
TSM-SIM: An Evaluation Tool for Grid Workflow Scheduling

Mohamed Amine Belkoura1and Noé Lopez-Benitez1

1Department of Computer Science, Texas Tech University, Lubbock, Texas, USA

Abstract— Implementing efficient workflow job scheduling
is a key challenge in grid computing environments. Sim-
ulation is an efficient mechanism to evaluate scheduling
algorithms and their applicability to various classes of
grid applications. Several grid simulation tools exist, and
provide a framework for studying grid job execution in
conjunction with different scheduling algorithms. However,
these simulators are tailored only to independent grid jobs,
with limited support for complex grid workflows submission
and scheduling.

This paper presents TSM-SIM, a two-stage metasched-
uler simulator for grid workflow applications. It supports
dynamic grid resource and job simulation, and provides a
submission interface for workflow grid applications as a
single unit, rather than as a set of grid jobs. We detail
the overall architecture TSM-SIM as well as example of
its scheduling algorithms. We demonstrate how it can be
used to collect performance scheduling data of complex grid
workflow benchmarks.

Keywords: metascheduling, task management, middleware, grid,
simulator, architecture

1. Introduction
Grid workflows are orchestrated by grid meta-schedulers,

matching grid application jobs with available resources,
in order to achieve an optimal execution [1]. To sat-
isfy such requirement for complex grid flows, a Two-
Stage Metascheduler (TSM) decouples logical task meta-
scheduling from physical task/node matchmaking, while
achieving an improved overall performance [2]. In order
to validate the effectiveness of this scheduling architecture,
only a comprehensive and rigorous testing process can
produce accurate and meaningful results. Given its inherent
complex and dynamic nature, computing grids are hard to
evaluate. Setting up grid testbeds that are both realistic
and adequately sized is an expensive and time consuming
process, and therefore represents a barrier to meta-scheduler
algorithm evaluation. We propose the use of grid simulators
to measure the efficiency of metascheduling algorithms in
a diverse and comprehensive set of scenarios. To evaluate
the efficiency of two-stage metascheduling, it is important
to run a number of tests, varying different parameters and
platform scenarios, with the goal of producing statistically
significant quantitative results. However, real-world grid
platforms are hard to setup, labor-intensive, and are gen-
erally constrained by the available hardware and software

infrastructure. To preserve the security and consistence of
valuable grid resources, grid administrators tend not to allow
users to modify some grid parameters, such us participating
nodes, network connections and bandwidth, and some lower
level grid middleware and operating system configuration.
For all these reasons, a simpler and reproducible approach
to evaluate grid application scheduling requires the use of
simulators.

2. Background and Related Work
Several solutions were proposed in the realm of grid appli-

cation scheduling simulation. Bricks simulator [8] is a JAVA
simulation framework used to evaluate the performance ap-
plications and scheduling algorithms in Grid environments.
It consists of a discrete event simulator, a simulated grid
computing and data environment, as well as network com-
ponents. It allows the analysis and comparison of various
scheduling algorithms on simulated grid settings, taking
into consideration network components effect on the overall
performance. SimGrid [6] is another widely used toolkit for
the simulation of parallel and grid application scheduling.
It supports an out-of-the-box creation of time-shared grid
and cluster resources. It also supports varying resource loads
statically and dynamically. It also provides an extensibility
programming layer for adding or customizing grid jobs and
resources creation based on various parameters. Its program-
ming interface provides several mechanisms to implement
resource scheduling policies. GridSim [3] is also a popular
simulation framework for grid and parallel applications. It
supports different resource schedulers, including time-shared
and space-shared resources. It contains a network simulation
component, used for simulating network topologies, links
and switches. it also allows incorporating resource failure
into the grid application simulation. OptorSim [9] is a
java based grid simulator focusing on data grids. It can
simulate grid resources of different storage or computing
elements, and allows the testing of data replication strategies.
Its scheduling simulation is achieved through a resource
broker, which implement scheduling schemes. It treats sites
computing or data facility as network nodes and routers. For
data replication, it features a replica manager and optimizer
that handles advanced data manipulation and management.

