
A Novel Heuristics based Energy Aware Resource
Allocation and Job Prioritization in HPC Clouds

Thamarai Selvi Somasundaram1, Kannan Govindarajan1, T.D. Rohini1, K. Kavithaa1, R. Preethi1

1Department of Computer Technology, Anna University, Chennai, Tamil Nadu, India
Email: stselvi@annauniv.edu, kannan.gridlab@gmail.com, rohinitd@gmail.com,

kavithaa.aswi@gmail.com, preethi.r@gmail.com
 Website: www.annauniv.edu/care

Abstract - Cloud Computing provides the computational,
storage, network and database resources to the consumers in
a pay-as-per usage mode. In recent years, the data centers
play a major role in hosting the cloud applications in the
cloud infrastructure. The data centers are consuming huge
electrical power and emits large amount of carbon footprint.
It is essential to incorporate the Energy Efficient Resource
Management (EERM) mechanism to control the electric power
consumption and reduce the carbon footprint emission. EERA
comprises of matching the user application requests with
available cloud resources and allocating the user application
requests to the matched cloud resources in an efficient
manner. This paper mainly focused on proposing a novel
heuristics based Energy Aware Resource Allocation (EARA)
mechanism to allocate the user applications to the cloud
resources that consumes minimal energy and incorporating
the prioritization mechanism based on the deadline. It is
simulated using the CloudSim toolkit and by generating High
Performance Computing (HPC) type of application requests
with the generated Eucalyptus based private Cloud
environment. The results prove the effectiveness of the
proposed mechanism in the cloud infrastructure by
maximizing the number of users completed their applications
within deadline and minimize the energy consumption in the
cloud resources.

Keywords: Cloud Computing; Resource Management;
Energy Efficiency; Eucalyptus; Heuristics.

1. Introduction
 Cloud Computing [1] provides ondemand computing in
terms of application, platform and infrastructure in a pay as
per usage mode. The Cloud service models are categorized
into three major types based on the applications, platform and
infrastructure namely SaaS, PaaS and IaaS. The IaaS service
delivery model is plays a major role in hosting the PaaS or
SaaS in the data centers. The four major players of the Cloud
are (i) Cloud Users (CUs) (ii) Cloud Service Providers (CSPs)
(iii) Cloud Applications (CAs) and (iv) Cloud Service Brokers
(CSPs). The CUs are submitting the jobs with software,
hardware and QoS parameters. The requirements are varied in
terms of hardware (Processor Speed, RAM Memory,
Bandwidth and etc.), software (Java 1.6, apache tomcat-
5.0.27, MPICH-1.2.7, Charm++ 3.x and etc.) and QoS

(deadline, throughput and etc.). The CSPs are managing the
huge datacenters for the purpose of computation, storage and
etc. CSPs are managing the physical resources to host the
Cloud applications in the virtual resources. The CRPs have to
consider the user required parameters when they are selecting
the resources to run the user applications. In this scenario,
CRP’s are facing the problem in the selection of resources to
run the application. The CAs may be of different types such as
web sites, web applications, high-performance computing
applications and etc. In recent years, the huge datacenters are
popular for hosting the CAs. The CSBs acts as the mediator
between the CUs, CSPs and user’s CA, so it is essential to
incorporate the efficient Resource Management (RM)
technique. RM is the challenging task due to the dynamic
nature of Cloud Computing environment and ondemand user
requirement. It mainly consists of five major functionalities
are shown in Figure 1 and they are (i) Matchmaking the user
job requests with available cloud resources (Resource
Discovery) (ii) Allocating the user job requests with available
cloud resources in an efficient manner (Resource Selection)
(iii) Provisioning of virtual resources in the selected resources
(Resource Provisioning) (iv) Running the user jobs in the
created virtual resources (Running Application) and (v)
Monitoring the running applications (Monitoring
Applications).

Figure 1: Functionalities of Resource Management (RM)

