
Survey of Real Time Divisible Load Scheduling

Algorithms in computational grid

Mohamed Youssri A. El Nahas
 1
, Nahed M. El Desouky

 2
, Sahar A. Gomaa

2
and Naglaa Mostafa

 2

1
Faculty of Engineering , Al-Azhar University(girls) Cairo, Egypt.

2
Departement of Mathematics, Computer Branch, Faculty of Science ,

 Al-Azhar University(girls), Cairo, Egypt

Abstract - Cluster computing has emerged as a new

paradigm for solving large-scale problems. These workloads

represent a broad variety of real-world applications in cluster

and grid computing, such as BLAST (Basic Local Alignment

Search Tool) [2], a bioinformatics application, and high

energy and particle physics applications in ATLAS (A

Toroidal LHC Apparatus) [6] and CMS (Compact Muon

Solenoid) [10] projects. To provide performance guarantees

in cluster computing environments, various real-time

scheduling algorithms and workload models have been

investigated. Computational loads that can be arbitrarily

divided into independent pieces represent many real-world

applications. Divisible load theory (DLT) provides insight into

distribution strategies for such computations. However, the

problem of providing performance guarantees to divisible

load applications has not yet been systematically studied. This

paper provides a survey and compares different algorithms for

a cluster environment that provide a solution for the real time

divisible load applications. And provide different parameters

that affect the performance of these algorithms and scenarios

when the choice of these parameters has significant effects are

studied. It provides a taxonomy of the different scheduling

methods, and considers the various performance metrics that

can be used for comparison purposes.

Keywords: grid computing, divisible load theory.

1 Introduction

 Real-time Divisible Load Theory (RT-DLT) holds great

promise for modeling an emergent class of massively parallel

real-time workloads. However, the theory needs strong formal

foundations before it can be widely used for the design and

analysis of hard real-time safety-critical applications. In[1] the

general problem of obtaining such formal foundations, by

generalizing and extending recent results and concepts from

multiprocessor real-time scheduling theory.

 Cluster computing has become an important paradigm

[2] for solving large-scale problems. However, as the size of a

cluster increases, so does the complexity of resource

management and maintenance. Therefore, automated

performance control and resource management are expected

to play critical roles in sustaining the evolution of cluster

computing.

 Real-time divisible load scheduling is a well researched

area [3, 4, 5, 6, 7, 8]. Focusing on satisfying QoS (Quality of

services), providing real-time guarantees, and better utilizing

cluster resources, existing approaches give little emphasis to

scheduling efficiency. They assume that scheduling takes

much less time than the execution of a task, and thus the

scheduling overhead is ignored. When the processors in a

cluster platform all become available at the same instant in

time, the issue of scheduling a real-time divisible workload on

such platforms is pretty well understood. However, the reality

in many multiprocessor environments is that all the processors

do not become available to a given workload at the same

instant (perhaps because some of the processors are also being

used for other purposes).

 Broadly speaking, computational loads submitted to a

cluster are structured in two primary ways: indivisible and

divisible. An indivisible load is essentially a sequential job

and thus must be assigned to a single processor. The divisible

loads are comprised of tasks that can be executed in parallel

and can be further divided into two categories: modularly

divisible and arbitrarily divisible loads. Modularly divisible

loads are divided a priori into a certain number of subtasks

and are often described by a task (or processing) graph.

Arbitrarily divisible loads can be partitioned into an

arbitrarily large number of load fractions. Examples of

arbitrarily divisible loads can be easily found in high-energy

and particle physics as well as bio-metrics. For example, the

CMS (Compact Muon Solenoid) [18] and ATLAS (A

Toroidal LHC Apparatus) [19] projects, which are asso-ciated

with the LHC (Large Hadron Collider) at CERN (European

Laboratory for Particle Physics), execute cluster-based

applica-tions with arbitrarily divisible loads.

 There are three important decisions for an algorithm of

real-time scheduling to schedule divisible loads. The first is to

adopt a scheduling policy to determine the order of execution

for tasks. The second decision is to determine the number of

processing nodes (n) to allocate to each task and the third is to

choose a strategy to partition the task among the allocated n

nodes.

 Description of the distributed system and assumption

used by different algorithms of real time divisible load are

discussed in section 2. Section 3 studies different scheduling

policies that classify the algorithms used in real time divisible

load. Different algorithms that are used to decide the number

of nodes must be assigned to each task and method of

portioning the task itself is discussed in section 4. The metrics

used to measure the real time performance of different

scheduling algorithms are explained in section 5 .Conclusion

is given in section 6.

