
An Intelligent Invasive Weed Optimization: a Q-learning

Approach

Abhronil Sengupta
 1
, Tathagata Chakraborti

 1
, Amit Konar

 1
, and Atulya K. Nagar

 2

1
 Department of Electronics and Telecommunication Engineering, Jadavpur University, Kolkata, India

2
 Department of Computer and Math Sciences, Liverpool Hope University,�United Kingdom

Abstract - Invasive Weed Optimization is a recently proposed

population based meta-heuristic that mimics the colonizing

action of weeds. In this article, an improvement to the

classical algorithm has been proposed by introducing a

constriction factor in the seed dispersal stage. Temporal

Difference Q-Learning has been employed to adapt this

parameter for different population members through the

successive generations. The proposed memetic approach,

named Intelligent Invasive Weed Optimization (IIWO) has

been tested extensively on a set of 15 benchmark functions as

well as the real world Circular Antenna Array Design

problem. The results indicate the efficacy of our proposed

approach.

Keywords: Invasive Weed Optimization (IWO), Memetic

Algorithms, Q-Learning

1 Introduction

Invasive Weed Optimization (IWO) [1] is a derivative-

free optimization technique that mimics the ecological

behavior of weeds. This meta-heuristic algorithm has attracted

researchers because of its reduced computational cost and

efficiency in tackling real world optimization problems.

However, it is not free from the problems of stagnation and

pre-convergence. We attempt to improve the performance of

the traditional IWO algorithm by incorporating a learning

strategy in the weed population to efficiently disperse seeds

throughout the problem space during the reproduction phase.

Such a memetic learning technique helps in balancing the

exploration and exploitation capabilities of the weeds which is

necessary for providing precise solutions to global

optimization problems.

Coined by Dawkins[2] in 1976, the term “meme” refers

to the basic unit of cultural transmission or imitation [1].

Memetic Algorithms (MAs) are population-based meta-

heuristic search algorithms that combine the composite

benefits of natural and cultural evolution. Natural evolution

realized by Evolutionary Algorithm (EA) works on the

Darwinian principle of the struggle for existence, and aims at

determining the global optima in a given search landscape.

Traditional EA usually takes an excessively large time to

locate a precise enough solution because of its inability to

exploit local information. Cultural evolution, on the other

hand, is capable of local refinement. MA captures the power

of global search by its evolutionary component and local

search by its cultural component.

The early research on MA was confined in manual

crafting of dedicated memes for a given problem. A paradigm

shift in research to adaptively select a meme from a pool of

memes for application to an individual member of the

population has been observed during the new millennium. The

class of algorithms incorporating the adaptive selection of

memes is referred to as Adaptive MA (AMA). AMAs

“promote both cooperation and competition among various

problem-specific memes and favors neighborhood structures

containing high quality solutions” to be attained at low

computational costs. Usually, the selection of the meme for an

individual member of the population is done based on its

ability to perform local improvement.

Several variants of AMAs are found in the literature [4-

5]. The one we would use in this paper is Roulette-Choice

strategy based Hyperheuristic AMA [4]. In the Roulette-

choice strategy, a meme Me is selected with probability

relative to the overall improvement. Given that g(.) is a choice

function, then the probability of selection of Me is ������� �����	�
� where n is the total number of memes

considered.

The AMA to be proposed, named Intelligent Invasive

Weed Optimization (IIWO) includes an Invasive Weed

Optimization (IWO) algorithm for global search and a

Temporal Difference Q-Learning (TDQL) [6-7] for local

refinement. A constriction factor has been included in the

expression for standard deviation for dispersal of seeds. It is

important to mention here that the constriction factors for all

members of the population should not be equal for the best

performance. A member with a good fitness should search in

the local neighbourhood, whereas a poor performing member

should participate in the global search. A good member thus

should have small constriction factors, while worse members

should have relatively large constriction factors. This is

realized in the paper with the help of TDQL.

The TDQL works on the principle of reward and

penalty. It employs a Q-table to store the reward/penalty given

to an individual member of the population. Members are

assigned suitable values of their constriction factors from a

given meme pool before participation in the evolutionary

process. After completion of the evolutionary process,

members are rewarded based on their fitness, and the

reward/penalty given to the member depending on the

improvement/deterioration in fitness measures of the trial

solution is stored in the Q-table. The process of evolution and

Q-table updating thus synergistically helps each other,

resulting in an overall improvement in the performance of the

AMA.