Nowadays scientific applications are becoming complex and
it is composed of various application components and it
requires heterogeneous set of resources. The High
Performance Computing Clouds (HPCCs) or Science Cloud
provides a great platform for researchers to test their ideas
using simulation process. The scientific applications requires
large amount of computational steps and customized
execution environment and also it processes and generates

huge amount of data. Cloud Computing provide benefits to
the scientific applications using the concept of resource
provisioning through virtualization technology and it provides
different operating systems with different software
configurations.However, it is very difficult to incorporate the
efficient RM mechanism in every cloud provider site and also
it is very tedious for the cloud user’s to search the suitable
cloud resources that are geographically distributed in nature to
run their applications. These drawbacks can be achieved by
integrating the efficient RM mechanism in CSB to efficiently
manage the user requests and Cloud resources. In recent days,
the data centers are consuming more amount of electrical
energy and emitting large amount of carbon foot prints. The
high energy consumption increases the running cost of the
data centers. So, it is essential to decrease the high energy
consumption of the data centers that will maximize the
revenue of the resource providers, reduce the carbon emission
and running cost of the data centers. To achieve the above
objectives, we have proposed the energy efficient resource
management mechanism that is mainly aimed to improve the
maximum number of users completed their jobs within
deadline and minimize the consumption of energy in the
datacenters. These two factors influence the revenue of the
cloud resource providers in an impressive manner. The
maximum number of users completed within the deadline is
achieved by giving more priority to the jobs nearer to the
deadline. The resource selection process is carried out by
employing the optimization algorithm of Particle Swarm
Optimization [2]. The proposed approach selects the
resources that consume less energy. In addition to that, it
accommodates or allocates the maximum number of user
requests in the datacenters that will increase the revenue of the
service providers and increase the utilization of the resources.
In brief the contributions of the research work are summarized
below.

a. To design and develop the matchmaking algorithm
for matching the HPC user requests with available
cloud resources. (A)

b. To design and develop a Particle Swarm
Optimization based Energy Aware Resource
Allocation (PSOEAR) mechanism for allocating the
user requests to the Cloud resources in a near
optimal manner. (B)

c. Integration of (A) and (B) with Cloud Service Broker
(CSB) for matchmaking, allocating and provisioning
for the HPC user requests. (C)

d. The proposed work is simulated and the results have
been analyzed in the simulation based cloud
environment. (D)

 The rest of the paper is organized as follows: Section 2
presents the high-level architecture of proposed framework;
Section 3 presents the proposed system model and its
description. Section 4 describes the simulation results and its
inferences observed from the simulation. Section 5 describes
the related works closely related to our proposed work.

Section 6 concludes the proposed work and explores the
feasibility of future work.

2. Proposed High-Level Architecture

The proposed high-level architecture for cloud resource
management framework with energy aware allocation is
shown in Figure 2. It consists of the five major components
and the functionalities of each component are described in
detail.

2.1 Request Handler & Match Maker

The user submits the job requirements as an XML file or
through Graphical User Interface (GUI). The parser in the
request handler parses the job requirements and the parsed
information is updated in the User Job Request Pool (UJRP).
Once the job requests are parsed it invokes the Match Maker
to match the user job requirements with the available cloud
resources. The matchmaker component filters the potential
resources that are capable of creating virtual resources and
run the job. Finally, it generates the matched resource list and
the generated list is sent to the Particle Swarm Optimization
based Energy Aware Resource Allocator (PSOEARA). The
matchmaking algorithm for HPC job request is shown below.

Figure 2: Cloud Resource Management Framework for
Energy Aware Resource Allocation

Algorithm 1 Matchmaking Algorithm

Input : Fetch the job requests with hardware, software and
 QoS requirements.
Output: Matchmaking the job requests with available cloud
 resources and generate the matched resource list.
Step 1 : Submit the job requests with requirements, parse the
 requirements and store it in the Broker Queue (BQ).
Step 2 : Match the job requirements with available cloud
 resources and generate the resource list that are
 capable of creating the virtual instances and run the
 job.

Step 3 : For (I= 1 to N ‘Job Request’)
 {
 For (J = 1 to M ‘Datacenters’)
 {
 For (K=1 to O ‘Hosts’)
 {
 Match the job requirements with available cloud
 resources.
 Generate the matched host list that is capable of
 satisfying the user job requests.
 }
 Generate Matched Datacenter List that has
 capable hosts to create the virtual instances
 and run the jobs.
 }
 }
Step 4 : End

2.2 Particle Swarm Optimization based Energy
Aware Resource Allocator (PSOEARA)

PSOEARA is implemented with Particle Swarm Optimization
(PSO) and Energy Aware Resource Allocation algorithm.
PSO is a population based stochastic optimization technique.
It is initialized with a group of random particles or solutions.
Each particle is updated by the two best values known as
pbest (the personal best) and gbest (the global best) in every
iteration. Pbest represents the best solution achieved by one
particle and gbest represents the best value obtained by any
particle in the population. PSOEAR mainly consists of three
fold processes such as (1) Initial job assignment to the
matched resource list (2) Calculation of Expected Completion
Time (ECT) and Energy Consumption (EC) of the job (3)
Final job assignment to the selected cloud resource.

