

Adaptive Divisible Load Scheduling in

Computational Grids
Luis de la Torre

1
 Héctor de la Torre

2

1
Science and Technology School, Universidad Metropolitana, San Juan, PR

2
School of Engineering, Turabo University, Gurabo, PR

Ana G. Mendez University System.

del1@suagm.edu, hectorfabio50@hotmail.com

Abstract

 Several problems in science and engineering admit

computational solutions that are implementable over

Grid computing platforms. One problem, frequently

faced by implementers is how to divide and distribute

the workload into chunks among the Grid workers, the

so-called load scheduling problem. Most commonly

researches have studied this phenomena departing from

a statics approach. This assumption is not fully

functional in Grid environment where the resources are

non-dedicated. This research proposed a methodology

to integrate a statistic heterogeneous platform

scheduling with a dynamic resources prediction to

distribute the workload depending on future available

resources. The SCOW algorithm is integrated to a

tendency-based method, a mechanism to predict CPU

utilization. These implementations can retro aliment the

statistic scheduling algorithm to produce accuracy

estimation to the Grid resources changes.

Kewords: Scheduling, grid computing, divisible load,

divisible task, makespan, Throughput

1. Introduction

 Divisible workload consists of workloads that can be

partitioned into arbitrary tasks or chunks. These chunks

in many cases are a core task that is repeated a number

of times over different data. In single-program multiple-

data (SPMD) style, these tasks are implemented as

nested sequences of do-loops around the core task.

Usually, a master process scheduler the chunks across

all participating workers (round of data installments), so

the execution time of the entire load (makespan) is

minimum. In this research, is assumed that the

distribution process use the network connection in a

sequential fashion [3]. Each data installment is followed

by a receive and a compute operation, both performed

by the receiving worker. The p workers can compute

and receive the next tasks concurrently. In SPMD

implementations, rounds are controlled by an external

do-loop, which imposes the periodic character of the

job's execution. The main parameters in a SPMD

implementation are thus, the number of rounds, denoted

below by m, the number of workers involved in the

concurrent computations, denoted below by q and the

chuck sizes xi to the worker i, 1≤ i ≤p.

Two approaches dominate among the methodologies

developed for scheduling of master-workers load.

These methodologies are: steady state scheduling

(SSS)[6, 7], and divisible load theory (DLT) [2, 3, 4.].

Both methodologies assume dedicated resources. These

assumptions make the algorithm poor in real time

environment such as Grid computing platforms with

non-dedicated workers.

 SCOW is a periodic user-level scheduler that tunes

some selected parameters in a single-program multiple-

data implementation of a master-worker parallel

solution. SCOW minimizes the job make-span under

either maximal production per period, or perfect worker

utilization. This paper presents the theoretical

foundations of SCOW to maximal production per

period improving with the mixed tendency based

strategy for predicting the CPU utilization of workers.

UMR [12] is a DLT multi-round algorithm for

scheduling divisible loads on parallel computing

systems. For homogeneous systems, the method uses

uniform rounds meaning that in each round, each

worker receives the same amount of work. There are

two versions for the UMR idea. In the original, called

UMR, the uniform amount of work is increased with

each round. In a revised version, called UMR2, the

uniform amount is increased or decreased depending on

a parameter . If  > 1 the amount is increased, and

decreased if  < 1. The UMR scheduler maintains

perfect worker utilization throughout the execution, but

if  < 1 there is no perfect worker utilization for

URM2. Both methods model the system with a set of

affine equations expressing execution times in terms of

load. These equations are similar in spirit to the one

used for SCOW. The model gives the amount of work

for the first round and, through a recursive formula, the

increments or decrements per round. Authors in [13]

improve the UMR by predict the workers CPU

utilization with a mixed tendency based strategy.

This paper is organized as follows: Section 2 discusses

the model. Section 3 describes the Theoretical

Foundations of SCOW. Section 4 shows the Makespan

minimization problem to develop a multiround divisible

load scheduling algorithm for affine cost models. In

section 5, the local tasks CPU utilization in a CPU

prediction strategy is incorporated. SCOWS was

evaluated with extensive simulation in Section 6 and

the executions is discuss later in on section 7.

Finally, Section 8 concludes the paper and discusses

future directions.

2. Model

 As stated in 1, is assumed a total number X of core

tasks. These core tasks can be agglomerated to produce

different chunks sizes (portion of job). These jobs are

independent in the sense that neither ordering between

them, nor synchronization among them is necessary.