While these simulators provide mechanisms for a flexible
grid application modeling, they do not support the submis-
sion of the whole grid application workflow as an input, with
all its data and sequence job dependencies, but only support



Fig. 1: TSM Simulator System View.

individual jobs submission. The proposed TSM simulator
in this paper will extend some of GridSim components,
and provide a two stage logical/physical scheduling module
based on the TSM architecture.

3. Simulator System Overview
TSM-SIM allows a comprehensive study of the dynamic

interaction of multiple grid components, including grid
users, resources, networks and various scheduling algo-
rithms. It provides a virtual grid infrastructure that enables
grid workflow application experimentation with dynamic
meta-scheduling algorithms, supporting controllable, repeat-
able, and observable experiments. From a system view,
TSM-SIM is composed of three main components: TSM
Virtual Messaging Bus, TSM GridSim Services, and TSM
Custom Workflow Services, as shown in figure 1. It uses
an inter-process discrete event based system for communi-
cation. Each layer exposes functions for reuse with other
services. The following section provides a detailed descrip-
tion of each layer components.

At the core of the TSM simulator is a virtual messaging
bus implemented using Simjava framework, inherited from
GridSim [5]. Simjava is a inter thread messaging framework
that allows sending tagged event from one entity to another
within the same java process. Simjava entities are connected
to each other using ports and can inter communicate by send-
ing and receiving tagged event objects. A separate thread
controls the lifecycle of the entity threads, by synchronizes
their execution

4. Simulation Algorithms
In this section, TSM logical and physical metaschedulers

algorithms are presented. For the logical metascheduler,
details of the Execution Set Algorithm (ESA), the De-
layed Execution Set Algorithm (DESA), and the Block
Notification Execution Set Algorithm (BNESA) are given.
For the physical metascheduler, the ClassAdd Matchmaking

Algorithm (CMA), and the Workflow Weight Algorithm
(WWA) are outlined.

4.1 Logical Metascheduler Algorithms
TSM scheduling approach consists of decomposing a grid

workflow into a set of individual jobs that can be executed in
parallel. Any logical algorithm should compose these tasks
either dynamically or statically, taking into consideration
only job dependencies. The rest of this section presents
three logical metascheduler algorithms: the Execution Set
Algorithm (ESA), the Delayed Execution Set Algorithm
(DESA), and the Block Notification Execution Set Algo-
rithm (BNESA).

4.1.1 Execution Set Algorithm
The Execution Set Algorithm (ESA) accepts as an input

the grid application flow in a digraph format (directed
graph). It processes the flow composing tasks (graph nodes),
data and control flow (edges), and produces a set of task
pools, called Execution Sets (E). These sets are submitted
to the physical metascheduler in order. None of the task of
certain set can be submitted to a physical scheduler unless all
the tasks of the preceding set have been submitted. However,
the composing tasks of each pool can be submitted in any
order. The execution set is updated after execution success
notification.

The ESA logic is described by the following algorithm.

ESA Algorithm

P ←Initial flow graph of N nodes.
E ←Current execution set.
S ←Set of nodes submitted, but not executed yet.
G←Graph of N nodes; G={ni; i ∈ [1;N ]}.
while E 6= � do

Submit S elements for execution.
if receipt of sucessful execution of nj then
E ←E - {nj}.
S ←E
Remove mode nj and its edges from P
Update E with additional free nodes of P

4.1.2 Delayed Execution Set Algorithm
The Delayed Execution Set Algorithm (DESA) is a variant

of ESA that introduces a delay between the receipt of the
first notification, and the submission of the next execution
set. A delay allows collecting more individual grid jobs
into individual execution sets. This reduces the number of
submissions and execution notifications, but generates bigger
execution sets. DESA is analyzed with various delay times,
in order to study its impact on grid utilization, and total grid
application execution time.