2.2.1 Initial job assignment to the matched resource list -
PSOEARA takes the batch of jobs as input and each job is
randomly allocated to the matched resource list. In each
assignment the ECT and the EC is computed for each job.

2.2.2 Calculation of ECT and EC of the jobs - The ECT is
computed using the Equation (1).

 ECTij = STij + BTij +EETij - (1)
 EETij = Job Length / MIPS of VM - (2)
 Job Length = Million Instructions (MI) /60 - (3)
 MIPS of VM = Job Length/Deadline + x - (4)
Where ECTij represents the expected completion time of job i
on resource j, STij represent the start time of job i on resource
j, BTij represents the boot time of the virtual instances for the
ith job on resource i, EETij represents the estimated execution
time of job i on resource j. The EC is computed using the
Equation (5) and it is given below.

 ECij (in watts) =
N,M

i j
i=1,j=1

RMIP / AMIP *100∑ - (5)

Where ECij represents the energy consumption of the
particular job, RMIPS represents the Requested Millions of
Instructions per Second for job i and AMIPS represents the
Available Millions of Instructions Per Second in resource j.
Where i= 1 To N represents number of VMs, j=1 To M
represents the number of hosts.

2.2.3 Final job assignment to the selected cloud resource -
In the final assignment process the jobs are assigned to the
cloud resource which completes the job within the deadline
and consumes less energy.

Algorithm 2 PSOEARA Algorithm

Input: Fetch the job requests with matched host list and
datacenter list.
Output: Optimal selection of cloud resources that consumes
less energy and completes the job requests within deadline.
Step 1 Get the ‘N’ number of job requests with matched
 datacenter list and the host list.
Step 4 For (I= 1 to N ‘Job Request’)
 {
 For (J=1 to M ‘Virtual Machines’ of each job)
 {
 For (K = 1 to O ‘Matched Datacenter List’)
 {
 GetMatchedHostList ();
 For (L = 1 to P ‘MatchedHostList’)
 {
 Compute the Expected Completion Time (ETC)
 using the Equation (1);
 Compute the Present Energy Consumption (PEC)
 using the Equation (5);
 }
 If (K==0) {
 Pbest = PEC;
 Chosen DC= DC (0)
 }
 Else
 {
 If (PEC < Pbest && ECT < Deadline) //Compare the
 energy consumption difference
 {
 Gbest = PEC;
 Chosen DC = DC (K);
 }
 Else If
 {
 Gbest = Pbest;
 }
 }
 }
}}

2.3 Cloud Resource Information Aggregator

This work is extension of our previous work Cloud
Monitoring and Discovery Service (CMDS) [3]. CMDS will
aggregate the cloud resource information such as processor,
memory and network using the external information providers
Ganglia, NWS and our own user-defined script. CMDS is
extended to aggregate the energy and load information from
the cloud resources. The collected information is updated in
the Cloud Resource Information Repository (CRIP).

2.4 Virtual Machine Provisioner

It is mainly responsible for interacting with Cloud middleware
to provision the virtual machine instances. It fetches the
virtual machine request with the parameters of type of
instances, ram capacity and number of instances to be created
to run the job.

2.5 Virtual Machine Energy Monitor

It is running in the cloud resources and it collects the energy
consumed by the virtual machine instances. The collected
information is updated to the VM Energy Aggregator.

3. Implementation Details
In this paper we have simulated and compared the proposed
PSO based energy aware resource allocation with DVFS and
Round Robin. The simulation is carried out using the
CloudSim [4] toolkit. The CloudSim source code is analyzed
and incorporated with the major modifications in the classes
DatacenterBroker.java, Host.java, Cloudlet.java and newly
added PSOEARAllocationPolicy.java. The available
resources in the cloud environment are represented as ‘ACR’.
Each cloud resource has ‘mh’ number of hosts and every host
is capable of hosting/creating ‘nv’ number of virtual machine
instances. The proposed system is accessed by ‘mu’ number of
users the users are arrived at a regular interval of ‘I’ in a
Poisson distribution manner. Each user job request will
require ‘N‘ number of nodes, ‘M’ amount of RAM memory,
‘P’ amount of processor speed. The sample HPC job request
is shown in Table 1 and it is generated by doing the
modifications in the Cloudlet.java class. We have generated
the job requests for three types of HPC applications such as
NAMD [5], Clustal [6] and FASTA [7]. The Host.java class is
modified and the generated Eucalyptus based private cloud
resources is shown in Table 2.

