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Abstract—The Utility Grids develop a cyber-infrastructure 

for using services transparently in a distributed 

environment. The parameters of the Quality of Service such 

as the allocation-cost and turnaround time, needs to be 

taken care of for scheduling a workflow application in the 

Utility Grids. These target parameters are sometimes likely 

to be in conflict. In this paper, a multi-objective cost-based 

model along with a heuristic algorithm is presented for 

scheduling a workflow application in order to optimize the 

multi-objective allocation-cost and makespan in a very low 

runtime. The results of the wide-spread simulation indicate 

that the proposed algorithm is effective against an increase 

in the application size. The proposed algorithm effectively 

outperforms the current algorithms in terms of the 

allocation-cost, makespan and runtime scalability.        

Keyword: Utility Grids; Application Scheduling; Multi-

objective Optimization. 

1 Introduction 

Grid computing is capable of controlling a wide 

variety of heterogeneous distributed resources to execute 

computation and data intensive applications. Grid 

computing has recently been oriented towards pay-as-you-

go models. In these models, the resource providers receive 

fees from the users for presenting computing and data 

services. Shared distributed infrastructures come up with 

the grid environment software and hardware resources, in 

order to conduct large-scale computations. These 

infrastructures turned out to be efficient for executing 

applications in sciences such as astronomy [1], high energy 

physics [2] and others.  

The challenge faced by the scientists in these fields is 

how to use cyber-infrastructure for transferring knowledge 

from the scientific environments to the distributed 

computing environments. The workflow is the most 

common approach to describe an application in a high level 

form regardless of the distributed computing environment. 

A workflow is represented in a ―Direct Acyclic Graph‖ 

(DAG) with nodes and edges representing the tasks and 

data dependencies between the tasks, respectively. Once an 

application is transformed into the workflow structure, a 

workflow management system will be ready to control and 

manage the execution of workflow on the distributed 

infrastructure. In these environments, indeed, access to the 

shared computational resources is carried out through the 

queue-based Local Resource Management (LRM) system. 

The grid computing is an interactive environment in 

which at one end, the users are expecting to receive 

services for their applications, whereas the resource 

providers are ready to offer services to the users at the 

other. The resource providers advertise the available 

resources set to be planned by the users, brokers and the 

application-level schedulers who receive fees upon 

providing services. An environment characterized with the 

above-mentioned users and service providers is known as 

Utility Grids. A competition develops among users caused 

by the resources-pricing policies so that users begin being 

involved in a competition with one another only to gain a 

resource with an affordable cost and an efficient processing 

capability. Similarly, resource providers are driven into a 

competition with one another to sell their idle resources to 

the users in order to gain more profits as well as enhance 

the resource utilization.  

The scheduling problem becomes highly complicated 

and NP-complete [3] in such an environment due to the 

different resource consumers and providers so that each 

side pursues its own profits. It is worth noting that the 

resource consumers and providers are acting independently 

with conflicting aims. The resource consumers seek the 

minimum time (makespan) and allocation-cost for 

scheduling application, whereas the resource providers 

seek the resource utilization gains. Thus, the main 

challenge confronted by the users in this environment, will 

be scheduling an application on the heterogeneous 

resources in which the users have no explicit control so that 

both time and allocation-cost can be minimized.                       

The present paper deals with developing a Workflow 

Planning Cost-based (WPC) model in order to effectively 

schedule an application in the Utility Grids so that the 

application makespan and allocation-cost can be 

minimized. In fact, the WPC model allows the users to 

make a trade-off between an application makespan and 



allocation-cost. Next, a First-fit Cost-Time Trade-off 

(FCTT) heuristic algorithm is employed to solve the WPC 

model. The FCTT is a heuristic algorithm that schedules an 

application in a form that both the makespan and the 

allocation-cost can be optimized due to the trade-off factor. 

The trade-off factor shows the preference of the allocation-

cost optimization to the turnaround-time. Finally, to study 

and evaluate the efficiency of the proposed algorithm on 

the proposed model, a handful of experiments have been 

conducted and simulated. The simulation results show that 

the FCTT algorithm is effective due to an increase in 

workflow size. The main contributions of the present paper 

are as follows: 

 Developing a WPC model based on provisioning the 
resources for scheduling a workflow, so that the 
application makespan and allocation-cost can be 
minimized. 

 Developing a multi-objective FCTT heuristic algorithm 
based on the WPC model with an effective performance 
due to an increase in the workflow size.   