4.1.3 Block Notification Execution Set Algorithm

The Block Notification Execution Set Algorithm
(BNESA) is a second variant of ESA, where the next
algorithm execution set will not be updated immediately
after the first successful job notification. Instead the
algorithm waits for k numbers of notifications, where k
is directly correlated with the size of the execution set E.
As for DESA, a delay will allow for potential addition
execution notifications, therefore a bigger execution set.
This variant is studied with various values of k, in order
to analyze its impact on grid utilization and total grid
application execution time.

4.2 Physical Metascheduler Algorithms

Different grid job/grid resource algorithms are used in grid
environments. They can be classified into three main cat-
egories: time-shared, space-shared and backfill algorithms.
Time-shared grid scheduling algorithm allocates grid re-
sources in a round robin scheme, and exclusively allocated
a grid resource to a grid job until it is completed. Space
shared grid scheduling algorithm allocates grid resources in
a First Come First Serve (FCFS) and executes more than one
processing element (PE) to a grid job. Backfill algorithms
attempts to reorder jobs queued to be executed, by moving
small jobs ahead of big ones in the scheduling queue. The
job prioritization is done to fill in holes in the schedule,
without delaying the first job in the queue. Two variants of
this class of algorithms exist. The first is called aggressive
backfilling, where short jobs will automatically priority over
long jobs. The second is called conservative backfilling,
where the acceleration of short jobs happens only of such
reorder does not delay any job in the schedule queues.

4.2.1 Condor ClassAd Algorithm

TSM physical metascheduler implements Condor ClassAd
Algorithm (CCA), the standard matchmaking alogorithm
used by Condor [10] . Each executing node in the grid
advertises its resource ClassAd, while each workflow grid
job is defined by its processing requirement within its job
ClassAd. For each execution set received from the logical
metascheduler, a single round of matchmaking algorithm is
made, based on the constraints defined by both the resource
and job ClassAds. If a requirement of a job is not met during
the matchmaking process, it is delayed until the current
execution set is refreshed after the next logical execution
set is received. However, if a grid resource is a positive
match for a grid job, such matching is selected, and no
other possible matchmaking combination is evaluated. In our
implementation of CCA, only the requirement part of the
ClassAd is considered. The optional rank attributes are not
used in our matchmaking process.

4.2.2 Workflow Weight Algorithm

The second TSM physical metascheduler prototyped is
called Workflow Weight Algorithm (WWA). It is a time
shared, first-come-first-served class algorithm that captures
the instant load of each grid resource using an auction style
election process. Each grid resource (Rj1 < i < m, m is
the number of resources) is characterized by its number
of machines Rmi(Rmi = 1 for a non-cluster resource),
the number of its processing units Rpui, its processing
power Rppi in Million Instructions Per Seconds (MIPS), its
available memory Rmemi, and its network connection speed
Rni. Each grid job/task (Tj1 < j < n, n is the number
of tasks) has a strict number of processor units Tpuj and
memory requirement that need to be satisfied at a single
grid resource, in order to be considered in the match-making.
Each grid job will advertise its computing power need Tppj ,
its memory requirement Tmemj , its total data input size
Tinj , its total output size Toutj , its height in the workflow
tree Thij , and its offspring count Toffj .

The algorithms works as follow: In the physical
metascheduler, a discrete scheduling interval ∇τ will be
defined (for example a 10 second interval). At each interval
beginning, the metascheduler calculates a scalar value called
grid task weight Tweightj . This value provides a quantifying
value of all the computing characteristics of a grid job/task,
and is defined as follows:

Tweightj = CT × Tpuj × Tppj × Tmemj

× Tinj × Toutj × Thij × Toffj , 1 < j < n

(1)

where CT is a constant at each scheduling iteration.
Simultaneously, a similar weight, called the Resource Weight
Rweighti, is calculated. The logical scheduler will request
from each grid resource site its dynamic computing data.
Only grid resources that are free submit their data, indicating
that they are willing to participate in the current scheduling
round. The metascheduler will then calculate the Resource
Weight Rweighti defined as follows:

