concept we introduce a constriction factor, A in 

equation (3) as follows, 

 

2 � A' B34��� ) 44��� 5	 ' �2��� ) 2��	�  �2��	C���D� 
where A E �%�&� . The proper choice of parameter A  for 

different population members will help balance the 

explorative and exploitive capabilities of the individuals 

resulting in local refinement. 

The proposed approach employs a synergy of IWO and 

TDQL to realize an Adaptive Memetic Algorithm for 

achieving superior performance in global optimization 

problems. After each evolutionary step, the performance of 

the members is evaluated based on their fitness. High 

performing members are rewarded with positive immediate 

reward, whereas low performing members are penalized. The 

reward/penalty given to a member is stored in the Q-table 

Step 1   For each state S and action a, initialize 7�/� "� � %. 

Step 2   Observe the current state /� 
Step 3   REPEAT 

                 Select "� E �"�� "�� � � "�� and execute it. 

                 Receive an immediate reward �!(/� � "�*. 
                 Observe the new state /? = ��(/� � "�*. 
                 Update the table entry 7(/� � "�* by 

                7(/� � "�* = �& ) >�' 7(/� � "�*  >' �!(/� � "�*  89:;�� 7� ��(/� � "�*� "���. 
                 /� = /? 

             FOR EVER�

Algorithm 1. Differential Q-Learning Algorithm. 



using the TDQL learning rule. A meme pool for parameter A 

is maintained in order to select the control parameters for 

individual members of the population. The adaptive selection 

of memes is performed by a hyperheuristic choice-metric 

based selection from the meme pool. The process of selection 

of A from the meme pool, followed by one step of IWO and 

reward/penalty updating in the Q-table is continued until the 

condition for convergence of the AMA is satisfied. 

The proposed AMA algorithm accesses the Q-table to 

select the appropriate constriction factors of the individual 

members before evolution, and updates the Q-table after one 

evolution. The row indices of the Q-table represent states of 

the population members obtained from the last iteration of the 

IWO algorithm, in order of their fitness. The column indices 

which represent the actions performed by the members at a 

particular state correspond to uniform quantized values of the 

control parameter in the range (0, 1]. For example, let the 

parameter under consideration be A  with possible quantized 

values �A�� A�� � � A���'�Then 7�/�� A��  represents the total 

reward given to a member at state /�for selecting A � A� . The 

Roulette-Choice strategy is used to select a particular value of A  from the meme pool �A�� A�� � � A���� using the 7(/�� A�*� F � &�1� � �&% for the individual member located 

at state Si. 

The adaptation of 7�/�� A��  is done through a 

reward/penalty mechanism as used in classical TDQL. If a 

member of the population, residing at state Si on selecting A � A�  moves to a new state Sk by the evolutionary 

algorithm, and such state transition causes an improvement in 

fitness measure, then 7�/�� A��  is given a positive reward 

following the TDQL algorithm. If the state transition results in 

no improvement in fitness measure, then a penalty is given to 

the selected 7�/�� A�� . The penalty is introduced by a 

decrease in Q-value. Principles used in designing the AMA 

are introduced below. 

4.1 Initialization 

 The algorithm employs a population of NP D-

dimensional parameter vectors representing the candidate 

solutions. The initial population (at G = 0) should cover the 

entire search space as much as possible by uniformly 

randomizing individuals within the search space constrained 

by the prescribed minimum and maximum bounds. Thus the 

j-th component of the i-th population member is initialized 

according to (1) as mentioned in section 2. 

 The entries for the Q-table are initialized as small 

values. If the maximum Q-value attainable is 100, then we 

initialize the Q-values of all cells in the Q-table as 1. 

4.2 Adaptive Selection of Memes 

 We employ Fitness proportionate selection, also known 

as Roulette-Wheel selection, for the selection of potentially 

useful memes. A basic advantage of this selection mechanism 

is that diversity of the meme population can be maintained. 

Although fitter memes would enjoy much higher probability 

of selection, yet the memes with poorer fitness do manage to 

survive and may contribute some components as evolution 

continues. Mathematically, the selection commences by the 

selection of a random number in the range [0, 1] for each 

population member. Let us consider the selection from the A 

meme pool for a member of state /�' The next step involves 

the selection of A�such that the cummulative probability of 

selction of A � A�  through A�G�� is greater than r. 