1.1 Instructions for authors

 An electronic copy of your full camera-ready paper

must be uploaded (in PDF format) to Publication Web site

before the announced deadline. Please follow the submission

instructions shown on the web site. The URL to the website is

included in the notification of acceptance that has been

emailed to you by Prof. Arabnia.

2 Tasks and System Assumption

 The model of the investigated system used by different

algorithms and the assumptions are as follow:

System model: a cluster consists of a head node, denoted

by 0p , and connected via a switch to n processing nodes,

denoted by 1 2 3, , ,..... np p p p . And assuming that all

processing nodes have the same computational power and all

links from the switch to the processing nodes have the same

bandwidth. The system model assumes a typical cluster

environment in which the head node does not participate in

computation. The role of the head node is to accept or reject

incoming tasks, execute the scheduling algorithm, divide the

workload and distribute data chunks to processing nodes.

Since different nodes process different data chunks, the head

node sequentially sends every data chunk to its corresponding

processing node via the switch. And data transmission does

not happen in parallel, although it is straightforward to

generalize this model and include the case where some

pipelining of communication may occur. There is an

assumption for the divisible loads that is task and subtasks are

independent. Therefore, there is no need for processing nodes

to communicate with each other.

 According to divisible load theory, linear models are used to

represent processing and transmission times [10]. In the

simplest scenario, the computation time of a load  is

calculated by a cost function   pscp c  , where psc

represents the time to compute a unit of workload on a single

processing node. The transmission time of a load  is

calculated by a cost function   mscm c  , where msc is

the time to transmit a unit of workload from the head node to a

processing node.

Tasks Assumption: Assuming that a real time aperiodic task

model in which each a periodic task Ti consists of a single

invocation specified by the tuple  , ,i i iA D , where

iA ≥ 0 is the arrival time of the task, i > 0 is the total

data size of the task, and iD > 0 is its relative deadline. The

absolute deadline of the task is given by iA + iD . Task

execution time is dynamically computed based on total data

size i , resources allocated (i.e., processing nodes and

bandwidth) and the partitioning method applied to parallelize

the computation.

3 Scheduling Policies
There are three scheduling policies to determine the

execution order of tasks that are investigated in different

algorithms: FIFO, EDF (earliest deadline first) and MWF

(Maximum Workload derivative First)[1,2,9,10,12,20]. The

FIFO scheduling algorithm executes tasks following their

order of arrival. EDF, a well-known real-time scheduling

algorithm, orders tasks by their absolute deadlines. MWF is a

real-time scheduling algorithm for divisible tasks. The main

rules of MWF are:

1) A task with the highest workload derivative (iDC) is

scheduled first.

 2) The number of nodes allocated to a task is kept as small

as possible (
min

in) without violating its deadline. Here, we

review how MWF determines task execution order and define

the workload derivative metric, iDC , where  iW n is used

to represent the workload (cost) of a task iT when n

processing nodes are assigned to it.

 iDC =    min min1i i i iW n W n  (1)

That is,    ,i iW n n n   , where  ,i n  denotes

the task’s execution time. Therefore, iDC is the derivative of

the task workload  iW n at
min

in (the minimum number of

nodes needed by Ti to meet its deadline).

4 Real time divisible algorithms
 Different algorithms that investigate the real time divisible

load are studied during the past few years. OPR which

searches optimally to find the minimum number of processing

nodes that satisfies the real time requirement of the load that is

proposed in [1, 2, 9, 10, 20]. Another way to solve this

problem follows the idea of equally portioning the load among

the processing nodes that presented in [1, 2, 9, 10]. Task

Waiting Queue (TWQ) algorithms are divisible load

scheduling algorithms [3, 4, 5, 6, 7], that perform the schedule

ability test. The admission controller generates a new schedule

for the newly arrived task and all tasks waiting in TWQ, this

decision module is referred to as the admission controller.

When processing nodes become available, the dispatcher

module partitions each task and dispatches subtasks to execute

on processing nodes. And finally there are algorithms depend

on the time which processing nodes are available at it. There

are two algorithms of this idea first when processing nodes

have equal ready and when processing nodes have different

ready time, these algorithms presented in [7,14, 15]. In the

following subsections a brief details of these algorithms are

presented.

