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Abstract - Cluster computing has emerged as a new 

paradigm for solving large-scale problems. These workloads 

represent a broad variety of real-world applications in cluster 

and grid computing, such as BLAST (Basic Local Alignment 

Search Tool) [2], a bioinformatics application, and high 

energy and particle physics applications in ATLAS (A 

Toroidal LHC Apparatus) [6] and CMS (Compact Muon 

Solenoid) [10] projects. To provide performance guarantees 

in cluster computing environments, various real-time 

scheduling algorithms and workload models have been 

investigated. Computational loads that can be arbitrarily 

divided into independent pieces represent many real-world 

applications. Divisible load theory (DLT) provides insight into 

distribution strategies for such computations. However, the 

problem of providing performance guarantees to divisible 

load applications has not yet been systematically studied. This 

paper provides a survey and compares different algorithms for 

a cluster environment that provide a solution for the real time 

divisible load applications. And provide different parameters 

that affect the performance of these algorithms and scenarios 

when the choice of these parameters has significant effects are 

studied. It provides a taxonomy of the different scheduling 

methods, and considers the various performance metrics that 

can be used for comparison purposes.  

Keywords: grid computing, divisible load theory.  

 

1 Introduction 

  Real-time Divisible Load Theory (RT-DLT) holds great 

promise for modeling an emergent class of massively parallel 

real-time workloads. However, the theory needs strong formal 

foundations before it can be widely used for the design and 

analysis of hard real-time safety-critical applications. In[1] the 

general problem of obtaining such formal foundations, by 

generalizing and extending recent results and concepts from 

multiprocessor real-time scheduling theory.  

 Cluster computing has become an important paradigm 

[2] for solving large-scale problems. However, as the size of a 

cluster increases, so does the complexity of resource 

management and maintenance. Therefore, automated 

performance control and resource management are expected 

to play critical roles in sustaining the evolution of cluster 

computing. 

 Real-time divisible load scheduling is a well researched 

area [3, 4, 5, 6, 7, 8]. Focusing on satisfying QoS (Quality of 

services), providing real-time guarantees, and better utilizing 

cluster resources, existing approaches give little emphasis to 

scheduling efficiency. They assume that scheduling takes 

much less time than the execution of a task, and thus the 

scheduling overhead is ignored. When the processors in a 

cluster platform all become available at the same instant in 

time, the issue of scheduling a real-time divisible workload on 

such platforms is pretty well understood. However, the reality 

in many multiprocessor environments is that all the processors 

do not become available to a given workload at the same 

instant (perhaps because some of the processors are also being 

used for other purposes). 

 Broadly speaking, computational loads submitted to a 

cluster are structured in two primary ways: indivisible and 

divisible. An indivisible load is essentially a sequential job 

and thus must be assigned to a single processor. The divisible 

loads are comprised of tasks that can be executed in parallel 

and can be further divided into two categories: modularly 

divisible and arbitrarily divisible loads. Modularly divisible 

loads are divided a priori into a certain number of subtasks 

and are often described by a task (or processing) graph. 

Arbitrarily divisible loads can be partitioned into an 

arbitrarily large number of load fractions. Examples of 

arbitrarily divisible loads can be easily found in high-energy 

and particle physics as well as bio-metrics. For example, the 

CMS (Compact Muon Solenoid) [18] and ATLAS (A 

Toroidal LHC Apparatus) [19] projects, which are asso-ciated 

with the LHC (Large Hadron Collider) at CERN (European 

Laboratory for Particle Physics), execute cluster-based 

applica-tions with arbitrarily divisible loads. 

 There are three important decisions for an algorithm of 

real-time scheduling to schedule divisible loads. The first is to 

adopt a scheduling policy to determine the order of execution 

for tasks. The second decision is to determine the number of 

processing nodes (n) to allocate to each task and the third is to 

choose a strategy to partition the task among the allocated n 

nodes. 



 Description of the distributed system and assumption 

used by different algorithms of real time divisible load are 

discussed in section 2. Section 3 studies different scheduling 

policies that classify the algorithms used in real time divisible 

load. Different algorithms that are used to decide the number 

of nodes must be assigned to each task and method of 

portioning the task itself is discussed in section 4. The metrics  

used to measure the real time performance of different 

scheduling algorithms are explained in section 5 .Conclusion 

is given in section 6. 

