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Abstract 
 

  Several problems in science and engineering admit 

computational solutions that are implementable over 

Grid computing platforms. One problem, frequently 

faced by implementers is how to divide and distribute 

the workload into chunks among the Grid workers, the 

so-called load scheduling problem. Most commonly 

researches have studied this phenomena departing from 

a statics approach. This assumption is not fully 

functional in Grid environment where the resources are 

non-dedicated. This research proposed a methodology 

to integrate a statistic heterogeneous platform 

scheduling with a dynamic resources prediction to 

distribute the workload depending on future available 

resources. The SCOW algorithm is integrated to a 

tendency-based method, a mechanism to predict CPU 

utilization. These implementations can retro aliment the 

statistic scheduling algorithm to produce accuracy 

estimation to the Grid resources changes. 
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1. Introduction 

   Divisible workload consists of workloads that can be 

partitioned into arbitrary tasks or chunks. These chunks 

in many cases are a core task that is repeated a number 

of times over different data. In single-program multiple-

data (SPMD) style, these tasks are implemented as 

nested sequences of do-loops around the core task. 

Usually, a master process scheduler the chunks across 

all participating workers (round of data installments), so 

the execution time of the entire load (makespan) is 

minimum. In this research, is assumed that the 

distribution process use the network connection in a 

sequential fashion [3]. Each data installment is followed 

by a receive and a compute operation, both performed 

by the receiving worker. The p workers can compute 

and receive the next tasks concurrently. In SPMD 

implementations, rounds are controlled by an external 

do-loop, which imposes the periodic character of the 

job's execution. The main parameters in a SPMD 

implementation are thus, the number of rounds, denoted 

below by m, the number of workers involved in the 

concurrent computations, denoted below by q and the 

chuck sizes xi to the worker i, 1≤ i ≤p. 

Two approaches dominate among the methodologies 

developed for scheduling of master-workers load. 

These methodologies are: steady state scheduling 

(SSS)[6, 7], and divisible load theory (DLT) [2, 3, 4.]. 

Both methodologies assume dedicated resources. These 

assumptions make the algorithm poor in real time 

environment such as Grid computing platforms with 

non-dedicated workers.  

 

   SCOW is a periodic user-level scheduler that tunes 

some selected parameters in a single-program multiple-

data implementation of a master-worker parallel 

solution. SCOW minimizes the job make-span under 

either maximal production per period, or perfect worker 

utilization. This paper presents the theoretical 

foundations of SCOW to maximal production per 

period improving with the mixed tendency based 

strategy for predicting the CPU utilization of workers.  

 

UMR [12] is a DLT multi-round algorithm for 

scheduling divisible loads on parallel computing 

systems. For homogeneous systems, the method uses 

uniform rounds meaning that in each round, each 

worker receives the same amount of work. There are 

two versions for the UMR idea. In the original, called 

UMR, the uniform amount of work is increased with 

each round. In a revised version, called UMR2, the 

uniform amount is increased or decreased depending on 

a parameter . If  > 1 the amount is increased, and 

decreased if  < 1. The UMR scheduler maintains 

perfect worker utilization throughout the execution, but 

if   < 1 there is no perfect worker utilization for 

URM2. Both methods model the system with a set of 

affine equations expressing execution times in terms of 

load. These equations are similar in spirit to the one 

used for SCOW. The model gives the amount of work 

for the first round and, through a recursive formula, the 

increments or decrements per round. Authors in [13]  

improve the UMR by predict the workers CPU 

utilization with a mixed tendency based strategy.  



 

 

This paper is organized as follows: Section 2 discusses 

the model. Section 3 describes the Theoretical 

Foundations of SCOW. Section 4 shows the Makespan 

minimization problem to develop a multiround divisible 

load scheduling algorithm for affine cost models. In 

section 5, the local tasks CPU utilization in a CPU 

prediction strategy is incorporated. SCOWS was 

evaluated with extensive simulation in Section 6 and 

the executions is discuss later in on section 7. 

Finally, Section 8 concludes the paper and discusses 

future directions. 

 

2. Model 

   As stated in 1, is assumed a total number X of core 

tasks. These core tasks can be agglomerated to produce 

different chunks sizes (portion of job). These jobs are 

independent in the sense that neither ordering between 

them, nor synchronization among them is necessary. 

 

2.1. Notation 

   As illustrated in Figure 1, the STARAFFINE network 

consists of p +1 processor, P= {P0,P1,P2, ..., Pp}. The 

master processor is denoted P0 while the p workers are 

labeled as Pi, 1≤ i ≤ p. There are p communication links 

li from the master P0 to each one of the workers Pi. Let 

xi be the number of units of core tasks sent to worker Pi. 

li (x) measures the time units that takes for a load x to 

be moved from the master to the i
th

 worker in affine 

mapping model. Each worker i performs two 

operations, as well. These operations are message 

reception and the actual execution of the job, referred as 

computation. The worker i spends wi(x) time units in 

executing x core tasks, wi(x) is supposed to be an affine 

mapping.  