The rest of this paper is organized as follows: Section 

2 discusses the related works. Section 3 introduces an 

application scheduling problem and execution 

environment. A proposed detailed model and heuristic 

algorithm is described in section 4. Section 5 involves a 

simulation setup and its relevant experiments in order to 

evaluate the efficiency of the proposed algorithm. In 

section 6, the results have been analyzed. Finally, section 7 

ends with a conclusion. 

 

2 Related works 

As shared multiprocessing systems advance, the issue 

of the application scheduling has been the main concern. 

To tackle the problem, the providers seek to maximize the 

utilization of the resources whereas the users seek to 

minimize turnaround time of the application. There is a 

comprehensive introduction on the job scheduling 

strategies [4, 5]. Moreover, in [6], the computational 

models are surveyed for Grid scheduling problems and 

their resolutions using the heuristic and meta-heuristic 

approaches. 

In the queue-based systems, the users submit the tasks 

to the resource queues, whereas the resource allocation will 

subsequently be conducted due to the strategy of LRM 

system. In such systems neither has the user explicit 

control on the allocating resources to the tasks nor can the 

user optimize the performance. This delivered quality of 

service to the users is known as the best effort QoS.  

The alternative approach is one of the planning-based 

systems [7]. In these systems, according to agreements the 

start time of the task can be established in advance instead 

of the task waits in queue in order to get access to the 

resource. The above-mentioned agreements are based on an 

abstract description, so-called ―slot‖ so that the slots are 

specified by the start time, the number of available 

processors, the cost and the duration parameters. In this 

paper, the planning-based system is exploited as the 

resource management strategy.  

In [8], a heuristic algorithm is presented for 

scheduling many parallel applications on the Utility Grids 

so that it can manage and optimize the cost-to-time trade-

off. This approach is close to the studies conducted for this 

paper and its main difference from that of the proposed 

approach lies scheduling the parallel applications, whereas 

the approach adopted by present paper is based on 

scheduling the workflow application. Due to the data 

dependencies among tasks, scheduling the workflow 

application becomes more complex than scheduling the 

parallel application. 

The main objective of the conventional workflow 

scheduling is the minimization of the time. A large number 

of the workflow-based scheduling algorithms rest on the 

list-scheduling technique. Due to this technique, a rank is 

typically assigned to each application task, the tasks are, 

subsequently, sorted and scheduled in a descending order 

of the corresponding rank. The Heterogeneous Earliest 

Finish Time (HEFT) algorithm  [9] is one of the most 

common list-based workflow scheduling algorithms. To 

obtain the list-scheduling, the HEFT takes the task runtime 

and the data transfer between the tasks and the 

heterogeneity of the resources into account. The HEFT 

schedules the workflow application with a high 

performance in the heterogeneous environment [9, 10]. 

There is a handful of the different studies conducted 

on the cost optimization of the workflow scheduling close 

to the current paper’s study. In [11], a genetic algorithm is 

proposed to find an optimized mapping of the tasks to the 

resources which minimizes both financial cost and 

makespan. This approach is developed in [12, 13] which 

presents the cost-based model in which the resource 

providers advertise the available resource slots to the users. 

A multi-objective genetic algorithm is presented which is 

capable of provisioning a subset of the resource slots to 

minimize the application makespan under the minimum 

resource allocation-cost. The main difference between 

these cost minimization algorithms and the present paper’s 

algorithm lies in the fact that these minimization 

algorithms rely on a cluster with all processors which are 

homogeneous. Thus, in [12, 13], the entire resources 

possess identical CPU ratings and cost processing whereas 

in the proposed model, all resources are constituted of the 

heterogeneous clusters with different processing cost and 

CPU ratings in the real-world Utility Grids environments. 

Hence, removing this resource homogeneity complicates 

the identification of an appropriate resource selection.  

Since the above-mentioned cost optimization 

algorithms [12, 13] are genetic-based ones, the runtime 



takes a longer time. In case, the slots’ characteristics 

undergo a change during scheduling, the slots’ 

characteristics are to be updated and a rescheduled 

resulting in a far longer runtime. Hence, these approaches 

do not serve the purpose in the dynamic environments such 

as the Grids. 

3 Application scheduling problem 

Workflow execution planning is carried out prior to 

the workflow execution. It intends to examine users' 

execution requirements and to generate suitable execution 

schedules. The formulation of the optimization problem of 

the workflow execution and execution environment is 

presented for the workflow planning problem beneath. 