1.1 Instructions for authors 

 An electronic copy of your full camera-ready paper 

must be uploaded (in PDF format) to Publication Web site 

before the announced deadline. Please follow the submission 

instructions shown on the web site. The URL to the website is 

included in the notification of acceptance that has been 

emailed to you by Prof. Arabnia. 

2 Tasks and System Assumption 

 The model of the investigated system used by different 

algorithms and the assumptions are as follow: 

System model: a cluster consists of a head node, denoted 

by 0p , and connected via a switch to n processing nodes, 

denoted by 1 2 3, , ,..... np p p p . And assuming that all 

processing nodes have the same computational power and all 

links from the switch to the processing nodes have the same 

bandwidth. The system model assumes a typical cluster 

environment in which the head node does not participate in 

computation. The role of the head node is to accept or reject 

incoming tasks, execute the scheduling algorithm, divide the 

workload and distribute data chunks to processing nodes. 

Since different nodes process different data chunks, the head 

node sequentially sends every data chunk to its corresponding 

processing node via the switch. And data transmission does 

not happen in parallel, although it is straightforward to 

generalize this model and include the case where some 

pipelining of communication may occur. There is an 

assumption for the divisible loads that is task and subtasks are 

independent. Therefore, there is no need for processing nodes 

to communicate with each other. 

 According to divisible load theory, linear models are used to 

represent processing and transmission times [10]. In the 

simplest scenario, the computation time of a load   is 

calculated by a cost function   pscp c  , where psc  

represents the time to compute a unit of workload on a single 

processing node. The transmission time of a load   is 

calculated by a cost function   mscm c  , where msc  is 

the time to transmit a unit of workload from the head node to a 

processing node. 

Tasks Assumption: Assuming that a real time aperiodic task 

model in which each a periodic task Ti consists of a single 

invocation specified by the tuple  , ,i i iA D , where      

iA  ≥  0 is the arrival time of the task, i  > 0 is the total 

data size of the task, and iD > 0 is its relative deadline. The 

absolute deadline of the task is given by iA + iD . Task 

execution time is dynamically computed based on total data 

size i , resources allocated (i.e., processing nodes and 

bandwidth) and the partitioning method applied to parallelize 

the computation. 

3 Scheduling Policies 
There are three scheduling policies to determine the 

execution order of tasks that are investigated in different 

algorithms: FIFO, EDF (earliest deadline first) and MWF 

(Maximum Workload derivative First)[1,2,9,10,12,20]. The 

FIFO scheduling algorithm executes tasks following their 

order of arrival. EDF, a well-known real-time scheduling 

algorithm, orders tasks by their absolute deadlines. MWF is a 

real-time scheduling algorithm for divisible tasks. The main 

rules of MWF are:  

1) A task with the highest workload derivative ( iDC ) is 

scheduled first.  

      2) The number of nodes allocated to a task is kept as small 

as possible (
min

in ) without violating its deadline.  Here, we 

review how MWF determines task execution order and define 

the workload derivative metric, iDC , where  iW n  is used 

to represent the workload (cost) of a task iT  when n 

processing nodes are assigned to it.  

   iDC  =    min min1i i i iW n W n                   (1) 

That is,    ,i iW n n n   , where  ,i n   denotes 

the task’s execution time. Therefore, iDC  is the derivative of 

the task workload  iW n  at 
min

in  (the minimum number of 

nodes needed by Ti to meet its deadline). 

4 Real time divisible algorithms 
 Different algorithms that investigate the real time divisible 

load are studied during the past few years. OPR which 

searches optimally to find the minimum number of processing 

nodes that satisfies the real time requirement of the load that is 

proposed in [1, 2, 9, 10, 20]. Another way to solve this 

problem follows the idea of equally portioning the load among 

the processing nodes that presented in [1, 2, 9, 10]. Task 

Waiting Queue (TWQ) algorithms are divisible load 



scheduling algorithms [3, 4, 5, 6, 7], that perform the schedule 

ability test. The admission controller generates a new schedule 

for the newly arrived task and all tasks waiting in TWQ, this 

decision module is referred to as the admission controller. 