The rest of the paper is organized as follows. Sections 2

and 3 provide an overview of the Classical IWO algorithm

and Differential Q-Learning. Our proposed approach has been

described in Section 4. Extensive experimental results

comparing the IIWO algorithm with IWO as well as other

popular meta-heuristic algorithms namely Particle Swarm

Optimization (PSO) [8] and Differential Evolution (DE) [9-

10] have been presented in Section 5. Comparative results

have been presented on a set of 15 benchmark functions as

well as the Circular Antenna Array Design problem.

2 An Outline of Iwo Algorithm

2.1 Generation of Initial Population

 IWO starts with a population of NP D-dimensional

parameter vectors or weeds representing the candidate

solutions. We shall denote subsequent generations in IWO by

G = 0, 1, …, Gmax. We represent the i-th vector of the

population at the current generation as:

���� � ������� � ������ � ������ � � � �������
 The initial population (at G = 0) should cover the entire

search space as much as possible by uniformly randomizing

individuals within the search space constrained by the

prescribed minimum and maximum bounds:

���	 � ������	� �����	� �� � �����	�
 and ���� � �������� ������� ��� �������
So we may initialize the j-th component of the i-th vector as

 ������ �������	 !"#$����%�&�' (������) �����	*���&�
where !"#$����%�&� is a uniformly distributed random

number lying between 0 and 1 and is instantiated

independently for each component of the i-th vector.

2.2 Reproduction

The plants will produce seeds depending on their relative

fitness which will be spread out over the problem space. Each

seed, in turn, will grow into a flowering plant. Thus, if Smax

and Smin denote the number of seeds produced by plants with

best and worst fitness respectively then seed count of plants

will increase linearly from Smin to Smax depending on their

corresponding fitness values. The number of seeds produced

by the i-th weed ����� is therefore given by,

+��� � ,-�����) .(�����*-�����) -��	�� ' �/���) /��	�0����1�
where -����� and -��	�� are the maximum and minimum

fitness values at the G-th generation of the weed colony.

2.3 Dispersal of Seeds through Search Space

The produced seeds are randomly distributed over the D

dimensional search space by random numbers drawn from a

normal distribution with zero mean but with a varying

variance. However, the standard deviation (SD), �, of the

normal distribution decreases over the generations from an

initial value, �max, to a value, �min, and is determined by the

following equation,

2 � 34���) 44��� 5	 ' �2���) 2��	� �2��	����6�
where � is the SD at the current generation and Gmax is the

maximum number of iterations while n is the non linear

modulation index. This is the adaptation property of the

algorithm.

2.4 Competitive Exclusion

 If a plant does not reproduce it will become extinct.

Hence this leads to the requirement of a competitive

exclusion in order to eliminate plants with low fitness values.

This is done to limit the maximum number of plants in the

colony. Initially fast reproduction of plants take place and all

the plants are included in the colony. The fitter plants

reproduce more than the undesirable ones. The elimination

mechanism is activated when the population exceeds a

stipulated NPmax. The plants and produced seeds are ranked

together as a colony and plants with lower fitness values are

eliminated to limit the population count to NPmax. This is the

selection property of the algorithm. The above steps are

repeated until maximum number of iterations is reached..

3 Differential Q-Learning

 In classical Q-learning, all possible states of an agent

and its possible actions in a given state are deterministically

known. In other words, for a given agent A, let S1, S2,..., Sn, be

n- possible states, where each state has m possible actions a1,

a2, …, am. At a particular state-action pair, the specific reward

that the agent acquires is known as immediate reward. Let

r(Si, aj) be the immediate reward that the agent A acquires by

executing an action aj at state Si. The agent selects its next

state from its current states by using a policy. The policy

attempts to maximize the cumulative reward that the agent

could acquire in subsequent transition of states from its next

state.