The agreement-based resource management allows an 

application-level scheduler to attain the resources in the 

desired time. The workflow management system, therefore, 

ensures access to the desired resources within the agreed 

time and cost. In the most resources, an abstract-agreed 

structure is reached between the provider and consumer in 

terms of available time slots. In clusters, for instance a slot 

indicates the availability of a number of the related 

processors, start time, duration and cost. Once a slot is 

obtained, it can later on be used without an extra 

interaction between the provider and consumer. For 

example, a slot on a cluster is likely to be used to execute a 

workflow consisting of a number of tasks. 

A workflow-application is represented in a DAG. A 

DAG is defined as G = (V, E), where V is a set of nodes, 

each node representing a task, and E is a set of links, each 

link representing the execution precedence order between 

two tasks. For example, a link (i, j) ∈ E represents the 

precedence constraint that task vi needs to be completed 

before task vj starts. The data is a V*V matrix of the 

communication data, where dij is the amount of the data 

required to be transmitted from the task vi to the task vj. As 

a workflow may consist of sub-workflows with multiple 

entries and exits so the first thing to be done is to add two 

pseudo-tasks, a top task and a bottom task, with zero 

execution time indicated by 0 and n + 1, respectively. The 

top task spawns all actual entry tasks of the workflow to be 

linked to a single node, while the bottom task joins all 

actual exit tasks to a single node. 

The user submits the application characteristics to the 

application-level scheduler only to be executed on the grid 

environment. The user expects to have his application 

executed with the minimal time and allocation-cost. 

Certainly, the users exploit trade-off factor in order to show 

a preference for cost to time. In cases where this factor is 

not specified by the users, the default trade-off factor is 

considered as equal. 

In fact, the application-level scheduler acts as a 

mediator between the resource providers and users. Due to 

the reports of the available slots obtained from the resource 

providers, the application-level scheduler plans the 

application. The entire slots exploited in planning the 

application, will be submitted to LRM in order to provision 

the resources. Each computational resource is equipped 

with a number of the processors, the memory and the 

network interfaces which reveals an independent 

processing unit. The entire resources are fully-connected 

while being capable of executing all application-tasks. All 

of the computational resources can act as a service-

provider (site) for time-slots. 

The application-tasks will be non-preemptively 

executed, so that one or a multiple of computational 

resources are exclusively applied to in order to be executed 

in due time. We suppose that the application-task 

performance models are clear on each resource. The 

execution time of a certain task, therefore, may be obtained 

from a certain resource due to application performance 

models. Also, the execution of a single task consists of 

three phases: (a) the input data retrieval from the resource 

executing the immediate predecessors of the task (b) the 

task execution and (c) the output data communication from 

the current resources to the resources presumed to execute 

successors of the task.       

To transfer the data between the application-tasks, 

three data-management strategies have been proposed by 

Deelman et al. [14] known as the regular, dynamic cleanup 

and the remote I/O (on demand). In this paper, the remote 

I/O (on demand) strategy has been used, so that the output 

data are submitted to the resource that is seeking to execute 

immediate the successor-tasks from the immediate 

predecessor-tasks using the existing high-speed network 

among the resources. As the application tasks are assumed 

to be rigid, eventually, processors in need are 

simultaneously and exclusively handed over to desired task 

throughout the execution time. 

4 Proposed model and heuristic 

algorithm 

In general, the users are in need of two QoS: the 

deadline and  budget of their applications on the pay-per-

use services [15]. The users normally tend to run their 

applications in as the minimum time and cost as possible. 

Thus, a trade-off factor indicating the significance of the 

cost to time will be used. In this section, the issue of 

application scheduling will be stated and the WPC model 

will be presented and then solved in order to optimize the 

application cost-time trade-off. Finally, a heuristic 

algorithm will be developed to conduct the application 

scheduling with the aim of optimizing the cost and time.  



4.1 The proposed multi-objective cost-based 

model 

The execution model consists of a set of 

heterogeneous consumers and resource providers where the 

consumers seek to schedule their workflow applications 

with the minimum cost and time. In this model, R is a set 

of available heterogeneous resources and V is a set of the 

tasks of the workflow application. Each resource consists 

of a set of slots for executing the task vi. 