Symbolically, 

�������H I�/�� A � A�� J ! K
�G�

�
�
H I�/�� A � A����������L�
��

�
�
 

 The probability of selection of A � A� from the meme 

pool �A�� A�� � � A����is given by 

  I(/�� A � A�* � M(NO�PQ*
� M�NO�PR�STRUS �����V� 

4.3 Invasive Weed Optimization 

The IWO algorithm used here employs reproduction, 

seed dispersal and competitive exclusion as introduced in 

Section 3. The basic difference of the current realization is the 

selection of constriction factor �A  from the meme pool 

adaptively by step 4.2 before invoking the IWO process. 

 

4.4 State Assignment 

 The population members are now ranked in increasing 

order of fitness and assigned corresponding states. 

4.5 Updating the Q-table 

 Let a member at state /� on selection of A�  moves to a 

new state Sk. The update equation for 7(/� � A�* is given by,       

7(/�� A�* = �& ) >�' 7(/�� A�*  >' �!(/�� A�* 
 89:;PW 7� ��(/? � A�*� A�������X� 

 The choice of the reward function is critical to the 

proper operation of the Q-learning mechanism. In case the 

seeds produced by a particular weed experience greater 

fitness in comparison to the parent weed then   !(/� � A�*   is set 

equal to the absolute difference of fitness of the parent weed 

and the fittest seed. Otherwise a penalty of –K is applied, 

however small. 
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Step 1     Set the generation number G=0  and randomly initialize a population of NP individuals,   

             ���Y� � ����� � ���� � � � �Z[��� with  ���� � ������� � ������ � ������ � � � ������� with   i= [1, 2,……., NP].              

 Initialize the Q-table: 7(/� � A�* � &�\] � �&� � � ^Y�"#$F � �&�� �&%� 
Step 2    Evaluate the population.  

Step 3    WHILE stopping criterion is not reached, DO 

 Step 3.1 Initialize !(/�� A�* � %�\] � �&�� � ^Y�"#$F � �&�� �&%�. 
Step 3.2 /*Adaptive Selection of memes*/ 

FOR i=1 to NP 

         Select A � A? �by Roulette-Wheel Selection. 

  END FOR 

                Step 3.3/*Reproduction*/ 
                                FOR i=1 to NP 

                                        Determine the number of seeds produced by the i-th population member at generation G,�

  END FOR 

       Step 3.4/*Seed Dispersal*/ 
                                FOR i=1 to NP 

                                      FOR  j=1 to +���  

                                        Generate a population of +���  seeds by, 

                                     _̀����� � �a������� � a������� � a������� � � � a�������� 
                                              where a?������ � �?����  !"#$#�%� 2� with k=[1,2,…, D] 

                                               and 2 � A' b�cdeG��cde f
	 �2��� ) 2��	�  �2��	 

                                      END FOR 

                           END FOR 

 Step 3.5/*Competitive Exclusion*/ 
  Evaluate the colony of seeds and weeds. 

FOR i=1 to NP 

                                      FOR  j=1 to +���  

                  IF .(_̀�����* J .(�����* 
                                                     ghiI � j�.(_̀�����* ) .(�����*�j 
                                                      IF ghiI k !�/� � A?� 
    !�/� � A?� � ghiI. 

                                                      END IF 

                                                ELSE !�/� � A?� � )l. 

                                                END IF 

                                      END FOR 

                                END FOR 

  IF ^Y  � +����
Z[�
� k ^Y��� 

                                   Form new weed colony with the first ^Y���weeds arranged in order of fitness. 

  END IF 

 Step 3.6 /*State Assignment*/ 
  Rank individuals in order of fitness and assign corresponding states. 

 Step 3.7/*Update of the Q-table*/ 
  FOR i=1 to NP 

          FOR j=1 to 10 

     IF !(/� � A�* m % 

                                                 7(/� � A�* = �& ) >�' 7(/� � A�*  >' �!(/� � A�*  89:;PW 7� ��(/?� A�*� A���� 
     END IF 

          END FOR 

  END FOR 

 Step 3.8/*Increment the generation count*/ G=G+1  

Step 4    END WHILE 

�

Algorithm 2. The Proposed IIWO Algorithm. 