2.1. Notation

 As illustrated in Figure 1, the STARAFFINE network

consists of p +1 processor, P= {P0,P1,P2, ..., Pp}. The

master processor is denoted P0 while the p workers are

labeled as Pi, 1≤ i ≤ p. There are p communication links

li from the master P0 to each one of the workers Pi. Let

xi be the number of units of core tasks sent to worker Pi.

li (x) measures the time units that takes for a load x to

be moved from the master to the i
th

 worker in affine

mapping model. Each worker i performs two

operations, as well. These operations are message

reception and the actual execution of the job, referred as

computation. The worker i spends wi(x) time units in

executing x core tasks, wi(x) is supposed to be an affine

mapping.

Figure1. Heterogeneous Star Graph

2.2. Architectural Model

 As mentioned before, within a round, the master

performs a sequence of data sends operations. Each

data retrieval and send is followed by the data

transmissions (l) over the network. Receive and

compute (w) operations are performed by the workers

upon the arrival of the data package. As a result, two

major concurrent time segments are distinguished

within a round: L, time spent by all network link in

transmitting a round of data chunks; W maximum time

spent by all workers in completing the reception of the

data and execution of the corresponding data chunk.

This research assumes the full overlap, single-port

model. In this model, the master uses the network

connection in a sequential fashion and the workers can

perform the computation concurrently with data

reception. One of the assumptions in this research is

that the workers are non-dedicated processors. In Grid

environmental the CPU power is distributed between

local task and the Grid users.

2.3. Affine mapping

 This subsection is a brief discussion of the affine

maps in which the mathematical model is based. The

execution times to each operations of data

communication, and tasks execution vary as an affine

mapping on the number of agglomerated core tasks x.

This is,

li (x) = li x + Li (1)

wi (x) = wi x + Wi (2)

for 1≤ i ≤ p, where Li is the initial cost of establishing a

connection between the master P0 and worker i, li is the

send time associate to the data of a single core task; Wi

is the overhead (startup time) of the computation in

processor i and wi corresponds to the execution time of

a single core task.

3. Theoretical Foundations of SCOW

 SCOW is designed as a periodic user-level scheduler

for allocating agglomerated core tasks on parallel

heterogeneous computing systems. This means that the

mathematical framework behind SCOW is designed to

return optimal constant values of the three parameter

describe above m, q, and xi to a master-worker SPMD

implementation; under some specific constraints.

Indeed, SCOW minimizes the make-span of the job

under either maximal production per round or perfect

system utilization [1]. In this research, the maximal

production per period SCOW ability is selected, refers

to a distribution of agglomerated core tasks across the

workers that maximizes the total number of tasks

completed in a round.

3.1. Maximal periodic production

 In this section a brief description of scheduler theory

is presented. The maximal production problem (MP) is

a problem that imposes a restriction in the period to find

the best approximation to the maximum number of task

performed.

w1

lp

w2 wi wp

li
l2

l1

P1 Pi PpP2

P0

3.2. Problem

 Suppose

1

p

i

i

m x X


 (3)

where m is a number of round of data installments. The

(MP) problem is stated as follows: Given a time period

T, find a subset of q+1 workers such as

Maximize
1

1

q

i

i

x




 (4)

Subject to

3.3. Solution

 Let MAXTASK(T) be the optimal solution of the

previous problem. The next theorem provides a close

form solution for the MP problem in homogeneous

platform.

Theorem 1. Let T be a real nonnegative numbers,

wi=w and li=l for all i and

1() (9)

/ () (10)

() (11)

y w T

q T l y

T T q l y



   

  

Then

 MAXTASK(T) =
1max{0, ()}qy l T

 (12)

The previous theorem has a possible extension to the

heterogeneous problems. At this moment the best

solution is an approximation theorem.

Theorem 2. Let T be a real nonnegative number, p be a

positive integer. The method:

1. Sort the workers by increasing communication times.

Renumber them so that l1≤ l2 ≤ … ≤ lp.

2. Let yi=w
-1

(T) for 1 ≤ i ≤ p and q the largest index so

that
1

() .
q

i ii
l y T


 If q<p, let T =T-

1
()

q

i ii
l y

 ;

otherwise let T=0.

Return the values to construct the following

inequalities:

i.

1

1 1
1

1 1

AX ASKM T () max{0, ()}

q
q

ii
i q

i q

L
T y l T

l




 


 

  




ii.If the period T is large enough

 11

1

1 1

AX ASKM T () max{0, ()}
q

q

i q

i q

L
T y l T

l






 

  

Figure 2. Gantt Char interpretation to the proposes

solution

The theorem 2 gives an approximate to the optimal

solution to the MP problem. In section 4 this

approximation is used as a restriction to formulate a

makespan minimization problem.

Figure 2 is a graphical representation to the solution

given by the theorem 2. This solution follows the

principle of bandwidth-centric [3, 4] because the

priorities do not depend on the workers computation

capabilities, only on their communication capabilities.