Let the agent be in state Si and is expecting to select the

next best state. Then the Q-value at state Si due to action of aj

is given by,

 7(/�� "�* � !(/�� "�* 89:;�� 7� ��(/�� "�*� "������<�
where 0<γ <1 and δ (Si,aj) denotes the next state due to the

selection of action aj at state Si. Let the next state selected be

Sk. Then Q(δ (Si,aj), a
/
)= Q(Sk, a

/
). Consequently selection of

a
/

that maximizes Q(Sk, a
/
) and in turn Q(Si, aj) is an

interesting problem.

The classical Q-learning algorithm for deterministic

state transitions starts with a randomly selected initial state.

An action ‘a’ from a list of actions a1, a2, …, am is selected,

and the agent because of this action receives an immediate

reward r, and moves to the new state following the δ-

transition rule given in a table. The Q-value of the previous

state due to the action of the agent is updated following the

Q-learning equation. Now, the next state is considered as the

initial state and the steps of action selection, receiving

immediate reward, transition to next state and Q-update are

repeated forever.

Differential Q-learning is a modified version of Q

learning. The Q-table update policy in Differential Q-learning

is different from classical Q-learning. It has the ability to

remember the effect of past Q value of a particular state-

action pair while updating the corresponding Q value. The

modified Q update equation is given by

7(/�� "�* = �&) >�' 7(/�� "�* >' �!(/�� "�* 89:;�� 7� ��(/? � "�*� "��������@�
The formula has the effect, that the Q-value Q(Si, aj) is

incremented, when the action aj led to a state δ(Si,aj) in which

there exists an action a', such that the best possible Q-value

Q(δ (Si,aj), a
/
) in the next time step plus the achieved reward

r(Si,aj) is greater than the current value of Q(Si, aj). This is

exactly the desired behaviour, because in such a situation, the

old estimate of Q(Si, aj) was too pessimistic. The learning rate

α determines the extent to which the newly acquired

information will override the old information. A setting of α=

0 makes the agent stop learning, while α=1 would make the

agent consider only the most recent information.

The discount factor γ determines the importance of future

rewards. A factor of 0 will make the agent "opportunist" by

only considering current rewards, while a factor approaching

1 will make it strive for a long-term high reward. If the

discount factor is greater than or equal to 1, the Q values may

diverge.

4 IIWO: The Proposed Approach

The modified algorithm is based on the concept that

fitter individuals should be involved in local search while the

remaining plants should search the problem space globally at

a particular generation. The classical IWO algorithm neglects

this fact by assuming the same standard deviation 2 for all the

weeds in the seed dispersal stage. Although 2 is made to

decay through the successive generations yet there is no

provision for 2 to attain low values for fitter individuals at a

particular generation to enable the local search procedure.

Local search is initiated only when the generation count has

increased to a large value to ensure a low value of 2. Thus in

classical IWO, all the weeds undergo a gradual behavioral

transformation from an explorative to an exploitive one. In

our proposed algorithm, we state that fitter individuals should

behave in an exploitative manner through successive

generations from the initialization of the weed colony and not

wait for the standard deviation to reduce to low values.

Following this concept we introduce a constriction factor, A in

equation (3) as follows,

2 � A' B34���) 44��� 5	 ' �2���) 2��	� �2��	C���D�
where A E �%�&� . The proper choice of parameter A for

different population members will help balance the

explorative and exploitive capabilities of the individuals

resulting in local refinement.

The proposed approach employs a synergy of IWO and

TDQL to realize an Adaptive Memetic Algorithm for

achieving superior performance in global optimization

problems. After each evolutionary step, the performance of

the members is evaluated based on their fitness. High

performing members are rewarded with positive immediate

reward, whereas low performing members are penalized. The

reward/penalty given to a member is stored in the Q-table

Step 1 For each state S and action a, initialize 7�/� "� � %.

Step 2 Observe the current state /�
Step 3 REPEAT

 Select "� E �"�� "�� � � "�� and execute it.

 Receive an immediate reward �!(/� � "�*.
 Observe the new state /? = ��(/� � "�*.
 Update the table entry 7(/� � "�* by

 7(/� � "�* = �&) >�' 7(/� � "�* >' �!(/� � "�* 89:;�� 7� ��(/� � "�*� "���.
 /� = /?