Services have different processing capabilities which 

are delivered with different prices. The time(vij) is the 

normalized completion time of vi on the resource rj and the 

cost(vij) is the normalized allocation-cost of vi on the 

resource rj. The normalization matters since it is not clear 

what value ranges the allocation-cost and finish time will 

take in a given solution. The scheduling optimization 

problem seeks to generate solution S, which maps every 

task vi to a suitable resource rj to achieve the multi-

objective cost-based metric defined by 

( ) (1 ) cos ( ), ,ij ij ij i jS time v t v v V r R                 (1) 

where α is a trade-off factor that indicates a preference of 
the allocation-cost to the execution time of the workflow 
scheduling. Thus, the objective function of the application 
scheduling problem is obtained by the minimization of the 
sum of the multi-objective cost-based metrics for the whole 
application-tasks reached by 

min( min ).
j
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The application scheduling problem involves 

mapping each task vi to the suitable slot of the resource rj, 

so that the application makespan and allocation-cost can be 

minimized. Upon the completion of the whole application 

tasks, makespan and allocation-cost will be computed. In 

the following section, a heuristic algorithm is presented to 

solve the WPC model as a whole. 

4.2  The proposed heuristic algorithm 

The FCTT is an algorithm which selects the most 

appropriate slots for each task, which are ready to be 

executed. There is a handful of choices for each task, 

among which the choice capable of minimizing the multi-

objective cost metric of (1) will be selected as the best 

solution. According to the best solution, the Earliest Start 

Time (EST) needs to be computed to execute immediate 

successor tasks and this procedure will be carried on so 

long as the execution of the whole application tasks will be 

finished. 

The FCTT algorithm pseudo-code is presented in 

algorithm 1 which operates according to the WPC model. 

The algorithm obtains the available slot lists to all 

resources and the unscheduled tasks as an input parameter 

(lines 1, 2). Moreover, the EST is initialized with 

simulation current time (line 3). The application-level 

scheduler carries out the planning of each application task 

due to available slots list characteristics with an eye on the 

multi-objective cost metric presented in (1), (lines 4 to 14).  

Initially, a list of unplanned tasks which are eligible to be 

executed is selected (line 5). Next, the eligible tasks are 

defined as the ones whose parents’ tasks execution is 

completed, though the very same tasks have not been 

executed yet. The available slots list of each resource is 

obtained by line 7. In line 8, the EST of the task T on all the 

resources is computed. Eventually, the Earliest Finish Time 

(EFT) of the task T is computed, (line 9). 

The EST is computed on the basis of the completion-

time of the latest parents tasks T. Next, the best slot 

capable of executing the task is selected for each task T on 

each resource. In cases, the selected resource does not 

match with the resource which executes the parents’ tasks, 

the data-transfer time needs to be added to the EST. 

 Once the best slot to execute task T is obtained on 

each resource, the resource which minimizes the multi-

objective cost metric in (1) will be selected as the best 

resource ( line 10). Now, it comes to allocating the task T 

to a selected resource (line 11) as well as updating the slots 

list of the selected resource (line 12). This procedure needs 

to be continued as long as there still exists an eligible task 

(lines 4 to 14). Finally, when the entire application tasks 

are planned, the time and allocation-cost need to be 

computed. At the end of the completion of the whole 

application tasks, the slots assigned to the application tasks 

will be released. 

5 Simulation setup 

To conduct an experimental evaluation of the 

efficiency of algorithm 1, the GridSim [16] is used to 

simulate the application-level scheduler in the Utility Grids 

environment. The Grids environment which is modeled in 

this simulation consists of ten sites belonging to a subset of 

the European Data Grid (EDG) spread across five countries 

which are interconnected via a high-speed network [8, 17]. 

The workload simulated on these sites follows the 

workload model generated by Lublin [18]. The main 

purpose of the use of this model is to create a realistic 

simulation environment where the tasks compete with one 

another.  

The Lublin workload model determines the arrival-

time, the number of required processors and the estimated 

runtime parameters. This model is derived from the trace of 

the existing model to do rigid tasks. Table 1 shows the 

workload parameters values applied to in the Lublin model. 

Table 2 shows resource configuration on the Grids test-bed 

in order to simulate the distributed system as well as the 

cost of using a processor, a CPU rating, the number of 

CPUs and the site-location of each resource. 

This resource configuration is used in order to show 

the heterogeneity of the execution environment. The entire 



resources are simulated using the advance reservation 

policy and the conservative backfilling policy in order to 

improve response time. In general, in the real-world, the 

resource pricing is controlled by different economic 

factors, thus, the time and allocation-cost minimization is 

likely to conflict with one another. 