 

 

 
Figure1. Heterogeneous Star Graph 

 

2.2. Architectural Model 

   As mentioned before, within a round, the master 

performs a sequence of data sends operations. Each 

data retrieval and send is followed by the data 

transmissions (l) over the network. Receive and 

compute (w) operations are performed by the workers 

upon the arrival of the data package. As a result, two 

major concurrent time segments are distinguished 

within a round: L, time spent by all network link in 

transmitting a round of data chunks; W maximum time 

spent by all workers in completing the reception of the 

data and execution of the corresponding data chunk. 

This research assumes the full overlap, single-port 

model. In this model, the master uses the network 

connection in a sequential fashion and the workers can 

perform the computation concurrently with data 

reception. One of the assumptions in this research is 

that the workers are non-dedicated processors. In Grid 

environmental the CPU power is distributed between 

local task and the Grid users.  

  

2.3. Affine mapping 

   This subsection is a brief discussion of the affine 

maps in which the mathematical model is based. The 

execution times to each operations of data 

communication, and tasks execution vary as an affine 

mapping on the number of agglomerated core tasks x. 

This is, 

li (x) = li x + Li                              (1) 

wi (x) = wi x + Wi                          (2) 

for 1≤ i ≤ p, where Li is the initial cost of establishing a 

connection between the master P0 and worker i, li is the 

send time associate to the data of a single core task; Wi 

is the overhead (startup time) of the computation in 

processor i and wi corresponds to the execution time of 

a single core task. 

 

3. Theoretical Foundations of SCOW  

  SCOW is designed as a periodic user-level scheduler 

for allocating agglomerated core tasks on parallel 

heterogeneous computing systems. This means that the 

mathematical framework behind SCOW is designed to 

return optimal constant values of the three parameter 

describe above m, q, and  xi  to a master-worker SPMD 

implementation; under some specific constraints. 

Indeed, SCOW minimizes the make-span of the job 

under either maximal production per round or perfect 

system utilization [1]. In this research, the maximal 

production per period SCOW ability is selected, refers 

to a distribution of agglomerated core tasks across the 

workers that maximizes the total number of tasks 

completed in a round. 

 

3.1. Maximal periodic production  

   In this section a brief description of scheduler theory 

is presented. The maximal production problem (MP) is 

a problem that imposes a restriction in the period to find 

the best approximation to the maximum number of task 

performed.  
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3.2. Problem 

   Suppose 
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where m is a number of round of data installments. The 

(MP) problem is stated as follows: Given a time period 

T, find a subset of q+1 workers such as 

Maximize    
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Subject to    

 

 

 

 

3.3. Solution 

   Let MAXTASK(T) be the optimal solution of the 

previous problem. The next theorem provides a close 

form solution for the MP problem in homogeneous 

platform. 

Theorem 1. Let T be a real nonnegative numbers, 

wi=w and li=l for all i and 
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Then 

                  MAXTASK(T) =
1max{0, ( )}qy l T

       (12) 

The previous theorem has a possible extension to the 

heterogeneous problems. At this moment the best 

solution is an approximation theorem. 

   

Theorem 2. Let T be a real nonnegative number, p be a 

positive integer. The method:  

1.  Sort the workers by increasing communication times. 

Renumber them  so that l1≤ l2 ≤ … ≤ lp. 

2. Let  yi=w
-1

(T) for 1 ≤ i ≤ p and q the largest index so 

that
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Figure 2. Gantt Char interpretation to the proposes 

solution  

 

The theorem 2 gives an approximate to the optimal 

solution to the MP problem. In section 4 this 

approximation is used as a restriction to formulate a 

makespan minimization problem.  

Figure 2 is a graphical representation to the solution 

given by the theorem 2. This solution follows the 

principle of bandwidth-centric [3, 4] because the 

priorities do not depend on the workers computation 

capabilities, only on their communication capabilities. 

Elsewhere, the number of select processor is directly 

affected by the computation capacity. In Grid 

computing the computational capacity depends on the 

local CPU utilization. This tendency is estimated using 

prediction strategy described in section 6  

 

3.4.  Last round modification 

   A common condition to get an optimal schedule is 

that all processor finishes the work at the same time. 

Modifications of the last round are used to impose the 

condition that all processors end operating at the same 

time[1]. This last round modification introduces a 

constant makespan reduction of 1/2T .  

 

4. Makespan minimization 

  The makespan minimization problem constrained to 

maximal production (MMP-MP) solution approxi-

mation and the workers order described in theorem 2 is 

formulate as follow:  

          

Minimize (T) = (M+1/2)T + l1(Y )  
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The problem is solved by Lagrange multipliers [9]. This 

solution is stated in the next theorem.  