Rweighti = CR ×Rmii ×Rpui ×Rppi ×Rmemi ×Rni

1 < i < m
(2)

The next step of the algorithm is to sort all the values
of Tweight and Rweight in a descending order. A height
Rweight value indicates a fast grid resource, while a high
Tweight value indicates a demanding grid job/task. The
algorithm assigns the grid job/task of highest Tweight value
to the grid resource of the highest Rweight value, with the
condition that equation 3 satisfied:



Tpuj ≤ Rpui and Tmemj ≤ Rmemi

1 < j < n and 1 < i < m

(3)

Note that the number of grid tasks “n" is generally
different than the number of grid resources “m" (being equal
is only one special case). In case the case of n<m, only the
available fast grid resources of the grid are being used. In
the case of n>m, a resource starvation is happening, and
only a portion of the execution set is actually assigned a
grid resource. Grid tasks that are not scheduled will be part
of the next scheduling round.

5. Grid Benchmarks
NAS Grid Benchmarks (NGB) were used to test the TSM

simulator. NGB is a benchmark suite designed by NASA,
based on the NAS Parallel Benchmarks (NPB) [11]. The
suite contains different classes of workflow application, and
thus helps measuring the capability of a grid infrastructure to
execute distributed, communicating processes while testing
its functionality and efficiency. NGB benchmarks are defined
as data flow graphs, with nodes and arcs representing compu-
tations and communications respectively. NGB benchmarks
are used to measure each node execution time, as well as
the data transfer capabilities of the communication network,
particularly latency and bandwidth. An instance of NGB
benchmark grid flow is a collection of six types of computing
programs. They are called Block Traditional solver (BT),
Scalar Pentadiagonal solver (SP), Lower-Upper symmetric
solver (LU), Multigrid solver (MG), fast Fourier Transform
solver (FT), and Mesh Filter solver (MF). Each instance of
these programs is characterized by a class, which describes
the size of its input data. These programs different classes are
S, W, A, B, C. In our experiments, we considered only S, A,
B classes. Every benchmark program code (BT, SP, LU, MG,
or FT) is specified by class (mesh size), number of iterations,
source(s) of the input data, and consumer(s) of solution
values. The DFG consists of nodes connected by directed
arcs. It is constructed such that there is a directed path from
any node to the sink node of the graph. All of NPB’s mesh
based problems are defined on the three-dimensional unit
cube. However, even within the same problem class (S, W,
A, B, or C) there are different mesh sizes for the different
benchmark codes.

Table 1 gives the problem size and the memory re-
quirement for every computing program used in the NGB
benchmark used in [12].

5.1 Class of NGB Benchmarks
NGB benchmarks consist of four families of problems:

Embarrassingly Distributed (ED), Helical Chain (HC), Vi-
sualization Pipeline (VP), and Mixed Bag (MB). These
benchmarks are described in the rest of this section.

Program Class Problem Size Memory requirement (MW)
SP S 123 0.2

A 643 6
B 1023 22

BT S 123 0.3
A 643 24
B 1023 96

LU S 123 0.3
A 643 30
B 1023 122

MG S 323 0.1
A 2563 57
B 2563 59

FT S 643 2
A 2562 × 128 59
B 2562 × 512 162

Table 1: NGB programs size and memory requirement

Fig. 2: ED, class B (18x1) grid flow.

5.1.1 Embarrassingly Distributed

The Embarrassingly Distributed (ED) benchmark repre-
sents a class of grid applications called parameters studies,
where the same basic program is executed multiple times,
and each time with a different input data. This class of
benchmark models applications that can be obviously di-
vided into a number of independent tasks. The application
tasks are executed independently, with different inputs. Fig-
ure 2 shows the b-class ED benchmark grid workflow used
in our simulations.