4.1 Optimal Partitioning Rule (OPR) Algorithm
 Divisible load theory states that optimal execution time is

obtained for a divisible load if all processing nodes allocated

to the task complete their computation at the same time instant

[11]. This is called the Optimal Partitioning Rule (OPR). In

divisible load theory, normally all n nodes of a cluster are

allocated to a task. Then, following the OPR, the task load is

partitioned such that all nodes finish processing at the same

time. In contrast to this approach, first computing the

minimum number of processing nodes needed to meet the

task’s deadline given its schedule, and then partition the task

following the OPR (using at least the minimum number of

nodes required to meet the deadline). The execution time of a

task is then trivially computed as the difference between its

completion and start times. The following notations, partially

adopted from [11], are used in these computations.

 •  , ,T A D : A divisible task, where A is the

arrival time, is the data size, and D is the relative

deadline.

 •  1 2, ,....., n    : Data distribution vector,

where n is the number of processing nodes allocated to

the task,
j is the data fraction allocated to the

thj

node, i.e.,
j  , is the amount of data that is to be

transmitted to the
thj node for processing, 0 1j 

and
1

1
n

j

j




 .

 • msc : Cost of transmitting a unit workload.

 • psc : Cost of processing a unit workload.

 The following cost functions describe that: the data

transmission time on the
thj link is  m j j msc c   

and the data processing time on the
thj node is

 p j j psc c    .

 Figure 1 shows an example task execution time diagram

following OPR when n nodes are allocated to process the task.

Let  denote Task Execution Time, which is a function of 

and n.

Figure 1: Time Diagram for OPR-Based Partitioning.

By analyzing the diagram, we have

  1 1, ms psn c c       (2)

 =  1 2 2ms psc c      (3)

 =  1 2 3 3ms psc c        (4)

 . . .

 =  1 2 3 n ms n psc c           . (5)

To specify the minimum number
minn of nodes that required

to meet a task’s deadline, assuming that the task

 , ,T A D has a start time s, then the task completion time

is C (n) = s +  , n  , which must satisfy the constraint that

C(n) ≤ A + D. Lin et al. [14, 15, 16] derived the task

execution time function  , n  and the minimum number

minn of nodes that the task needs at time s to meet its

deadline are

    
1

,
1

ms psn
n c c


  




 


 (6)

min ln

ln
n





 
  
 

 (7)

 where

psms

ps

cc

c


 and 1 msc

A D s


  

 
.

4.2 Equal Partitioning Rule (EPR) Algorithm
 Equal Partitioning Rule (EPR) is based on a common

practice of dividing a task into n equal-sized subtasks when

the task is to be processed by n nodes. An example task

execution time diagram following the EPR is shown in figure

2. By analyzing the diagram, we have

  ,
ps

ms

c
n c

n


    . (8)

Similar to the analysis for DLT-based OPR, Lin et al. [1, 2 ,9,

10] derived the minimum number
minn for EPR. The

minimum number of processing nodes that the task needs at

time s to complete before its deadline is

min ps

ms

c
n

A D s c





 
  

  

Figure 2: Time Diagram for EPR-Based Partitioning.

4.3 Task waiting queue (TWQ) algorithms

 In these algorithms [10] Mamat, Ying Lu, Jitender

Deogun and Steve Goddard, when a task arrives, the

scheduler determines if it is feasible to schedule the new task

without compromising the guarantees for previously admitted

tasks. Only those tasks that pass this schedule ability test are

allowed to enter the task waiting queue (TWQ). This decision

module is referred to as the admission controller. When

processing nodes become available, the dispatcher module

partitions each task and dispatches subtasks to execute on

processing nodes. In the Modules, admission controller and

dispatcher, run on the head node. For existing divisible load

scheduling algorithms [3, 4, 5, 6, 7], in order to perform the

schedule ability test, the admission controller generates a new

schedule for the newly arrived task and all tasks waiting in

TWQ. If the schedule is feasible, the new task is accepted;

otherwise, it is rejected. For these algorithms, the dispatcher

acts as an execution agent, which simply implements the

feasible schedule developed by the admission controller.

 There are two factors that contribute to large overheads of

these algorithms. First, to make an admission control decision,

they reschedule tasks in TWQ. Second, they calculate in the

admission controller the minimum number
minn of nodes

required to meet a task’s deadline so that it guarantees enough

resources for each task. The later a task starts, the more nodes

are needed to complete it before its deadline. Therefore, if a

task is rescheduled to start at a different time, the
minn of the

task may change and needs to be recomputed. This process of

rescheduling and re-computing
minn of waiting tasks

introduces a big overhead.