When processing nodes become available, the dispatcher 

module partitions each task and dispatches subtasks to execute 

on processing nodes. And finally there are algorithms depend 

on the time which processing nodes are available at it. There 

are two algorithms of this idea first when processing nodes 

have equal ready and when processing nodes have different 

ready time, these algorithms presented in [7,14, 15]. In the 

following subsections a brief details of these algorithms are 

presented.    

4.1 Optimal Partitioning Rule (OPR) Algorithm 
 Divisible load theory states that optimal execution time is 

obtained for a divisible load if all processing nodes allocated 

to the task complete their computation at the same time instant 

[11]. This is called the Optimal Partitioning Rule (OPR). In 

divisible load theory, normally all n nodes of a cluster are 

allocated to a task. Then, following the OPR, the task load is 

partitioned such that all nodes finish processing at the same 

time. In contrast to this approach, first computing the 

minimum number of processing nodes needed to meet the 

task’s deadline given its schedule, and then partition the task 

following the OPR (using at least the minimum number of 

nodes required to meet the deadline). The execution time of a 

task is then trivially computed as the difference between its 

completion and start times. The following notations, partially 

adopted from [11], are used in these computations. 

 •  , ,T A D : A divisible task, where A is the 

arrival time,  is the data size, and D is the relative 

deadline. 

 •  1 2, ,....., n    : Data distribution vector, 

where n is the number of processing nodes allocated to 

the task, 
j  is the data fraction allocated to the 

thj  

node, i.e.,
j  , is the amount of data that is to be 

transmitted to the 
thj  node for processing, 0 1j   

and 
1

1
n

j

j




 . 

 • msc : Cost of transmitting a unit workload. 

 • psc : Cost of processing a unit workload. 

 The following cost functions describe that: the data 

transmission time on the 
thj  link is  m j j msc c     

and the data processing time on the 
thj  node is 

 p j j psc c    . 

 Figure 1 shows an example task execution time diagram 

following OPR when n nodes are allocated to process the task. 

Let   denote Task Execution Time, which is a function of   

and n.   

 

 

 

 

 

 

 

 

 

 

Figure 1: Time Diagram for OPR-Based Partitioning. 
 

By analyzing the diagram, we have 

  1 1, ms psn c c                          (2)                                  

         =  1 2 2ms psc c                 (3)                                             

              =  1 2 3 3ms psc c                 (4)                                                

                  . . . 

          =  1 2 3 ....... n ms n psc c            .    (5)                               

To specify the minimum number 
minn  of nodes that required 

to meet a task’s deadline, assuming that the task 

 , ,T A D  has a start time s, then the task completion time 

is C (n) = s +  , n   , which must satisfy the constraint that 

C(n) ≤  A + D. Lin et al. [14, 15, 16] derived the task 

execution time function  , n   and the minimum number  

minn  of nodes that the task needs at time s to meet its 

deadline are 

                            
1

,
1

ms psn
n c c


  




 


     (6)                                              

                           
min ln

ln
n





 
  
 

                                     (7) 

 where  

psms

ps

cc

c


   and  1 msc

A D s


  

 
. 

4.2 Equal Partitioning Rule (EPR) Algorithm 
          Equal Partitioning Rule (EPR) is based on a common 

practice of dividing a task into n equal-sized subtasks when 

the task is to be processed by n nodes. An example task 

execution time diagram following the EPR is shown in figure 

2. By analyzing the diagram, we have 

           ,
ps

ms

c
n c

n


     .                (8) 



Similar to the analysis for DLT-based OPR, Lin et al. [1, 2 ,9, 

10] derived the minimum number 
minn  for EPR. The 

minimum number of processing nodes that the task needs at 

time s to complete before its deadline is 

min ps

ms

c
n

A D s c





 
  

  
 

Figure 2: Time Diagram for EPR-Based Partitioning. 