5.1.2 Helical Chain

Helical Chain (HC) benchmark models grid application
with long chains of repeating programs, such as a set of flow
computations executed in order. It consists of a sequence
of jobs that model long running simulations that can be
divided into different tasks. Each job in the sequence uses the
computed solution of its predecessor to initialize. Figure 3
shows an example of a b-class HC benchmark grid workflow.

5.1.3 Visualization Pipeline

Visualization Pipeline (VP) benchmark models grid work-
flow application composed of multiple chains of compound
processes. It represents a chain of grid jobs, but with limited
parallelism. It models grid applications where the last itera-



Fig. 3: HC, class B (5x9) grid flow.

Fig. 4: VP, class B (5x9) grid flow.

tion step is a visualization/analysis task. Figure 4 illustrate
an example of a b-class VP benchmark grid workflow.

5.1.4 Mixed Bags

Mixed Bag (MB) benchmark models grid applications
composed of post-processing, computation and visualization
computing tasks, but with inter asymmetric communication.
It also features different tasks that require both different
data and computing power. It introduces double and triple
dependencies, where some jobs have two or three parent
tasks. It constitutes the most complex benchmark in the NGB
suite, and thus making it hard for any scheduler to schedule
its tasks efficiently. Figure 5 shows an example of a b-class
MB benchmark grid workflow.

Fig. 5: MB, class B (5x9) grid flow.

Cluster Cluster Node Memory Computing Network
Name Name Name (GB) Power Speed

(MFLOPS) (GB/S)
Main TTU Cluster 1 Compute1-1 12 9320 10

Campus Compute1-2 12 9320 10
Cluster 2 Compute3-1 4 6400 10

Compute3-2 4 6400 10
Cluster 3 Compute8-1 64 10400 10
Cluster 4 Compute6-9 4 6400 10

Compute6-10 4 6400 10
Cluster 5 Compute6-1 12 9320 10

Compute6-2 12 9320 10
TTU Reese Cluster 6 Compute10-1 4 12000 10

Campus Compute10-2 4 12000 10
Cluster 7 Compute11-17 4 9320 10

Compute11-18 4 9320 10

Table 2: Resource Properties of the Grid Testbed

6. Simulation Environment Setup
In our experiments, we simulated a subset of Texas Tech

Hrothgar and Antaeus clusters [13] as part of a computing
grid. The grid modeled in our simulations contains 13
resources, spread both among the main and satellite Texas
Tech campuses. We modeled each of its grid resources with
a total number of processing elements (PEs) characterized
by their MIPS rating (Million Instructions per Second)
and their internal memory capacity. We also model the
network connecting all the grid computing elements, by
specifying, the network layout, the number of routers, and
the network link properties such as bandwidth in bits/second
and Maximum Transmission Unit (MTU) in bits.

Table 2 shows the grid test bed properties simulated, while
figure 6 details the network topology of the simulated grid
environment.

6.1 Experimental Methodology
A set of each NGB benchmark grid application is gener-

ated, and submitted to the TSM simulator, under the different
benchmark type (ED, HC, VP and MB), class (S, A, and



Fig. 6: Network Topology of the Grid Test Bed.

Load Pattern normal distribution Poisson distribution
size(MB) inter-arrival time (s)

Min Max Min Max
Medium 2,5 5 10 50

High 10 20 10 50

Table 3: Background Traffic Generator Pattern Parameters

B), background load (none, medium, high). Both Execution
Set Algorithm (ESA) and Delayed Execution Set Algorithm
(DESA) for the logical metascheduler and Workflow Weight
Algorithm (WWA) for the physical metascheduler were
implemented. A background traffic generator is used to
simulate a non-exclusive access schema to a grid. The back-
ground traffic generator was configured with two different
load patterns: a medium and a high load pattern, which are
generated based on the size of background data, the job size,
and the inter-arrival time. The background load data size
follows a normal distribution of a minimum size of 2.5 KB
and a maximum of 5 KB. Its arrival time follows a Poisson
distribution, with an inter arrival times varying from 10 to
50 seconds. The traffic generator is bound to each resource,
so the background traffic and load hits all resources and
its network route, starting from the TSM simulator. Table
3 shows the values for each background traffic generator
pattern parameters.