To conduct experiments, a parameterized graph 

generator is used to create a synthetic workflow application 

[9]. The application characteristics contain n=100 tasks 

with an average execution time of 1000 s [13]. The 

workflow on the average consists of n  levels (the 

workflow graph depths) and n  tasks at each level. Each 

task on the average needs 25 CPUs for executing. The 

mean value of the data transfer among the tasks is 1000 

Gb. The mean bandwidth value among resources is 10 Gb/s 

with a mean latency time of 150 s. 

Algorithm 1: The pseudo-code for the FCTT algorithm 

Input: 
 

 
 

An application characteristics with an instruction length for 
each task and the required CPUs  
The resource characteristics and the available slots to each 
resource 

Output: The workflow scheduling 

1 Get the list of the available time slots for all resources 
2 UnScheduledTask = get the list of the tasks which have not 

been scheduled yet. 
3 Assign the simulation current time to the Earliest Start 

Time(EST).   
4 While UnScheduledTask  is not empty do 
5 
 

 
 

EligibleTasks = select all tasks which executions of their 
parents have been completed. 

6  for each T in the EligibleTasks do 
7   Acquire the available slots of each resource.  
8   Compute the EST of the task T on each resource. 
9   Compute the Earliest Finish Time (EFT) of the task T.  
10 
 

 
 

 
 

Find a time slot (TS) which is feasible for the task T 
while minimizing the multi-objective cost-based 
 metrics defined by (1). 

11   Allocate the TS on the resource r to the task T 
12   Update the list of available slots to the resource r 

13  end for 
14 end while 
15 Compute the makespan and allocation-cost of the application. 

Table 1: Lublin workload model parameter values. 
Workload parameter Value 

JobType 
Maximum number of CPUs required by a 
job(p) 
uHi 
uMed 
Other parameters 

Batch JOBS 
1000 
Log2(p) 
uHi-2.5 
As created by Lublin 
model 

Table 2: Simulated EDG testbed resources. 
Resource name 
(Location) 

Number 
of CPUs 

Single CPU 
rating(MIPS) 

Processing 
cost(G$) 

RAL(UK) 20 1140 0.0061 
Imperial College(UK) 26 1330 0.1799 
NorduGrid(Norway) 265 1176 0.0627 
NIKHEF(Netherlands) 54 1166 0.0353 
Lyon(France) 60 1320 0.1424 
Milano(Italy) 135 1000 0.0024 
Torina(Italy) 200 1330 1.856 
Catania(Italy) 252 1200 0.1267 
Padova(Italy) 65 1000 0.0032 
Bologna(Italy) 100 1140 0.0069 

At this stage, the scheduling algorithm which uses the 

best-effort QoS for scheduling, is simulated and tagged as 

the BE. As the number of the resources is m and the 

resources are heterogeneous in terms of CPU rating and 

allocating-cost, a heuristic algorithm needs to be taken into 

account to select a suitable resource in the best-effort QoS. 

In BE, the exploited heuristic method selects a resource 

with the minimum number of tasks in the waiting and 

running queues. The majority of the resource management 

systems make it possible for users to obtain the number of 

the tasks in the waiting and running queues [13]. 

An application scheduling algorithm using cost model 

is presented by Singh et al. [12, 13]. Their algorithm has 

provisioned a set of the slots to optimize performance 

under the minimum allocation-cost in order to execute 

application on the provisioned slots. This cost-modeled 

algorithm makes a trade-off between scheduling and 

allocation-cost based on trade-off factor. After that, the 

scheduling takes place using a multi-objective genetic 

algorithm [19], as well as simulating the algorithm. It is 

tagged as the MOGA for brevity [12, 13]. 

The FCTT, the MOGA and the BE algorithms are 

simulated and their performance is evaluated through 

conducting a number of experiments. Finally, the results 

from the algorithms are compared with one another. In the 

next section, simulation results which are compared will be 

thoroughly analyzed. 

6 Analysis of results 

In this section, the application performance results are 

compared and analyzed with criteria such as the makespan, 

allocation-cost and runtime of the proposed FCTT 

algorithm along with the MOGA and the BE algorithms 

[12, 13]. Also, it will be shown how the proposed heuristic 

schedules the application through optimizing the makespan 

and the allocation-cost in the minimum runtime. According 

to the presented characteristics in the section 3, a synthetic 

workflow application is generated considering “trade-off 

factor=0.5”. The rest of the simulation parameters is 

compatible with the setups in the section 5. The Y-axis is 

drawn in logarithmic scale to make the experiments results 

discernable. 