 The dispatching algorithm [10] is rather straightforward.

When a processing node and the head node become available,

the dispatcher takes the first task τ (A, σ, D) in TWQ,

partitions the task and sends a subtask of size ˆσ to the node,

where ˆ min ,
ms ps

A D CurrentTime

c c
 

  
    

. The

remaining portion of the task τ (A, σ-̂ ,D) is left in TWQ.

The dispatcher chooses a proper size ̂ to guarantee that the

dispatched subtask completes no later than the task’s absolute

deadline A + D. Following the algorithm, all subtasks of a

given task complete at the task absolute deadline, except for

the last one, which may not be big enough to occupy the node

until the task deadline. By dispatching the task as soon as the

resources become available and letting the task occupy the

node until the task deadline, the dispatcher allocates the

minimum number of nodes to each task.

4.4 Case of Processor Ready Times
 These algorithms can solve the real time divisible load by

depending on the time which processing nodes are ready at it.

This approach contains two kinds algorithms, algorithms when

the processing nodes are equal ready time and algorithms

when different ready time. The following subsections describe

briefly the ideas of these algorithms.

4.4.1 Processors with Equal Ready Times

 In [14, 15, 18], it is assumed that all the processors,

upon which a particular job will be distributed by the head

node, are available for that job over the entire time-interval

between the instant that the head-node initiates data transfer to

any one of these nodes, and the instant that it completes

execution upon all the nodes. Under this model of processor

availability, it is known that the completion time of a job on a

given set of processing nodes is minimized if all the

processing nodes complete their execution of the job at the

same instant. This makes intuitive sense – if some processing

node completes before the others for a given distribution of

the job’s workload, then a different distribution of the

workload that transfers some of the assigned work from the

remaining processing node to this one would have an earlier

completion time. Figure 6 depicts the data transmission and

execution time diagram when processors have equal ready

times.

Figure 6: Data transmission and execution time diagram

when processor have equal ready times

For a given job (A, σ ,D) and a given number of processing

nodes n, let i ×α denote the amount of the load of the job

that is assigned to the
thj processing node, 1≤ j ≤ n . Since

data-transmission occurs sequentially, the node i P can only

receive data after the previous (i − 1) nodes have completed

receiving their data. Hence, each ip receives its data

over the interval
1

1 1

,
i i

m j m i

j j

c c   


 

 


 
 

And therefore completes execution at time-instant

1

i

m j p i

j

c c   


 Then time execution time is

assignment by equation (6) and to determine a minimum

number of processors needed is computed from equation (6)

by setting this completion time to the job’s deadline (A+ D)

in Equation (6), and making “n” — the number of processors

— the variable. (Since the number of processors is necessary

integral, it is actually the ceiling of this value that is the

minimum number of processors.)

4.4.2 Processors with Different Ready Times Algorithm

 In [16, 17], Lin et al. allow for the possibility that all the

processors are not immediately available. To determine the

completion time of a job upon a given number of processors in

this more general setting, Lin et al.[16, 17, 21] adopt a

heuristic approach that aims to partition a job so that the

allocated processors could start at different times but finish

computation (almost) simultaneously.

To achieve this, they first map the given homogenous cluster

with different processor available times 1 2, ,.... nr r r (with

1i ir r  ) into a heterogeneous model where all n assigned

nodes become available simultaneously at the time-instant nr ,

but different processors may have different computing

capacities. Intuitively speaking, the
thi processor has its

computing capacity inflated to account for the reality that it is

able to execute over the interval  ,i nr r as well. Figure 7

depicts the data transmission and execution time diagram

when processors have different ready times.

Figure 7: Data transmission and execution time diagram when

processors have different ready times

In Lin et al [16, 17] , this heterogeneity is modeled by

associating a different constant
ipsc with each processor ip ,

with the interpretation that it takes
ipsc time to complete one

unit of work on the processor ip . The formula for

determining
ipsc , as given in Lin et al [16, 17] , is

n

 (, n)

 (, n) +rips

i

c
r

 

 



 (11)

Where ξ (σ , n) denotes the completion time if all

processors are immediately available in the original

(homogenous) cluster these
ipsc values are used to derive

formulas for computing the fractions of the workload that are

to be allocated to each heterogeneous processor such that all

processors complete at approximately the same time, and for

computing this completion-time.