6.1.1 Performance Metrics of TSM Algorithms
Various metrics were defined and captured during each

simulation execution. The overall performance of a grid
workflow application can be measured by the time it takes
to finish its total execution, which starts with the time it
is submitted to the TSM metascheduler and finishes when
the last composing job executes successfully, and its output
is received by the TSM metascheduler. We refer to this
time as Grid Application Execution Time (TGAET ). This
execution time takes into consideration the execution of the
grid application composing tasks, as well as the network

time consumed to transfer input and output files needed by
each composing task. Because a grid is a parallel execution
environment, TGAET is not the sum of each task execution
time, and each file transfer time. As more than a task can
execute at the same time, several execution and transfer tasks
overlap. On the other hand, contention over grid resources
and network connection introduces additional delays counted
toward TGAET . In addition, the use of the TSM algorithm
introduces another meta-scheduling computing time. As a
result, the total workflow execution time consists mainly
of three components: a task execution component TEX ,
a data transfer time component TDT , a meta-scheduling
component TTSM , and an idle time component TIDLE ,
spent either waiting for resources to be available, or when a
job is queued at the local grid machine scheduler. Therefore,
TGAET calculation formula is obtained as follows.

TGAET = TEX + TDT + TTSM + TIDLE (4)

TEX is the time spent running the task program on a grid
resource, and does not count network time. TDT is the total
time use to transfer data in and out of grid resources. TTSM

is the total meta-scheduling time taken by both the logical
and physical metascheduler to allocate resources to grid jobs
will depend on how many times it execute the matchmaking
algorithm. TIDLE is the time slot not used for the three main
active times is considered idle or unused. We also define the
Total Grid Time TTGT , which constitute the total time per
grid resource that was spent executing the grid application.
It is obtained as follows:

TTGT = TGAET ×Nr (5)

Where Nr is the number of available grid resources. In
our experimental simulated grid environment, Nr = 13.

7. Experiment Results
The purpose of these experiments is to study the effect of

varying both the background load and the scheduler variant
on the performance of the scheduling policies, and show
how grid workflow applications benefit from the two-stage
scheduling in real workflow situations. It also showcases
the value of TSM-SIM producing experimental results for
various grid scheduling and load conditions. We first present
an analysis of background load on grid workflow scheduling,
where we test the combination of ESA/WWA algorithms.
Second, we analyze the impact of delayed submission, using
the DESA/WWA algorithm combination.

7.1 Background Load Effect
We first consider the effect of background load on

scheduling different class of workflow grid applications. The
effect of background load effect on the total time is shown
in figures 7 to 10. As the load increases, the total time
increases, especially for the pure parallel flow (ED), and the



Fig. 7: Load Effect on ED Class Workflow.

pure sequential flow (HC). For the case of (ED), only high
background load effect the response time, while it only takes
some low background load to slow the workflow execution
in case of HC. Also, the effect of high load on the most
complex (ED) class workflow is more than 3 times the effect
of the type of load on HC class workflow. Note also that
slowdown due high load on HC class workflows is more
influenced by the size of the data, than by the complexity
of the workflow.

For a more general type workflow, such as class VP
and MB, the background load have less effect than the
case of ED and HC, with a maximum of 1.1 ratios for
VP, and of 1.5 for MB. The VP figure (figure 9) shows
an insignificant load effect on the total workflow execution
time, with no more that 0.1 increase ratio. This means a
close to optimal experimental utilization of grid resources.
However, the higher level of parallelism in a workflow (case
of MB), the more significant is the effect of background
load, especially in when it is high. In fact, for the case
of MB benchmark, which is the most complex benchmark,
the overall slowdown aproaches 50% under sustainable grid
load, especially in the case of the MB.B class benchmark.