A few experiments have been conducted to determine 

the impact of the workflow size on the allocation-cost, 

makespan and runtime in terms of the number of the 

application tasks. It is followed by an analysis of the 

comparison between the FCTT, MOGA and BE 

algorithms. The experiments were conducted with the 

application tasks’ sizes of 25, 50, 100, 200, 300 and 500 in 

order to study the impacts on the allocation-cost, makespan 

and runtime in the application scheduling due to the 

increasing number of the application tasks. 

Figs. 1 and 2 show the impact of the workflow size on 

the allocation-cost and makespan in the application 



scheduling, respectively. As Figs. 1 and 2 indicate, the 

allocation cost and makespan of the proposed algorithm 

which the average of all its instances are around 37% and 

1% less than the MOGA algorithm, respectively, and one 

order of magnitude less than the BE algorithm. The low 

cost and makespan in proposed algorithm is explained by 

the fact that it selects a slot with the earliest start-time to 

run the eligible task from the whole existing slots 

according to the multi-objective cost metric of (1). 

However, the MOGA algorithm randomly selects a subset 

of the slots for scheduling the whole tasks. Due to the 

existing data dependency among tasks, if the execution of 

an eligible task is postponed, it will result in lengthening 

the makespan. In the BE algorithm, as long as the 

executions of the parent tasks are not completed, child-

tasks will not be submitted. As the workflow graph depth is

n , the higher the number of the tasks n is, the deeper the 

workflow will be. Eventually, an increase in the workflow 

graph depth leads to an increase in the number of the times 

a task needs to wait, causing an increase in the makespan. 

Fig. 3 reveals the FCTT, MOGA and BE algorithms’ 

runtime relative to an increase in the number of the 

application tasks. As the figure shows, the proposed 

algorithm in all instances is almost three orders of 

magnitude less than the MOGA and the BE algorithms. 

The low time-complexity of the proposed algorithm is 

explained by the fact that it seeks the best slot for a single 

task just once, while the MOGA algorithm is implemented 

based on the genetic algorithm. One of the disadvantages 

of the genetic algorithms is length of their runtime. 

Moreover, in order to seek a subset of proper slots, the 

MOGA algorithm needs to repetitively plan the whole 

chromosomes of each generation of the population so that 

the best solution of each generation can be selected. The 

whole process involves a very high time-complexity. 

Therefore, the higher the number of the application tasks 

is, the longer the runtime of the algorithm will be. Due to 

Fig. 3, if the number of the tasks increases from 300 tasks 

to 500 tasks in the MOGA algorithm, its runtime will 

increase around one order of magnitude. The BE algorithm 

employs the best-effort service while neglecting the cost 

metric optimization. After the executions of all the parent 

tasks of a single task are completed the execution of the 

desired task will start which results in a longer runtime. 

According to Fig. 3, due to an increase in the 

application tasks even when it is running 500 tasks the 

FCTT algorithm requires much lower runtime. The runtime 

required by the FCTT algorithm is around 0.7 second for 

500 tasks to be executed, whereas in the MOGA algorithm, 

the application runtime takes almost one hour and twenty 

minutes. As a result, the FCTT algorithm is scalable caused 

by an increase in the application tasks as well as capable of 

scheduling huge applications with the lowest runtime in the 

heterogeneous environment. 

 
Figure 1. Workflow size impact on the application allocation-cost. 

 

 
Figure 2. Workflow size impact on the application makespan. 

 

 
Figure 3.Workflow size impact on the application runtime. 

 

7 Conclusion 

The present paper deals with designing, implementing 

and evaluating the FCTT heuristic algorithm in order to 

schedule a workflow application. The paper seeks to 

optimize the multi-objective cost-time based on the 

proposed WPC model. To develop a real distributed 

environment, the resources workload is simulated based on 

the Lublin model. Due to many experiments conducted on 

a generated syntactic workflow, it was shown that the 

FCTT heuristic algorithm is far more effective than the 

existing algorithms in terms of the cost-time optimization 

and scalability for scheduling the workflow application.  
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Also, in this paper, a few experiments have been 

conducted to determine the impact of the workflow size on 

the allocation-cost, makespan and runtime in terms of the 

number of the application tasks. Next, it is followed by an 

analysis of a comparison between the FCTT, MOGA and 

BE algorithms. As a result, it was shown the FCTT 

algorithm is scalable due to an increase in the application 

tasks as well as capable of scheduling huge applications 

with the lowest runtime in the heterogeneous environment. 
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