 The next step involves the determination of the factor 9:;PW7� ��(/?� A�*� A���' A particular weed may enter the 

next generation along with multiple seeds or it may be 

completely eliminated. In case of multiple state acquisition in 

the next generation the factor is set equal to the maximum of 9:;PW7� ��(/?� A�*� A����for all /?  s. Otherwise it is set 

equal to 0 in case of plant exclusion. 

 The sections B-E are repeated till maximum number of 

iterations is reached. 

5 Experiments and Results 

5.1 Experimental Setup 

We evaluate the performance of our proposed IIWO 

algorithm on a test-suite of 15 benchmark functions with 

varying degrees of complexity. The functions have been 

chosen from the benchmarks proposed in the CEC 2005 

conference. Among them, the first five functions are unimodal 

while the remaining are multimodal. Due to lack of space we 

provide the results on the first 15 representative benchmarks. 

Details of the benchmark functions can be found in [12]. 

Results have been presented for 30 dimensions of all the 

benchmark functions. Each of the algorithms was run for a 

specified number of function evaluations: D*1e+05 where D 

is the dimension of the problem. The mean value and standard 

deviation (within parenthesis) of the error in fitness value over 

25 independent runs of each algorithm are presented in table 

2. 

Since all the algorithms start with the same initial 

population over each problem instance, we have used paired t-

tests to compare the means of the results produced by the best 

and second-best algorithm (with respect to their final 

accuracies) for each benchmark. We have also reported the 

statistical significance level of the difference of means of the 

two algorithms in the respective columns of Table 2 and 3. 

The best performance has been highlighted in each row. The † 

sign indicates the t value of 49 degrees of freedom is 

significant at a 5% tolerance level of significance by 2 tailed 

test. The ‡ sign indicates that it is non-significant. 

 Comparisons have also been presented for the real world 

Circular Antenna Array Design problem [11]. The mean and 

standard deviation results have been presented after 1.5e+05 

function evaluations. The optimization problem is briefly 

outlined below. 

 The array factor of a circular antenna array of N antenna 

elements placed on a circle of radius r in the x-y plane is 

given by: 

n-��� �Ho	p;q��Fr! bstu b�) ��	v	 f ) stu b�� ) ��	v	 ff
Z

�
�  w	� 
where   ��	v	 � 1x�# ) &� ^y  is the angular position of the n

th
 

element in the x-y plane, 

 r! � ^$ where k is the wave-number, d is the angular 

spacing between elements and r is the radius of the circle 

defined by the antenna array, 

 �� is the direction of maximum radiation, 

  is the angle of incidence of the plane wave, 

 o	 is the current excitation and 

 w	 is the phase excitation of the n
th

 element. 

 Here we shall try to suppress side-lobes, minimize 

beamwidth and achieve null control at desired directions by 

varying the current and phase excitations of the antenna 

elements. For a symmetrical excitation of the circular antenna 

array objective function as: 

z- � {n|�}~�� � o� w� }��{ {n|�}��� � o� w� }��{�  

 & �o|�}�� o� w�y  j}� ) }��~j
 H{n|�}? � o� w� }��{
	��

?
�
 

where }~�� is the angle at which maximum sidelobe level is 

attained, }��~  is the desired maxima, num is the number of 

null control directions and }?  specifies the k
th

 null control 

direction. 

 The first component attempts to suppress the sidelobes. 

Nowadays directivity has become a very useful figure of 

merit for comparing array patterns. The second component 

attempts to maximize directivity of the array pattern and the 

third component strives to drive the maxima of the array 

pattern close to the desired maxima. The fourth component 

penalizes the objective function if sufficient null control is not 

achieved. 

5.2 Other Competitive Algorithms 

  Differential Evolution and Particle Swarm 

Optimization has recently gained wide popularity as a fast and 

efficient optimization algorithm over continuous search 

spaces. We compare the performance of IIWO with classical 

IWO, DE and PSO. The parameter settings are given in the 

next page. 