 FOR EVER�

Algorithm 1. Differential Q-Learning Algorithm.

using the TDQL learning rule. A meme pool for parameter A

is maintained in order to select the control parameters for

individual members of the population. The adaptive selection

of memes is performed by a hyperheuristic choice-metric

based selection from the meme pool. The process of selection

of A from the meme pool, followed by one step of IWO and

reward/penalty updating in the Q-table is continued until the

condition for convergence of the AMA is satisfied.

The proposed AMA algorithm accesses the Q-table to

select the appropriate constriction factors of the individual

members before evolution, and updates the Q-table after one

evolution. The row indices of the Q-table represent states of

the population members obtained from the last iteration of the

IWO algorithm, in order of their fitness. The column indices

which represent the actions performed by the members at a

particular state correspond to uniform quantized values of the

control parameter in the range (0, 1]. For example, let the

parameter under consideration be A with possible quantized

values �A�� A�� � � A���'�Then 7�/�� A�� represents the total

reward given to a member at state /�for selecting A � A� . The

Roulette-Choice strategy is used to select a particular value of A from the meme pool �A�� A�� � � A���� using the 7(/�� A�*� F � &�1� � �&% for the individual member located

at state Si.

The adaptation of 7�/�� A�� is done through a

reward/penalty mechanism as used in classical TDQL. If a

member of the population, residing at state Si on selecting A � A� moves to a new state Sk by the evolutionary

algorithm, and such state transition causes an improvement in

fitness measure, then 7�/�� A�� is given a positive reward

following the TDQL algorithm. If the state transition results in

no improvement in fitness measure, then a penalty is given to

the selected 7�/�� A�� . The penalty is introduced by a

decrease in Q-value. Principles used in designing the AMA

are introduced below.

4.1 Initialization

 The algorithm employs a population of NP D-

dimensional parameter vectors representing the candidate

solutions. The initial population (at G = 0) should cover the

entire search space as much as possible by uniformly

randomizing individuals within the search space constrained

by the prescribed minimum and maximum bounds. Thus the

j-th component of the i-th population member is initialized

according to (1) as mentioned in section 2.

 The entries for the Q-table are initialized as small

values. If the maximum Q-value attainable is 100, then we

initialize the Q-values of all cells in the Q-table as 1.

4.2 Adaptive Selection of Memes

 We employ Fitness proportionate selection, also known

as Roulette-Wheel selection, for the selection of potentially

useful memes. A basic advantage of this selection mechanism

is that diversity of the meme population can be maintained.

Although fitter memes would enjoy much higher probability

of selection, yet the memes with poorer fitness do manage to

survive and may contribute some components as evolution

continues. Mathematically, the selection commences by the

selection of a random number in the range [0, 1] for each

population member. Let us consider the selection from the A

meme pool for a member of state /�' The next step involves

the selection of A�such that the cummulative probability of

selction of A � A� through A�G�� is greater than r.

Symbolically,

�������H I�/�� A � A�� J ! K
�G�

�
�
H I�/�� A � A����������L�
��

�
�

 The probability of selection of A � A� from the meme

pool �A�� A�� � � A����is given by

 I(/�� A � A�* � M(NO�PQ*
� M�NO�PR�STRUS �����V�

4.3 Invasive Weed Optimization

The IWO algorithm used here employs reproduction,

seed dispersal and competitive exclusion as introduced in

Section 3. The basic difference of the current realization is the

selection of constriction factor �A from the meme pool

adaptively by step 4.2 before invoking the IWO process.

4.4 State Assignment

 The population members are now ranked in increasing

order of fitness and assigned corresponding states.

4.5 Updating the Q-table

 Let a member at state /� on selection of A� moves to a

new state Sk. The update equation for 7(/� � A�* is given by,

7(/�� A�* = �&) >�' 7(/�� A�* >' �!(/�� A�*
 89:;PW 7� ��(/? � A�*� A�������X�

 The choice of the reward function is critical to the

proper operation of the Q-learning mechanism. In case the

seeds produced by a particular weed experience greater

fitness in comparison to the parent weed then !(/� � A�* is set

equal to the absolute difference of fitness of the parent weed

and the fittest seed. Otherwise a penalty of –K is applied,

however small.