 

4.3   Task waiting queue (TWQ) algorithms 

 In these algorithms [10] Mamat, Ying Lu, Jitender 

Deogun and Steve Goddard, when a task arrives, the 

scheduler determines if it is feasible to schedule the new task 

without compromising the guarantees for previously admitted 

tasks. Only those tasks that pass this schedule ability test are 

allowed to enter the task waiting queue (TWQ). This decision 

module is referred to as the admission controller. When 

processing nodes become available, the dispatcher module 

partitions each task and dispatches subtasks to execute on 

processing nodes. In the Modules, admission controller and 

dispatcher, run on the head node. For existing divisible load 

scheduling algorithms [3, 4, 5, 6, 7], in order to perform the 

schedule ability test, the admission controller generates a new 

schedule for the newly arrived task and all tasks waiting in 

TWQ. If the schedule is feasible, the new task is accepted; 

otherwise, it is rejected. For these algorithms, the dispatcher 

acts as an execution agent, which simply implements the 

feasible schedule developed by the admission controller.  

 There are two factors that contribute to large overheads of 

these algorithms. First, to make an admission control decision, 

they reschedule tasks in TWQ. Second, they calculate in the 

admission controller the minimum number 
minn  of nodes 

required to meet a task’s deadline so that it guarantees enough 

resources for each task. The later a task starts, the more nodes 

are needed to complete it before its deadline. Therefore, if a 

task is rescheduled to start at a different time, the 
minn of the 

task may change and needs to be recomputed. This process of 

rescheduling and re-computing 
minn  of waiting tasks 

introduces a big overhead.   

 The dispatching algorithm [10] is rather straightforward. 

When a processing node and the head node become available, 

the dispatcher takes the first task τ (A, σ, D) in TWQ, 

partitions the task and sends a subtask of size ˆσ to the node, 

where ˆ min ,
ms ps

A D CurrentTime

c c
 

  
    

. The 

remaining portion of the task τ (A, σ-̂  ,D) is left in TWQ. 

The dispatcher chooses a proper size ̂  to guarantee that the 

dispatched subtask completes no later than the task’s absolute 

deadline A + D. Following the algorithm, all subtasks of a 

given task complete at the task absolute deadline, except for 

the last one, which may not be big enough to occupy the node 

until the task deadline. By dispatching the task as soon as the 

resources become available and letting the task occupy the 

node until the task deadline, the dispatcher allocates the 

minimum number of nodes to each task. 

4.4 Case of Processor Ready Times 
 These algorithms can solve the real time divisible load by 

depending on the time which processing nodes are ready at it. 

This approach contains two kinds algorithms, algorithms when 

the processing nodes are equal ready time and algorithms 

when different ready time. The following subsections describe 

briefly the ideas of these algorithms.  

4.4.1 Processors with Equal Ready Times  

 In [14, 15, 18], it is assumed that all the processors, 

upon which a particular job will be distributed by the head 

node, are available for that job over the entire time-interval 

between the instant that the head-node initiates data transfer to 

any one of these nodes, and the instant that it completes 

execution upon all the nodes. Under this model of processor 

availability, it is known that the completion time of a job on a 

given set of processing nodes is minimized if all the 

processing nodes complete their execution of the job at the 

same instant. This makes intuitive sense – if some processing 

node completes before the others for a given distribution of 

the job’s workload, then a different distribution of the 

workload that transfers some of the assigned work from the 

remaining processing node to this one would have an earlier 

completion time. Figure 6 depicts the data transmission and 

execution time diagram when processors have equal ready 

times. 

Figure 6: Data transmission and execution time diagram 

when processor have equal ready times 



For a given job ( A, σ ,D) and a given number of processing 

nodes n, let i  ×α denote the amount of the load of the job 

that is assigned to the 
thj  processing node, 1≤  j ≤  n . Since 

data-transmission occurs sequentially, the node i P can only 

receive data after the previous (i − 1) nodes have completed 

receiving their data. Hence, each ip  receives its data 

over the interval 
1

1 1

,
i i

m j m i

j j

c c   


 

 


 
   

And therefore completes execution at time-instant 

1

i

m j p i

j

c c   


    Then time execution time is 

assignment by equation (6) and to determine a minimum 

number of processors needed is computed from equation (6) 

by setting   this completion time to the job’s deadline (A+ D) 

in Equation (6), and making “n” — the number of processors 

— the variable. (Since the number of processors is necessary 

integral, it is actually the ceiling of this value that is the 

minimum number of processors.)  