Elsewhere, the number of select processor is directly

affected by the computation capacity. In Grid

computing the computational capacity depends on the

local CPU utilization. This tendency is estimated using

prediction strategy described in section 6

3.4. Last round modification

 A common condition to get an optimal schedule is

that all processor finishes the work at the same time.

Modifications of the last round are used to impose the

condition that all processors end operating at the same

time[1]. This last round modification introduces a

constant makespan reduction of 1/2T .

4. Makespan minimization

 The makespan minimization problem constrained to

maximal production (MMP-MP) solution approxi-

mation and the workers order described in theorem 2 is

formulate as follow:

Minimize (T) = (M+1/2)T + l1(Y)

subject to

1

1

1

1

1 1

X (13)

(), 1 (14)

() (15)

() (16)

0, 1 (17)

1 (18)

q

i q

i

i i

q

i i

i

q q

i

v yy

T w y i q

T l y

T w y

y i q

p q









 

 
  

 

  





  

 





1

1

() (5)

max{ () /1 1} (6)

0, 1 1 (7)

q

i i

i

i i

i

L l x T

W w x i q T

x i q





 

    

   



The problem is solved by Lagrange multipliers [9]. This

solution is stated in the next theorem.

Theorem 3: Let X be a nonnegative real number and q

a positive integer (q+1  p) . Then the solution to the

MMP-MP problem without restriction 16 with q+1

processor is,

 1

1
1 12

()1 ()

() ()

b q w X b q
T

a q w l a q
 


 (19)

where 1 1

1 1
1

1 1
() 1

q q j

j j
j q j

l
a q

w l w

 

 


 
    

 
  (20)

and
1 1 1

1 1 11

1
()

q q q
j j j

j

j j jj q j

W l W
b q L

w l w

  

  

 
    

 
   (19)

the theorem 3 permit reformulates the MMP-MP, in the

problem to finding the minimal value of (T) with i

ranging over the subset the i that satisfying

 1 1()i iw y T   (20)

5. CPU prediction strategy

 In Grid computing typically the resources are non-

dedicated, that is, the availability of the full processing

speed is no guaranteed. Let S, the full processor speed.

The local task execution generates a CPU utilization, if

the Utilization can be predicted them the ActualSpeed

can be computed as follows:

 ActualSpeed = S * (100%-Utilization) (21)

This ActualSpeed is used as retro-alimentation

information to the static scheduler. To predict the CPU

load and utilization is used a time series prediction

approach [10, 11] that has been probed the effective

empirically.

The idea of this prediction strategy is based on the

assumption that if the current value increases, the next

value will also increase, and if the current value

decreases, the next value will also decrease.

Formally, we can write:

If (UT-1 < UT)

 IncrementValueAdaptation()

 PT+1 = UT + IncrementValue

Else if(UT-1 > UT)

 DecrementFactorAdaptation()

 PT+1 = UT × IncrementValue

Where,

UT: the measured utilization at measurement T,

PT+1: the predicted utilization for measurement UT+1,

H: the number of historical data points used in the

prediction.

Increment value and decrement factor can be calculated

as:
Procedure: INNCREMENTVALUEADAPTATION()
Mean = (1/n)∑i

RealIncValue =UT – UT-1 ;

NormalInc = IncrementValue + (RealIncValue –

 IncrementValue) × AdaptDegree;

if (UT < Mean)

 IncrementValue = NormalInc;

Else

 PastGreater = (number of data points>UT)/H

 TurningPointInc=IncrementValue×PastGreater

 IncrementValue=Min(NormalInc,

 TurningPointInc)

AdaptDegree can range from 0 to 1 and expresses the

adaptation degree of the variation. The best values for

input parameters such as AdaptDegree and

DecrementFactor are determined empirically.

6. Experiment

 In table 1 the group of numerical values selected to

perform the simulation is presented. The values are

used to predict the corresponding SCOW-MP and UMR

version develop in [13]. These predictions are made

using the mathematical equations underlying them and

a random variable to CPU simulation is also generated

using gamma function

Table 1: Simulation Parameter

Parameter Values

Number of workers p=10,20,30,40

Agglomerated tasks X = 1000

Computational rate Si=.5+randonvariavle

wi = 1/Si

randonvariavle is also generated using

gamma function with

fixed arrival time

landa=.5 and beta = 1

Transfer rate Bi = 1.1p to 1.1p + 1;

 li =1/b

Computational latency cLati = 0:03; Wi = cLat;

Communication latency nLati = 0:03; Li = nLat

7. Result

 It is worth remarking that UMR methods and the

optimal number of rounds, and perform no

discretization on the amount of work per round. Thus,

in order to make the comparisons possible, SCOW

discretizations are made on the number of rounds and

not on the amount of agglomerated tasks per round. The

randomly chosen values are shown in Table1.