 

Theorem 3: Let X  be a nonnegative real number and q 

a positive integer (q+1  p) . Then the solution to the 

MMP-MP problem without restriction 16 with q+1 

processor is, 
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the theorem 3 permit reformulates the MMP-MP, in the 

problem to finding the minimal value of (T) with i 

ranging over the subset the i that satisfying 

                              1 1( )i iw y T                            (20) 

5. CPU prediction strategy 

  In Grid computing typically the resources are non- 

dedicated, that is, the availability of the full processing 

speed is no guaranteed. Let S, the full processor speed.  

The local task execution generates a CPU utilization, if 

the Utilization can be predicted them the ActualSpeed 

can be computed as follows:  

             ActualSpeed = S * (100%-Utilization)      (21) 

This ActualSpeed is used as retro-alimentation 

information to the static scheduler. To predict the CPU 

load and utilization is used a time series prediction 

approach [10, 11] that has been probed the effective 

empirically. 

 

The idea of this prediction strategy is based on the 

assumption that if the current value increases, the next 

value will also increase, and if the current value 

decreases, the next value will also decrease.  

Formally, we can write:  

 
If (UT-1 < UT)  

     IncrementValueAdaptation() 

   PT+1 = UT + IncrementValue 

Else if(UT-1 > UT) 

   DecrementFactorAdaptation() 

   PT+1 = UT × IncrementValue 

 

Where,  

UT: the measured utilization at measurement T,  

PT+1: the predicted utilization for measurement UT+1,  

H: the number of historical data points used in the  

prediction. 

Increment value and decrement factor can be calculated 

as:   
Procedure: INNCREMENTVALUEADAPTATION()  
Mean = (1/n)∑i 

RealIncValue =UT – UT-1 ;  

NormalInc = IncrementValue + (RealIncValue –   

           IncrementValue) × AdaptDegree;  

if (UT < Mean)     

  IncrementValue = NormalInc; 

Else 

   PastGreater = (number of data points>UT)/H 

   TurningPointInc=IncrementValue×PastGreater 

   IncrementValue=Min(NormalInc,               

                  TurningPointInc) 

  

AdaptDegree can range from 0 to 1 and expresses the  

adaptation degree of the variation. The best values for  

input parameters such as  AdaptDegree and  

DecrementFactor are determined empirically. 

 

6. Experiment 

  In table 1 the group of numerical values selected to 

perform the simulation is presented. The values are 

used to predict the corresponding SCOW-MP and UMR 

version develop in [13]. These predictions are made 

using the mathematical equations underlying them  and 

a random variable to CPU simulation is also generated 

using gamma function  

 

Table 1: Simulation Parameter 

 

Parameter Values 

Number of workers p=10,20,30,40 

Agglomerated tasks X = 1000 

Computational rate Si=.5+randonvariavle  

wi = 1/Si 

randonvariavle is also generated using 

gamma function with 

fixed arrival time 

landa=.5 and beta = 1 

Transfer rate Bi = 1.1p to 1.1p + 1; 

 li =1/b 

Computational latency cLati = 0:03; Wi = cLat; 

Communication latency nLati = 0:03; Li = nLat 

 

 

7. Result  

  It is worth remarking that UMR methods and the 

optimal number of rounds, and perform no 

discretization on the amount of work per round. Thus, 

in order to make the comparisons possible, SCOW 

discretizations are made on the number of rounds and 

not on the amount of agglomerated tasks per round. The 

randomly chosen values are shown in Table1. 



 

 

The numerical prediction of the performances of UMR 

and SCOW are shown in Table 2. 

 

Table 2: Comparison Between SCOW and UMR 

 SCOW-MP UMR UMR2 

Normalized 

Make-span 

 

1.000 1.012 1.032 

Normalized 

Workers CPU 

Utilization 

1.000 1.008 1.009 

 

Table 2 shows the comparison between SCOW-MP, 

UMR and UMR2, averaged over similar (in the number 

of workers) experiment. All the scheduler was 

improved by a last round modification in order keep 

consistent the comparison. 

The first row shows the ratio of make-span achieved for 

the 3 schedulers. The second row shows the similar 

ratio for the system utilization, but at this time the ratio 

is inverted, because the maximal values is the best. The 

main observation is that SCOW-MP outperforms UMR 

and UMR2 on average. The SCOW-MP is the best 

algorithm in Make-span and system utilization.  

 

8. Conclusions 

  Many researches in maximal throughput in lineal 

model can be found in the literature. These results are 

developed to the problem formulated for fixed sizes 

tasks. In this research the problem is exported to affine 

model and in contrast the goal is maximize the 

production, that is, the total number of tasks processed. 

 

The contribution of this research includes an optimal 

solution in the homogeneous case and approximate 

solution in the heterogeneous case, integrate with a 

CPU prediction strategy to perform a scheduler reliable 

in a Grid environment. The makespan and system 

utilization of  two algorithms is also compared.  

 

The results show that the proposed SCOW-MP 

algorithms outperform the competitors. Future work 

includes the development of a strategy to predict the 

network utilization; due to SCOW is a bandwidth-

centric algorithm.   
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