4.4.2 Processors with Different Ready Times Algorithm 

 In [16, 17], Lin et al. allow for the possibility that all the 

processors are not immediately available. To determine the 

completion time of a job upon a given number of processors in 

this more general setting, Lin et al.[16, 17, 21] adopt a 

heuristic approach that aims to partition a job so that the 

allocated processors could start at different times but finish 

computation (almost) simultaneously. 

To achieve this, they first map the given homogenous cluster 

with different processor available times 1 2, ,.... nr r r  (with 

1i ir r    ) into a heterogeneous model where all n assigned 

nodes become available simultaneously at the time-instant nr , 

but different processors may have different computing 

capacities. Intuitively speaking, the 
thi  processor has its 

computing capacity inflated to account for the reality that it is 

able to execute over the interval  ,i nr r  as well. Figure 7 

depicts the data transmission and execution time diagram 

when processors have different ready times. 

Figure 7: Data transmission and execution time diagram when 

processors have different ready times 

In Lin et al [16, 17] , this heterogeneity is modeled by 

associating a different constant 
ipsc  with each processor ip , 

with the interpretation that it takes 
ipsc  time to complete one 

unit of work on the processor ip  . The formula for 

determining 
ipsc  , as given in Lin et al [16, 17] , is  

         
n

 (  , n) 

 (  , n) +rips

i

c
r

 

 



                 (11)  

 

Where ξ (σ , n) denotes the completion time if all 

processors are immediately available in the original 

(homogenous) cluster  these 
ipsc  values are used to derive 

formulas for computing the fractions of the workload that are 

to be allocated to each heterogeneous processor such that all 

processors complete at approximately the same time, and for 

computing this completion-time.                         

 4.5 Least Cost Methods  
               G.K.Kamalam and Dr.V.Murali Bhaskaran [25] 

introduce a decentralized job scheduling algorithms which 

performs intra cluster and inter cluster (grid) job scheduling. 

They  apply Divisible Load Theory (DLT) and Least Cost 

Method (LCM) to model the grid scheduling problem 

involving multiple resources within an intra cluster and inter 

cluster grid environment. The  LCM method, the jobs are 

allocated to the resource with the least allocation cost [26]. 

The algorithm reduces the total processing time and the total 

cost and  the resource utilization is more and the load is 

balanced across the grid environment. 

 Xin Liu et al [23,24] proposed another  algorithm in which 

they tried to obtain minimum cost by perturbing the schedule 

of some tasks from minimum time solution. They proposed 

min-time algorithm to find the minimum completion time and 

the min-cost algorithm to find the minimum cost without 

considering the deadline constraint. Their  proposed algorithm 

is a hybrid scheduling algorithm to minimize some of the tasks 

lying to the first of the list follow min time and the remaining 

tasks in the list follow min cost algorithm. This is called as 

perturbation degree. Their proposed algorithm stated that the 

task from the list is allowed to evaluate the minimum 

completion time and if it is greater than the deadline, then 

there is no possibility of getting feasible solution, if the 

minimum completion time is less than the deadline then binary 

search is used recursively for largest perturbation degree, such 

that the current or  the next perturbation degree is smaller than 

the deadline. Now the cost and perturbation degree is obtained 

and returned as schedule with minimum cost and finished 

before deadline. 



5 Metrics of real time divisible load for 

cluster scheduling  
 To measure the performance and distinguish between 

algorithms, different metrics are used. These metrics are used 

to measure the effects of parameters on these algorithms and it 

also merits between them. 

The DC Ratio, task reject ratio, processing speed and number 

of nodes are the main performance metrics used by OPR, EPR 

and ready time processor algorithms. While task reject ratio, 

system utilization and scheduling overhead are used by TQW 

algorithms to measure their performance. The following 

subsections give brief descriptions of these metrics.  

5.1 Effect of Task Reject Ratio 

 There is new metric Task Reject Ratio can use it to specify 

the real-time scheduling algorithm is better or not , which is 

define as the ratio of the number of tasks rejected by a real-

time scheduling algorithm to the total number of tasks arriving 

at the cluster The smaller the Task Reject Ratio, the better the 

real-time scheduling algorithm. The Task Reject Ratio of the 

four algorithms: EDF-OPR-MN, EDF-EPR-MN, EDF-OPR-

AN, and EDF-EPR-AN. Observe that EDF-OPR-MN always 

leads to a lower Task Reject Ratio than EDF-EPR-MN. 