 4.5 Least Cost Methods
 G.K.Kamalam and Dr.V.Murali Bhaskaran [25]

introduce a decentralized job scheduling algorithms which

performs intra cluster and inter cluster (grid) job scheduling.

They apply Divisible Load Theory (DLT) and Least Cost

Method (LCM) to model the grid scheduling problem

involving multiple resources within an intra cluster and inter

cluster grid environment. The LCM method, the jobs are

allocated to the resource with the least allocation cost [26].

The algorithm reduces the total processing time and the total

cost and the resource utilization is more and the load is

balanced across the grid environment.

 Xin Liu et al [23,24] proposed another algorithm in which

they tried to obtain minimum cost by perturbing the schedule

of some tasks from minimum time solution. They proposed

min-time algorithm to find the minimum completion time and

the min-cost algorithm to find the minimum cost without

considering the deadline constraint. Their proposed algorithm

is a hybrid scheduling algorithm to minimize some of the tasks

lying to the first of the list follow min time and the remaining

tasks in the list follow min cost algorithm. This is called as

perturbation degree. Their proposed algorithm stated that the

task from the list is allowed to evaluate the minimum

completion time and if it is greater than the deadline, then

there is no possibility of getting feasible solution, if the

minimum completion time is less than the deadline then binary

search is used recursively for largest perturbation degree, such

that the current or the next perturbation degree is smaller than

the deadline. Now the cost and perturbation degree is obtained

and returned as schedule with minimum cost and finished

before deadline.

5 Metrics of real time divisible load for

cluster scheduling
 To measure the performance and distinguish between

algorithms, different metrics are used. These metrics are used

to measure the effects of parameters on these algorithms and it

also merits between them.

The DC Ratio, task reject ratio, processing speed and number

of nodes are the main performance metrics used by OPR, EPR

and ready time processor algorithms. While task reject ratio,

system utilization and scheduling overhead are used by TQW

algorithms to measure their performance. The following

subsections give brief descriptions of these metrics.

5.1 Effect of Task Reject Ratio

 There is new metric Task Reject Ratio can use it to specify

the real-time scheduling algorithm is better or not , which is

define as the ratio of the number of tasks rejected by a real-

time scheduling algorithm to the total number of tasks arriving

at the cluster The smaller the Task Reject Ratio, the better the

real-time scheduling algorithm. The Task Reject Ratio of the

four algorithms: EDF-OPR-MN, EDF-EPR-MN, EDF-OPR-

AN, and EDF-EPR-AN. Observe that EDF-OPR-MN always

leads to a lower Task Reject Ratio than EDF-EPR-MN.

Similarly, observe that EDF-OPR-AN always achieves a lower

Task Reject Ratio than EDF-EPR-AN. These simulation

results confirm the hypothesis [10] that it is advantageous to

apply DLT in real-time, cluster-based scheduling algorithms.

DLT provides an optimal task partitioning, which leads to

minimum task execution times, and as a result the cluster can

satisfy a larger number of task deadlines.

5.2 Effects of DCRatio
 [1,2] There are another metric that effect on the real time

algorithms that is DCRatio which is defined as the ratio of

mean deadline to mean minimum execution time (cost), that

is
 

AvgD

Avg ,N 
, where  Avg ,N  is the task

execution time computed with Eq (6) assuming the task has an

average data size Avg and runs on all N processing nodes.

To study the effects of the DCRatio, on the real time

algorithms of divisible load, observe that by increasing

DCRatio, the performance of EDF-EPR-AN becomes closer to

that of EDF-OPR-AN. This is because the higher the DCRatio,

the looser the task relative deadlines are. Consequently, the

worse execution times caused by a non-optimal partition, like

EPR, will have less impact on the algorithms’ performance. In

particular, when DCRatio is extremely high (100), the two

algorithms perform almost the same.

5.3 Effects of Processing Speed
 By studying effects of processing speed, the algorithm with

OPR [9,10] partitioning (EDF-OPR-MN) still outperforms the

algorithm with EPR partitioning (EDF-EPR-MN). However,

as the processing speed decreases, i.e., psc increases, the

difference between the two algorithms becomes less and less

significant. In particular, when the computation is extremely

slow (
psc = 10000), the curves for the two algorithms are

almost overlapped, indicating non-differentiable Task Reject

Ratios. Therefore, OPR and EPR will perform the same in this

case. From the aforementioned intensive experiments, then the

conclusion is no matter what the system parameters are, the

algorithms with DLT-based partitioning (OPR) always

perform better than the ones with the equal-sized partitioning

heuristic (EPR). This shows that it is beneficial to apply

divisible load theory in real-time, cluster-based scheduling.