+��� � ,-�����) .(�����*-�����) -��	�� ' �/���) /��	�0

Step 1 Set the generation number G=0 and randomly initialize a population of NP individuals,

 ���Y� � ����� � ���� � � � �Z[��� with ���� � ������� � ������ � ������ � � � ������� with i= [1, 2,……., NP].

 Initialize the Q-table: 7(/� � A�* � &�\] � �&� � � ^Y�"#$F � �&�� �&%�
Step 2 Evaluate the population.

Step 3 WHILE stopping criterion is not reached, DO

 Step 3.1 Initialize !(/�� A�* � %�\] � �&�� � ^Y�"#$F � �&�� �&%�.
Step 3.2 /*Adaptive Selection of memes*/

FOR i=1 to NP

 Select A � A? �by Roulette-Wheel Selection.

 END FOR

 Step 3.3/*Reproduction*/
 FOR i=1 to NP

 Determine the number of seeds produced by the i-th population member at generation G,�

 END FOR

 Step 3.4/*Seed Dispersal*/
 FOR i=1 to NP

 FOR j=1 to +���

 Generate a population of +��� seeds by,

 _̀����� � �a������� � a������� � a������� � � � a��������
 where a?������ � �?���� !"#$#�%� 2� with k=[1,2,…, D]

 and 2 � A' b�cdeG��cde f
	 �2���) 2��	� �2��	

 END FOR

 END FOR

 Step 3.5/*Competitive Exclusion*/
 Evaluate the colony of seeds and weeds.

FOR i=1 to NP

 FOR j=1 to +���

 IF .(_̀�����* J .(�����*
 ghiI � j�.(_̀�����*) .(�����*�j
 IF ghiI k !�/� � A?�
 !�/� � A?� � ghiI.

 END IF

 ELSE !�/� � A?� �)l.

 END IF

 END FOR

 END FOR

 IF ^Y � +����
Z[�
� k ^Y���

 Form new weed colony with the first ^Y���weeds arranged in order of fitness.

 END IF

 Step 3.6 /*State Assignment*/
 Rank individuals in order of fitness and assign corresponding states.

 Step 3.7/*Update of the Q-table*/
 FOR i=1 to NP

 FOR j=1 to 10

 IF !(/� � A�* m %

 7(/� � A�* = �&) >�' 7(/� � A�* >' �!(/� � A�* 89:;PW 7� ��(/?� A�*� A����
 END IF

 END FOR

 END FOR

 Step 3.8/*Increment the generation count*/ G=G+1

Step 4 END WHILE

�

Algorithm 2. The Proposed IIWO Algorithm.

 The next step involves the determination of the factor 9:;PW7� ��(/?� A�*� A���' A particular weed may enter the

next generation along with multiple seeds or it may be

completely eliminated. In case of multiple state acquisition in

the next generation the factor is set equal to the maximum of 9:;PW7� ��(/?� A�*� A����for all /? s. Otherwise it is set

equal to 0 in case of plant exclusion.

 The sections B-E are repeated till maximum number of

iterations is reached.

5 Experiments and Results

5.1 Experimental Setup

We evaluate the performance of our proposed IIWO

algorithm on a test-suite of 15 benchmark functions with

varying degrees of complexity. The functions have been

chosen from the benchmarks proposed in the CEC 2005

conference. Among them, the first five functions are unimodal

while the remaining are multimodal. Due to lack of space we

provide the results on the first 15 representative benchmarks.

Details of the benchmark functions can be found in [12].

Results have been presented for 30 dimensions of all the

benchmark functions. Each of the algorithms was run for a

specified number of function evaluations: D*1e+05 where D

is the dimension of the problem. The mean value and standard

deviation (within parenthesis) of the error in fitness value over

25 independent runs of each algorithm are presented in table

2.

Since all the algorithms start with the same initial

population over each problem instance, we have used paired t-

tests to compare the means of the results produced by the best

and second-best algorithm (with respect to their final

accuracies) for each benchmark. We have also reported the

statistical significance level of the difference of means of the

two algorithms in the respective columns of Table 2 and 3.