As a conclusion, we can state that experimental tests using
TSM-SIM show that the effect of background grid loads
have a higher impact of grid workflows with high level of
parallelism (ED and MB). This can be correlated to the
average execution set size. In fact, a high level of parallelism
in a grid workflow causes the TSM logical metascheduler to
generate bigger execution sets. The jobs composing these
execution sets are more penalized by the background load,
because they also compete with each other for fast resources.

This peer competition effect, while it can also effect
non-related grid jobs, significantly impacts grid workflow
applications more than isolated grid jobs. The background
load effect in case of grid workflows is higher, because its
impact on scheduling and execution is compounded.

Fig. 8: Load Effect on HC Class Workflow.

Fig. 9: Load Effect on VP Class Workflow.

Fig. 10: Load Effect on MB Class Workflow.



7.2 Submission Delay Effect
In this experiment, we test the difference between the

ESA/WWA and DESA/WWA, and study the effect of the
introduction of a delay in submitting execution sets by
the logical meta-scheduler. In a real grid environment, the
motivation of such delay is to allow other grid resources to
become available, so that a better choice of grid resources is
possible. The intention is to wait for potential powerful grid
resources to join the pool of available grid resources, which
can be beneficial for the overall grid execution. We want to
measure if the time wasted waiting for such resources can
be easily made up by using a powerful grid resources. The
goal of this simulation run is to experimentally study when
such strategy is beneficial for grid workflow scheduling, and
identify application and environment properties that impact
this scheduling strategy. We simulate the submission delay
variant (TSM-SDV) in TSM-SIM, by keeping a constant
delay of 10 seconds, while varying the background load
on the grid infrastructure (grid network and resources). We
run 10 simulation of each kind, and measured the average
simulation time. We tested this scheduling variant for each
grid NGB benchmark (with the S, A, and B complexity
classes).

Figures 11 to 14 show the summary of these sim-
ulation runs. The Y axis shows the improvement rate
RATETSM−SDV that DESA contributes to the total work-
flow execution time compared to ESA. RATETSM−SDV is
calculated using the following equation:

RATETSM−SDV = TndGAET /TndGAET (6)

with TndGAET is the experiment total workflow execution
time in case of no submission delay, and TndGAET the same
time with submission delay.

The common observation is that submission-delay nega-
tively impacts the grid workflow execution time. In most
of the cases, a 50% performance hit is observed. (ED)
benchmarks experience the worst performance. The impact
can be as much as 500% (rate of 0.2) for the simple class
S under no background load. The impact is less visible in
case of high than low background load. We can explain this
by the 100% parallelism of ED applications. Delaying the
submission of the execution set, which contains most of
the grid workflow jobs in case of ED benchmarks, gives
the opportunity to background load jobs to use fast grid
resources. Thus, the penalty of any delay is greater than
any benefit that might be achieved. (HC) benchmarks suffer
similar negative impact. The performance hit, however, is
about constant, varying from a 0.35 to 0.6 factor depending
on the load. (MB) benchmarks, the most complex type
amount tested benchmarks, do record a similar performance
hit in the range of 0.25 to 0.75. The only difference with the
impact is amplified by heavy load in a significant proportion.
The response time for (VP) type benchmarks seems to be

Fig. 11: Submission Delay Effect on ED Class Workflow.

Fig. 12: Submission Delay Effect on HC Class Workflow.

different from other benchmarks. While the behavior seems
to be similar than other benchmarks in case of no or little
background load, the total grid application performance
seems to be un-affected by the submission delay variant.
In fact, in case of no load, a slight 10% improvement is
recorded, making it the only case where the submission delay
benefits the overall grid workflow performance.