5.4 All nodes N versus
minn Nodes

 The performance of real time divisible load algorithm

[9,10,20] difference in algorithms assigning all N nodes to

every task (ALG-AN) v.s. those assigning the minimum

number
minn of nodes needed to meet a task’s deadline

(ALG-MN). Where the relative performance of EDF-OPR-

MN v.s. EDF-OPR-AN is noteworthy that in contrast to the

results in [12] comparing MWF (-MN) and FIXED (-AN)

algorithms, the initial data seem to indicate that EDF-OPR-AN

outperforms EDF-OPR-MN most of the time. To gain insight

into the performance results, Carry out rigorous analysis of a

simplified scenario where a scheduling algorithm always

assigns K nodes (K < N) to a periodic divisible task. This

analysis sheds new light on possible scenarios where

algorithms assigning
minn nodes (ALG-MN) perform better

than those assigning all N nodes (ALG-AN).

5.5 Scheduling Overhead and cost

 This metrics investigate the effect of scheduling overheads

and deadline constrain. Theses algorithms try to minimize the

overhead affected by the scheduling algorithms and meet the

deadline constrain.

6. Conclusion
 In this paper, the real-time divisible load distribution

problem in computational grid is investigated. We try to

present the progress and developing efforts to determine the

best mechanisms, policies and analysis to use in these systems.

Different matrices and constrains can be compromised by

building systems using approaches that lack the necessary

theoretical underpinnings. Ultimately, computational grid will

be used in high integrity real-time systems, and consequently,

timing failures could affect safety. The paper study different

scheduling algorithms; scheduling policies, and hybrid

algorithms. Comparisons of fewer algorithms with various

factors influencing Grid system are explained. An

investigation on various factors that influence the scheduling

in grid has been made and shown in this paper. This is an

effort made to find the silver lining in the dark clouds which

could paint an idea about the scheduling policies applied to

the real-time divisible load problem in computational

environment.

References
[1] Suriayati bt chuprat," The deadline-based scheduling of

Divisible Real-Time Workloads on Multiprocessor

Platforms", PHD degree of Doctor of Philosophy

(Mathematics), Faculty of science, university technology

Malaysia 2009.

[2] Computer Science and Engineering, Department of

Computer Science and Engineering: "Real-Time Divisible

Load Scheduling For Cluster Computing", Theses

Dissertations, and Student Research University of Nebraska -

Lincoln Year 2011.

[3] S. Chuprat and S. Baruah. " Scheduling divisible real-time

loads on clusters with varying processor start times" In 14th

IEEE International Conference on Embedded and Real-Time

 Computing Systems and Applications (RTCSA ’08),pages

15–24, Aug 2008.

[4] S. Chuprat, S. Salleh, and S. Baruah. "Evaluation of a

linear programming approach towards scheduling divisible

real-time Loads", In International Symposium on Information

Technology, pages 1–8, Aug 2008.

[5] W. Y. Lee, S. J. Hong, and J. Kim., "On-line scheduling of

scalable real-time tasks on multiprocessor systems" , Journal

of Parallel and Distributed Computing 63(12):1315–1324,

2003.

 [6] X. Lin, Y. Lu, J. Deogun, and S. Goddard, "Real-time

divisible load scheduling with different processor available

times", In Proceedings of the 2007 International Conference

on Parallel Processing (ICPP 2007).

[7] X. Lin, Y. Lu, J. Deogun, and S. Goddard.," Real-time

divisible load scheduling for cluster computing" In

Proceedings of the 13th IEEE Real-Time and Embedded

Technology and Application Symposium pages 303–314,

Bellevue, WA, April 2007.

[8] A. Mamat, Y. Lu, J. Deogun, and S. Goddard,"Real-time

divisible load scheduling with advance reservations", In 20th

Euromicro Conference on Real-Time Systems pages 37–46,

July 2008.