The best performance has been highlighted in each row. The †

sign indicates the t value of 49 degrees of freedom is

significant at a 5% tolerance level of significance by 2 tailed

test. The ‡ sign indicates that it is non-significant.

 Comparisons have also been presented for the real world

Circular Antenna Array Design problem [11]. The mean and

standard deviation results have been presented after 1.5e+05

function evaluations. The optimization problem is briefly

outlined below.

 The array factor of a circular antenna array of N antenna

elements placed on a circle of radius r in the x-y plane is

given by:

n-��� �Ho	p;q��Fr! bstu b�) ��	v	 f) stu b��) ��	v	 ff
Z

�
� w	�
where ��	v	 � 1x�#) &� ^y is the angular position of the n

th

element in the x-y plane,

 r! � ^$ where k is the wave-number, d is the angular

spacing between elements and r is the radius of the circle

defined by the antenna array,

 �� is the direction of maximum radiation,

 is the angle of incidence of the plane wave,

 o	 is the current excitation and

 w	 is the phase excitation of the n
th

 element.

 Here we shall try to suppress side-lobes, minimize

beamwidth and achieve null control at desired directions by

varying the current and phase excitations of the antenna

elements. For a symmetrical excitation of the circular antenna

array objective function as:

z- � {n|�}~�� � o� w� }��{ {n|�}��� � o� w� }��{�

 & �o|�}�� o� w�y j}�) }��~j
 H{n|�}? � o� w� }��{
	��

?
�

where }~�� is the angle at which maximum sidelobe level is

attained, }��~ is the desired maxima, num is the number of

null control directions and }? specifies the k
th

 null control

direction.

 The first component attempts to suppress the sidelobes.

Nowadays directivity has become a very useful figure of

merit for comparing array patterns. The second component

attempts to maximize directivity of the array pattern and the

third component strives to drive the maxima of the array

pattern close to the desired maxima. The fourth component

penalizes the objective function if sufficient null control is not

achieved.

5.2 Other Competitive Algorithms

 Differential Evolution and Particle Swarm

Optimization has recently gained wide popularity as a fast and

efficient optimization algorithm over continuous search

spaces. We compare the performance of IIWO with classical

IWO, DE and PSO. The parameter settings are given in the

next page.

5.3 Simulation Results

The results obtained for the 15 benchmark problems as

well as the real world optimization problem are tabulated

below.

Table 1. Parameter Settings

PARAMETER VALUE

Pop_size 50

Inertia weight 0.25-0.4

C1,C2 2

F 0.5

Cr 0.9

�max 10% of search range

�min 1% of search range

Figure 1. Power radiation pattern.

�

Table 2. Results for 30D Benchmark Problems

F. IIWO IWO DE PSO

1
8.537e-01†

(2.673e-01)

4.977e+01

(9.453e-00)

7.229e+04

(2.599e+03)

1.523e+03

(3.743e+02)

2
1.653e+00†

(4.373e-01)

8.251e+01

(9.487e+00)

7.176e+04

(6.289e+03)

8.578e+03

(2.788e+02)

3
5.124e+05†

(8.763e+04)

2.899e+06

(5.11e+05)

6.286e+08

(5.271e+07)

8.176e+06

(2.389e+05)

4
2.075e+00†

(1.745e-02)

1.667e+02

(1.013e+01)

4.389e+02

(1.865e+01)

4.391e+03

(5.283e+02)

5
2.481e+03

(8.351e+02)

5.419e+01†

(1.032e+01)

2.747e+04

(2.577e+03)

1.011e+04

(3.733e+02)

6
2.961e+02†

(8.927e+01)

3.766e+04

(1.198e+04)

3.281e+10

(2.744e+09)

5.789e+08

(7.639e+07)

7
7.989e-02†

(2.322e-03)

1.836e+00

(1.921e-01)

2.836e+02

(4.899e+01)

3.137e+03

(5.533e+02)

8
2.016e+01†

(5.814e-05)

2.094e+01

(1.344e-04)

2.115e+01

(4.436e-02)

2.291e+01

(2.487e-01)

9
1.185e+02

(4.013e+01)

5.962e+01†

(6.392e+01)

7.321e+02

(2.987e+01)

7.491e+01

(3.987e+01)