Table 1: Simulated HPC User Job Requests

User
Name

Job Type Number
Of

Nodes

Processor
Speed
(MHZ)

RAM
Memory

(MB)

Disk
Memory

(GB)

stselvi NAMD 5 2200 512 10

preethi CLUSTAL 10 2000 1024 20

Rohini NAMD 5 2200 1024 10

kavitha FASTA 5 2000 512 20

Table 2: Simulated Eucalyptus based Private Cloud
Resources

4. Simulation Details and its Inferences
The experimentation is carried out by generating a Cloud
Service Broker (CSB) with multiple Cloud Service Providers
(CSPs). We have considered 5 CSPs each CSP maintains one
datacenter. Each datacenter is generated with 1000, 2000,
3000, 1000, 2000 cloud hosts respectively. The cloud hosts
has different capabilities in terms of number of processors,
processor speed, ram speed, hard disk memory, bandwidth,
latency, type of hypervisor and etc. The job request is
generated randomly using the random access model that
generates the job requests as Cloudlets in the range of 1000 to
10000 in the random fashion. The job parameters such as
length of job (JA), job arrival rate (AA) and number of Job
requests (NJ) also generated. The job requests are mapped
with available cloud resources for creating virtual instances
and running the applications. The experimental setup is shown
in Figure 3. The simulation has been carried out for type of
use cases (i) Use Case 1 - Resource Allocation within
datacenter (ii) Use Case 2 - Resource Allocation across
datacenters. The performance measures such as number of
users completed within deadline, energy consumption of the
datacenters are represented figuratively.

(i) Use Case 1 - Resource Allocation within datacenter – In
this use case, the resource allocation policy finds out the
suitable resources for every job requests that consumes less
energy within the single datacenter. If the job requests could
not able to satisfy within single datacenter the resource
allocation policy sends the message to the broker COULD
NOT be ABLE TO CREATE required VIRTUAL MACHINE
WITHIN SINGLE DATACENTER”. The broker invokes the
resource co-allocation policy to satisfy the job request could
not be processed in the single data center.

(i) Use Case 1 - Resource Allocation across datacenters –
In this use case, the resource allocation policy finds out the
suitable resources for every job requests that consumes less
energy across the datacenters. If the job requests could not

able to satisfy across the datacenters the resource allocation
policy sends the message to the broker “COULD NOT be
ABLE TO CREATE ENOUGH VIRTUAL MACHINES
ACROSS THE DATACENTERS”. The broker rejects the
request and notifies to the user.

Figure 3: Experimental Setup

Figure 4: Energy Consumption using PSOEARA

Figure 5: Energy Consumption using DVFS with RR

The job requests are generated in the order 1000 to 10000
cloudlets and the job rejection rate of PSOEARA is compared
DVFS with RR. The proposed mechanism has the job
rejection rate with an average of 10% and the RR has the job
rejection rate of 35%.

Figure 6: Comparison of Job Rejection Rate PSOEARA
versus DVFS with RR

5. Related Works
Thamarai Selvi et. al [8] has proposed and implemented a
Java based architectural framework to schedule and support
the virtual resource management in the Grid environment. It
handles the various scheduling scenarios of Physical, Coalloc,
Virtual Cluster and etc. Eucalyptus [9] is the open source
cloud middleware and it consists of cloud controller, cluster
controller, node controller and storage controller. These
components are arranged in a hierarchical fashion and
eucalyptus has incorporated with Greedy, Round Robin, and
Power Save scheduling algorithm. These three scheduling
algorithms do not select the resource in a near optimal manner
and also it does not have considered the priority. OpenNebula
(2005) [10] is an open source cloud middleware that creates
virtual machines in a physical cluster and its main focus is
virtual resource management in the infrastructure. It has
incorporated with rank based scheduling approach and does
not consider the energy efficiency and deadline parameters
and it is mainly working in the host level. Das et. al. [11] has
built the commercialized computing system called Unity; the
main aspects are application environment centric,
computation of optimal configuration of resources in the
datacenters, absence of the cost of components during the
problem formulation.
 Biao Song [12] has discussed the heuristic based task
selection and allocation framework in cloud environment.
They have classified the resource allocation problem into two
things such as heavy workload and light workload. In the
heavy workload scenario they have consider the Quality of
Service (QoS) is their major focus and in the light workload
scenario the resource utilization is their main focus. They
maintained the threshold value based on that value they will
allocate the tasks to the resources with an objective of
increasing the resource utilization. But they have not
discusses anything about the energy efficiency and deadline of
the job requests. Hai Zhong et. al [13] proposed the optimized
resource scheduling for open-source cloud systems using the
Improved Genetic Algorithm (IGA). They have derived the
fitness algorithm using the dividend policy mechanism. They
have compared their proposed approach with First Fit and RR.
They claimed that their proposed algorithm increases the
utilization of the cloud resources and saves much energy. The
major difference of our work from their work is they have not

discussed anything HPC job requests, energy efficiency in
detail and deadline of the job requests.