[9] Anwar Mamat, Ying Lu, Jitender Deogun, Steve Goddard,

"An Efficient Algorithm for Real-Time Divisible Load

Scheduling", Department of Computer Science and

Engineering University of Nebraska – Lincoln Lincoln NE

68588 {anwar, ylu, deogun, goddard}@cse.unl.edu

[10] B. Veeravalli, D. Ghose, and T. G. Robertazzi.,

"Divisible load theory: A new paradigm for load scheduling in

distributed systems Cluster Computing", 6(1):7–17, 2003.

[11] D. Swanson. Personal communication. Director, UNL

Research Computing Facility (RCF) and

 UNL CMS Tier-2 Site, August 2005.

[12] D. Isovic and G. Fohler. "Efficient scheduling of sporadic

periodic, and periodic tasks with complex constraints", In

Proc. of 21st IEEE Real-Time Systems Symposium,pages

207–216, Orlando, FL, November 2000.

[13] B. Veeravalli, D. Ghose, and T. G. Robertazzi, "Divisible

load theory: A new paradigm for load scheduling in

distributed systems Cluster Computing", 6(1):7–17, 2003.

[14] Lin, X., Lu, Y., Deogun, J. and Goddard, S., " Real-time

divisible load scheduling for cluster computing", Technical

Report UNL-CSE-2006-0016 (2006a), Department of

Computer Science and Engineering, The University of

Nebraska at Lincoln.

 [15] Lin, X., Lu, Y., Deogun, J. and Goddard, S., "Real-time

divisible load scheduling for clusters. Proceedings of the Real-

Time Systems Symposium",(2006b).– Work-In-Progress

Session pages 9–12, Rio de Janerio, December.

[16] Lin, X., Lu, Y., Deogun, J. and Goddard, S., " Real-Time

Divisible Load Scheduling with

 Different Processor Available Times", Proceedings of

International Conference on Parallel Processing (ICPP),

(2007b), Xian, China, September.

[17] Lin, X., Lu, Y., Deogun, J. and Goddard, S., " Enhanced

Real-Time Divisible Load Scheduling with Different

Processor Available Times", Proceedings of 14th International

Conference On High Performance Computing (HiPC),

(2007c) Goa, India, December.

[18] Compact Muon Solenoid (CMS) Experiment for the

Large Hadron Col-lider at CERN (European Lab for Particle

Physics), Cms web page,

http://cmsinfo.cern.ch/Welcome.html/.

[19] ATLAS (A Toroidal LHC Apparatus) Experiment,

CERN (European Lab for Particle Physics), Atlas web page,

http://atlas.ch/.

[20] Xuan Lin, Anwar Mamat, Ying Lu_, Jitender Deogun,

Steve Goddard,” Real-time scheduling of divisible loads in

cluster computing environments” , J. Parallel Distrib. Comput.

70 (2010) 296_308

[21] Kijeung Choi 1, Thomas G. Robertazzi , “An Exhaustive

Approach to Release Time Aware Divisible Load

Scheduling”, (IJIDCS) International Journal on Internet

and Distributed Computing Systems. Vol: 1 No: 2,

2011.

[22] G. Murugesan and C. Chellappan, “An Economic

Allocation of Resources for Divisible Workloads in Grid

Computing Paradigm”, European Journal of Scientific

Research, ISSN 1450-216X Vol.65 No.3 (2011), pp.

434-443 © EuroJournals Publishing, Inc. 2011

[23] Xin Liu, Chunming Qiao, Wei Wei, Xiang Yu,Ting

Wang, Weisheng Hu, Wei Guo, and Min-You

 Wu, “Task Scheduling and Lightpath Establishment in

Optical Grids”, Journal Of Light Wave Technology,

2009, p 1796-1805.

[24] Dr. D.I. George Amalarethinam1, P. Muthulakshmi ,

“An Overview of the Scheduling Policies and

Algorithms in Grid Computing” , International Journal

of Research and Reviews in Computer Science

(IJRRCS) Vol. 2, No. 2, April 2011.

[25] Syed Nasir Mehmood Shah, Ahmad Kamil Bin

Mahmood, and Alan Oxley 2010, “Hybrid Resource

Allocation for Grid Comp uting”, in Proceed in gs of the

IEEE Second International Conference on Computer

Research and Development, 426 – 431.

[26] G.K.Kamalam,and Dr.V.Murali Bhaskaran, “An

Effective Approach to Job Scheduling in Decentralized Grid

Environment”, International Journal of Computer Applications

(0975 – 8887) Volume 24– No.1, June 2011.

mailto:goddard%7D@cse.unl.edu