10
1.173e+02

(1.332e+01)

8.673e+01†

(2.587e+01)

5.287e+02

(4.731e+01)

1.928e+02

(2.677e+01)

11
1.384e+01‡

(6.037e+00)

1.437e+01

(1.345e+00)

9.663e+01

(1.393e+00)

2.349e+01

(1.024e01)

12
5.196e+04†

(9.723e+03)

9.148e+05

(7.285e+04)

9.825e+05

(1.281e+05)

1.064e+05

(3.112e+05)

13
3.052e+00†

(1.021e+00)

1.265e+01

(1.626e+00)

5.973e+02

(1.385e+02)

6.979e+00

(2.562e+00)

14
1.126e+01†

(2.311e-01)

1.135e+01

(3.156e-01)

1.453e+01

(1.121e-01)

1.217e+01

(1.452e+00)

15
4.013e+02‡

(6.724e+01)

4.038e+02‡

(5.982e+01)

8.832e+02

(2.281e+01)

6.747e+02

(1.043e+02)

Table 3. Objective Function Values for the Circular Antenna

Array Design Problem

IIWO IWO DE PSO

-20.7013†

(1.312e-01)

-16.4178

(4.293e+00)

-13.9306

(1.041e-01)

-5.4852

(3.543e-00)

6 Conclusions

In this paper we present a novel approach to improved

global optimization by using a synergy of Invasive Weed

Optimization and Temporal Difference Q-Learning to

adaptively select memes (constriction factors) from the meme

pool. To the best of our knowledge, such Machine Learning

techniques have not been used previously to incorporate

learning strategies in Evolutionary Algorithms. Experimental

results conducted on a wide variety of benchmark functions as

well as a real world optimization problem justifies our claim

to the robustness and efficiency of the proposed approach.

7 References

[1] Mehrabian, A. R. and Lucas, C. 2006. A novel numerical
optimization algorithm inspired from weed colonization.
Ecological Informatics 1 (2006), 355–366.

[2] Dawkins R. 1976. The Selfish Gene. Oxford University Press
(1976).

[3] Moscato, P. On Evolution, Search, Optimization, Genetic
Algorithms and Martial Arts: Towards Memetic Algorithms. In
Caltech Concurrent Computation Program (report 826).

[4] Ong, Y.-S., Lim, M.H., Zhu, N. and Wong, K.-W. 2006.
Classification of Adaptive Memetic Algorithms: A Comparative
Study. In IEEE Trans. on Systems, Man and Cybernetics 36, 1
(Feb. 2006).

[5] Kendall, G., Cowling, P. and Soubeiga, E. 2002. Choice
function and random hyperheuristics. In Proceedings of the 4th
Asia-Pacific Conferrence on simulated Evolution and Learning
(Singapore, Nov. 2002), 667-671.

[6] Watkins, C. 1989. Learning from delayed rewards. PhD
dissertation (King’s College, Cambridge, England, 1989).

[7] Watkins, C. and Dayan P. 1992. Q-learning. Machine Learning,
8, (1992), 279- 292.

[8] Kennedy, J. and Eberhart, R.C. 1995. Particle swarm
optimization. In Proceedings of IEEE International conference
on Neural Networks (1995), 1942-1948,

[9] Konar, A. and Das, S. 2006. Recent advances in evolutionary
search and optimization algorithms. In Proceedings of NGMS
2006 (BESU, Shibpur, Howrah, India, January 11-13, 2006).

[10] Storn, R. and Price, K. V. 1997. Differential Evolution–a simple
and efficient heuristic for global optimization over continuous
spaces. J. Global Optimization 11, 4 (1997), 341–359.

[11] Gurel, L. and Ergul, O. 2008. Design and simulation of circular
arrays of trapezoidal-tooth logperiodic antennas via genetic
optimization. Progress In Electromagnetics Research PIER 85
(2008), 243 - 260.

[12] P.N. Suganthan, N. Hansen , J.J. Liang, K. Deb, Y. P. Chen A.
Auger and S. Tiwari, “Problem Definitions and Evalution
Criteria for the CEC 2005 Special Session on Real-Parameter
Optimization,” Technical Report, Nanyang Technological
University, Singapore.