5.3 Simulation Results 

The results obtained for the 15 benchmark problems as 

well as the real world optimization problem are tabulated 

below. 

Table 1. Parameter Settings 

PARAMETER VALUE 

Pop_size 50 

Inertia weight 0.25-0.4 

C1,C2 2 

F 0.5 

Cr 0.9 

�max 10% of search range 

�min 1% of search range 



Figure 1. Power radiation pattern. 

�

Table 2. Results for 30D Benchmark Problems 

F. IIWO IWO DE PSO 

1 
8.537e-01† 

(2.673e-01) 

4.977e+01 

(9.453e-00) 

7.229e+04 

(2.599e+03) 

1.523e+03 

(3.743e+02) 

2 
1.653e+00† 

(4.373e-01) 

8.251e+01 

(9.487e+00) 

7.176e+04 

(6.289e+03) 

8.578e+03 

(2.788e+02) 

3 
5.124e+05† 

(8.763e+04) 

2.899e+06 

(5.11e+05) 

6.286e+08 

(5.271e+07) 

8.176e+06 

(2.389e+05) 

4 
2.075e+00† 

(1.745e-02) 

1.667e+02 

(1.013e+01) 

4.389e+02 

(1.865e+01) 

4.391e+03 

(5.283e+02) 

5 
2.481e+03 

(8.351e+02) 

5.419e+01† 

(1.032e+01) 

2.747e+04 

(2.577e+03) 

1.011e+04 

(3.733e+02) 

6 
2.961e+02† 

(8.927e+01) 

3.766e+04 

(1.198e+04) 

3.281e+10 

(2.744e+09) 

5.789e+08 

(7.639e+07) 

7 
7.989e-02† 

(2.322e-03) 

1.836e+00 

(1.921e-01) 

2.836e+02 

(4.899e+01) 

3.137e+03 

(5.533e+02) 

8 
2.016e+01† 

(5.814e-05) 

2.094e+01 

(1.344e-04) 

2.115e+01 

(4.436e-02) 

2.291e+01 

(2.487e-01) 

9 
1.185e+02 

(4.013e+01) 

5.962e+01† 

(6.392e+01) 

7.321e+02 

(2.987e+01) 

7.491e+01 

(3.987e+01) 

10 
1.173e+02 

(1.332e+01) 

8.673e+01† 

(2.587e+01) 

5.287e+02 

(4.731e+01) 

1.928e+02 

(2.677e+01) 

11 
1.384e+01‡ 

(6.037e+00) 

1.437e+01 

(1.345e+00) 

9.663e+01 

(1.393e+00) 

2.349e+01 

(1.024e01) 

12 
5.196e+04† 

(9.723e+03) 

9.148e+05 

(7.285e+04) 

9.825e+05 

(1.281e+05) 

1.064e+05 

(3.112e+05) 

13 
3.052e+00† 

(1.021e+00) 

1.265e+01 

(1.626e+00) 

5.973e+02 

(1.385e+02) 

6.979e+00 

(2.562e+00) 

14 
1.126e+01† 

(2.311e-01) 

1.135e+01 

(3.156e-01) 

1.453e+01 

(1.121e-01) 

1.217e+01 

(1.452e+00) 

15 
4.013e+02‡ 

(6.724e+01) 

4.038e+02‡ 

(5.982e+01) 

8.832e+02 

(2.281e+01) 

6.747e+02 

(1.043e+02) 

 

Table 3. Objective Function Values for the Circular Antenna 

Array Design Problem 

IIWO IWO DE PSO 

-20.7013† 

(1.312e-01) 

-16.4178 

(4.293e+00) 

-13.9306 

(1.041e-01) 

-5.4852 

(3.543e-00) 

 

6 Conclusions 

In this paper we present a novel approach to improved 

global optimization by using a synergy of Invasive Weed 

Optimization and Temporal Difference Q-Learning to 

adaptively select memes (constriction factors) from the meme 

pool. To the best of our knowledge, such Machine Learning 

techniques have not been used previously to incorporate 

learning strategies in Evolutionary Algorithms. Experimental 

results conducted on a wide variety of benchmark functions as 

well as a real world optimization problem justifies our claim 

to the robustness and efficiency of the proposed approach. 
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