8. Conclusions and Future Work

This paper outlined the details of TSM-SIM, a two-stage
grid metascheduling simulator aimed at grid workflow appli-
cations. It is primarily intended to test the TSM architecture
on a simulated environment, by building on existing GridSim
services to configure two-stage scheduling services. We have
demonstrated how it can be used to evaluate grid workflow
scheduling algorithms using NAS Grid benchmarks.

For future work, TSM-SIM will be used to analyze
the performance of other logical and physical scheduling
algorithms, using grid workflows. We also intend to build
extensibility modules to support high level grid schedulers
such as GridWay [14].



Fig. 13: Submission Delay Effect on VP Class Workflow.

Fig. 14: Submission Delay Effect on MB Class Workflow.

References
[1] M. Amine Belkoura and N. Lopez Benitez, Two-Stage Metascheduling

for Computational Grids, World Congress in Computer Science,
Computer Engineering, and Applied Computing, 2009.

[2] M. Amine Belkoura and N. Lopez Benitez, TSM-SIM: A Two-
Stage Grid Metascheduler Simulator, International Journal of Grid
Computing Applications (IJGCA), 2(4), 11 - 26, 2012.

[3] R. Buyya and M. Murshed, GridSim: A Toolkit for the Modeling and
Simulation of Distributed Resource Management and Scheduling for
Grid Computing, Journal of Concurrency and Computation: Practice
and Experience (CCPE), 2002.

[4] Anthony Sulistio, Uros Cibej, Srikumar Venugopal, Borut Robic and
Rajkumar Buyya, A Toolkit for Modelling and Simulating Data Grids:
An Extension to GridSim , Concurrency and Computation: Practice
and Experience (CCPE), Online ISSN: 1532-0634, Printed ISSN:
1532-0626, 20(13): 1591-1609, Wiley Press, New York, USA, 2008.

[5] Agustin Caminero, Anthony Sulistio, Blanca Caminero, Carmen
Carrion and Rajkumar Buyya,Extending GridSim with an Architecture
for Failure Detection , Proc. of the 13th International Conference on
Parallel and Distributed Systems (ICPADS 2007), Dec. 5-7, 2007,
Hsinchu, Taiwan.

[6] S. De Munck, K. Vanmechelen and J. Broeckhove, Improving The
Scalability of SimGrid Using Dynamic Routing,Proceedings of ICCS,
2009.

[7] Fred Howell and Ross McNab, Simjava: A Discrete Event Simulation
Package for Java with Applications in Computer Systems Modelling,
in Proc. of First International Conference on Web-based Modelling
and Simulation, San Diego CA, Society for Computer Simulation,
1998.

[8] A. Takefusa, K. Aida, S. Matsuoka, Overview of a Performance
Evaluation System for Global Computing Scheduling Algorithms,
Proceedings of the 8th IEEE International Symposium on High
Performance Distributed Computing (HPDC8), 1999.

[9] William H. Bell and David G. Cameron and Luigi Capozza and A.
Paul Millar and Kurt Stockinger and Floriano Zini, OptorSim - A
Grid Simulator for Studying Dynamic Data Replication Strategies,
International Journal of High Performance Computing Applications,
2003.

[10] M. Litzkow and M. Livny, Experience with the Condor Distributed
Batch System, Proceedings. of IEEEWorkshop on Experimental
Distributed Systems , 1990.

[11] Michael A. Frumkin and Rob F. Van der Wijngaart, NAS Grid
Benchmarks: A Tool for Grid Space Exploration, HPDC, 2001.

[12] Rob F. Van Der Wijngaart and Michael Frumkin, NAS Grid
Benchmarks Version 1.0, 2002.

[13] Anonymous, HPCC OSG Cluster Grid, available at http://antaeus.
hpcc.ttu.edu/wordpress/.

[14] Huedo, Eduardo and Montero, Ruben S. and Llorente, Ignacio M.
A Framework for Adaptive Execution in Grids, SoftwareŮPractice
Experience, Volume 34 Issue 7, 2004.