Similarly, observe that EDF-OPR-AN always achieves a lower 

Task Reject Ratio than EDF-EPR-AN. These simulation 

results confirm the hypothesis [10] that it is advantageous to 

apply DLT in real-time, cluster-based scheduling algorithms. 

DLT provides an optimal task partitioning, which leads to 

minimum task execution times, and as a result the cluster can 

satisfy a larger number of task deadlines. 

5.2 Effects of DCRatio 
 [1,2] There are another metric that effect on the real time 

algorithms  that is DCRatio which is defined as the ratio of 

mean deadline to mean minimum execution time (cost), that 

is
 

AvgD

Avg ,N 
, where  Avg ,N    is the task 

execution time computed with Eq (6) assuming the task has an 

average data size Avg  and runs on all N processing nodes. 

To study the effects of the DCRatio, on the real time 

algorithms of divisible load, observe that by increasing 

DCRatio, the performance of EDF-EPR-AN becomes closer to 

that of EDF-OPR-AN. This is because the higher the DCRatio, 

the looser the task relative deadlines are. Consequently, the 

worse execution times caused by a non-optimal partition, like 

EPR, will have less impact on the algorithms’ performance. In 

particular, when DCRatio is extremely high (100), the two 

algorithms perform almost the same. 

5.3 Effects of Processing Speed 
 By studying effects of processing speed, the algorithm with 

OPR [9,10] partitioning (EDF-OPR-MN) still outperforms the 

algorithm with EPR partitioning (EDF-EPR-MN). However, 

as the processing speed decreases, i.e., psc  increases, the 

difference between the two algorithms becomes less and less 

significant. In particular, when the computation is extremely 

slow (
psc = 10000), the curves for the two algorithms are 

almost overlapped, indicating non-differentiable Task Reject 

Ratios. Therefore, OPR and EPR will perform the same in this 

case. From the aforementioned intensive experiments, then the 

conclusion is  no matter what the system parameters are, the 

algorithms with DLT-based partitioning (OPR) always 

perform better than the ones with the equal-sized partitioning 

heuristic (EPR). This shows that it is beneficial to apply 

divisible load theory in real-time, cluster-based scheduling. 

5.4 All nodes N versus  
minn  Nodes 

 The performance of real time divisible load algorithm 

[9,10,20] difference in algorithms assigning all N nodes to 

every task (ALG-AN) v.s. those assigning the minimum 

number 
minn of nodes needed to meet a task’s deadline 

(ALG-MN). Where the relative performance of EDF-OPR-

MN v.s. EDF-OPR-AN is noteworthy that in contrast to the 

results in [12] comparing MWF (-MN) and FIXED (-AN) 

algorithms, the initial data seem to indicate that EDF-OPR-AN 

outperforms EDF-OPR-MN most of the time. To gain insight 

into the performance results, Carry out rigorous analysis of a 

simplified scenario where a scheduling algorithm always 

assigns K nodes (K < N) to a periodic divisible task. This 

analysis sheds new light on possible scenarios where 

algorithms assigning 
minn  nodes (ALG-MN) perform better 

than those assigning all N nodes (ALG-AN). 

5.5 Scheduling Overhead and cost 

 This metrics investigate the effect of  scheduling overheads 

and deadline constrain. Theses algorithms try to minimize the 

overhead affected by the scheduling algorithms and meet the 

deadline constrain.  

6. Conclusion 
 In this paper, the real-time divisible load distribution 

problem in computational grid is investigated. We try to 

present the progress and developing efforts to determine the 

best mechanisms, policies and analysis to use in these systems. 

Different matrices and constrains can be compromised by 

building systems using approaches that lack the necessary 

theoretical underpinnings. Ultimately, computational grid  will 

be used in high integrity real-time systems, and consequently, 

timing failures could affect safety. The paper study different 

scheduling algorithms; scheduling policies, and  hybrid 

algorithms. Comparisons of fewer algorithms with various 

factors influencing Grid system are explained. An 

investigation on various factors that influence the scheduling 

in grid has been made and shown in this paper. This is an 

effort made to find the silver lining in the dark clouds which 

could paint an idea about the scheduling policies applied to 

the real-time divisible load problem in computational 

environment. 
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