6. Conclusion and Future Work
The datacenters are consuming huge amount of electric power
and emits large amount of carbon footprints that pollutes the
environment. This paper mainly aimed to provide an efficient
resource management mechanism in the cloud service broker.
It handles the user job requests as HPC applications based on
the user required parameters it selects the cloud resources in a
near optimal manner using the heuristics based energy aware
resource allocation mechanism. The proposed work
minimizes the consumption of power and maximizes the
revenue of the CRP’s. The main contributions of the proposed
work are summarized as follows: ability of handling the HPC
job requests in Cloud Service Broker, matchmaking the user
job requests and allocating the user job requests to the
available cloud resources that consumes less energy in an
optimal manner and completes the job within deadline. It
increases the maximum number of jobs completed within the
deadline and minimize the consumption of energy in the
datacenters. These two factors influence to maximize the
revenue of the cloud resource providers. The proposed work
is simulated using the CloudSim toolkit and compared with
the most well-known algorithm DVFS using Round Robin.
The results are evident that proposed work minimizes the
consumption of energy in the datacenters and maximizes the
number of users completed within the deadline.
 As a future work the proposed work to be tested in the
Eucalyptus based real private cloud environment for HPC
applications. And also, it can be extended for decentralized
mode incorporated with load balancing mechanism that will
enhance the scalability and utilization of cloud resources
further.

ACKNOWLEDGMENT
The authors sincerely thank the Ministry of communication
and Information Technology, Government of India, for
financially supporting the Centre for Advanced Computing
Research and Education of Anna University Chennai, India in
this project

REFERENCES

[1] NIST, National Institute of Standards and Technology (2011),
http://csrc.nist.gov/publications/drafts/800-145/Draft-SP-800-
145_cloud-definition.pdf.

[2] Particle Swarm Optimization (PSO),
http://www.swarmintelligence.org/.

[3] Thamarai Selvi Somasundaram, Kannan Govindarajan, “Cloud
Monitoring and Discovery Service (CMDS) for IaaS resources”, has
been accepted in ICoAC 2011.

[4] CLOUDSIM, http://www.cloudbus.org/cloudsim/.

[5] NAMD, http://www.ks.uiuc.edu/Research/namd/.

[6] CLUSTAL, http://www.clustal.org/.

[7] FASTA, http://fasta.bioch.virginia.edu/fasta_www2/fasta_list2.shtml.

[8] Thamarai Selvi Somasundaram, Balachandar R. Amarnath, R. Kumar,
P. Balakrishnan, K. Rajendar, R.Rajiv, G. Kannan, G. Rajesh Britto, E.
Mahendran & B. Madusudhanan, “CARE Resource Broker: A

framework for scheduling and supporting virtual resource
management”, Journal: Future Generation Computer System, Volume
26, Issue 3, March 2010, Pages 337-347,
doi:10.1016/j.physletb.2003.10.071.

[9] Daniel Nurmi, Rich Wolski, Chris Grzegorczyk, Graziano Obertelli,
Sunil Soman, Lamia Youseff, Dmitrii Zagorodnov ,“The Eucalyptus
Open source Cloud-computing System”, Proceedings of Cloud
Computing and Its Applications, October 2008.

[10] OpenNebula (2011): The Open Source Toolkit for Cloud Computing.
http://opennebula.org/start.

[11] R. Das, J. Kephart, I. Whalley and P. Vyas, “Towards
Commercialization of Utility-based Resource Allocateion,” in ICAC
’06:IEEE International Conference on Autonomic Computing, 2006,
pp.287-290.

[12] Biao Song, Mohammad Mehedi Hassan, Eui-nam Huh: A Novel
Heuristic-Based Task Selection and Allocation Framework in Dynamic
Collaborative Cloud Service Platform. CloudCom 2010: 360-367.

[13] Hai Zhong, Kun Tao, Xuejie Zhang, “An approach to Optimized
Resource Scheduling Algorithm for Open-source Cloud Systems,” The
Fifth Annual ChinaGrid Conference, 2010. DOI
10.1109/ChinaGrid.2010.37.