The numerical prediction of the performances of UMR

and SCOW are shown in Table 2.

Table 2: Comparison Between SCOW and UMR

 SCOW-MP UMR UMR2

Normalized

Make-span

1.000 1.012 1.032

Normalized

Workers CPU

Utilization

1.000 1.008 1.009

Table 2 shows the comparison between SCOW-MP,

UMR and UMR2, averaged over similar (in the number

of workers) experiment. All the scheduler was

improved by a last round modification in order keep

consistent the comparison.

The first row shows the ratio of make-span achieved for

the 3 schedulers. The second row shows the similar

ratio for the system utilization, but at this time the ratio

is inverted, because the maximal values is the best. The

main observation is that SCOW-MP outperforms UMR

and UMR2 on average. The SCOW-MP is the best

algorithm in Make-span and system utilization.

8. Conclusions

 Many researches in maximal throughput in lineal

model can be found in the literature. These results are

developed to the problem formulated for fixed sizes

tasks. In this research the problem is exported to affine

model and in contrast the goal is maximize the

production, that is, the total number of tasks processed.

The contribution of this research includes an optimal

solution in the homogeneous case and approximate

solution in the heterogeneous case, integrate with a

CPU prediction strategy to perform a scheduler reliable

in a Grid environment. The makespan and system

utilization of two algorithms is also compared.

The results show that the proposed SCOW-MP

algorithms outperform the competitors. Future work

includes the development of a strategy to predict the

network utilization; due to SCOW is a bandwidth-

centric algorithm.

9. Acknowledgments

 This work was made possible by funding from the

Caribbean Computer Center of Excellence (CCCE)

under NSF Award number CNS-0940522.

Thanks are due to Dr. Juan F Arratia and Dr. Oliva

Primera-Pedrozo from the Universidad Metropolitana-

Cupey for their support.

References

1. L. de la Torre, “Scheduling divisible tasks under

production or utilization constraints”, PhD diss.,

University of Puerto Rico, Mayaguez, Puerto Rico

2010.

2. Y. Yang, K. van der Raadt, H. Casanove,

Multiround Algorithms for Scheduling Divisible

Loads, IEEE Transactions on Parallel and

Distributed Systems, Vol. 16, No. 11, 2005.

3. C. Banino, O. Beaumont, L. Carter, J. Ferrante, A.

Legrand and Y. Robert, Scheduling Strategies for

Master-slave Tasking on Heterogeneous Processor

Platforms, IEEE Transactions on Parallel and

Distributed Systems, Vol. 15, No. 4, pp. 319-330,

2004.

4. M. Drozdowski and P. Wolniewicz Optimum

Divisible Load Scheduling on Heterogeneous Stars

with Limited Memory, European Journal of

Operation Research, Vol. 172, No. 2, 2006.

5. N. Jones and P. Pevzner An Introduction to

Bioinformatics Algorithms, MIT Press, 2000.

6. V. Bharadwaj, D. Ghose, V. Mani, and T.G.

Robertazzi. Scheduling Divisible Loads in Parallel

and Distributed Systems. IEEE Computer Society

Press, 1996.

7. O. Beaumont, H. Casanova, A. Legrand, Y. Robert,

Y. Yang: Scheduling Divisible Loads on Star and

Tree Networks: Results and Open Problems. IEEE

Trans. on Parallel and Distributed Systems, vol.

16, no. 3, 2005, 207-218.

8. D. Bertsekas. Constrained Optimization and

Lagrange Multiplier Methods. Athena Scientific,

Belmont, Mass., 1996.

9. D. Bertsekas, editor. Constrained Optimization and

Lagrange Multiplier Methods. Athena Scienti_c,

Belmont, Mass., 1996.

10. L. Yang, J.M. Schopf, and I. Foster, Conservative

Scheduling: Using Predicted Variance to Improve

Scheduling Decision in Dynamic Environments,

SuperComputing 2003, Phoenix, Arizona USA

November 2003.

11. L.Yang, I. Foster, and J.M. Schopf, Homeostatic

and Tendency-Based CPU Load Predictions,

International Parallel and Distributed Processing

Symposium (IPDPS'03), Nice,France, April 2003.

12. Yang Yang and Henri Casanova, UMR: A Multi-

Round Algorithm for Scheduling Divisible

Workloads; Proceeding of the International

Parallel and Distributed Processing Symposium

(IPDPS’03), Nice, France, April 2003.

13. Said Elnaffar and Nguyen The Loc. "Enabling

Dynamic Scheduling in Computational Grids by

Predicting CPU Utilization"; WSEAS Transactions

on Communications Issue 12, Volume 4, pages

1419-1426. December 2005.

