
Multi-objective Heuristic for Workflow Scheduling on

Grids
Vahid Khajehvand

1
, Hossein Pedram

2
, and Mostafa Zandieh

3

1
Department of Computer Engineering and Information Technology, Qazvin Branch, Islamic Azad University,

Qazvin, Iran
2
Department of Computer Engineering and Information Technology, Amirkabir University of Technology

(Tehran Polytechnic), Tehran, Iran
3
Department of Industrial Management, Shahid Beheshti University, G.C., Tehran, Iran

Abstract—The Utility Grids develop a cyber-infrastructure

for using services transparently in a distributed

environment. The parameters of the Quality of Service such

as the allocation-cost and turnaround time, needs to be

taken care of for scheduling a workflow application in the

Utility Grids. These target parameters are sometimes likely

to be in conflict. In this paper, a multi-objective cost-based

model along with a heuristic algorithm is presented for

scheduling a workflow application in order to optimize the

multi-objective allocation-cost and makespan in a very low

runtime. The results of the wide-spread simulation indicate

that the proposed algorithm is effective against an increase

in the application size. The proposed algorithm effectively

outperforms the current algorithms in terms of the

allocation-cost, makespan and runtime scalability.

Keyword: Utility Grids; Application Scheduling; Multi-

objective Optimization.

1 Introduction

Grid computing is capable of controlling a wide

variety of heterogeneous distributed resources to execute

computation and data intensive applications. Grid

computing has recently been oriented towards pay-as-you-

go models. In these models, the resource providers receive

fees from the users for presenting computing and data

services. Shared distributed infrastructures come up with

the grid environment software and hardware resources, in

order to conduct large-scale computations. These

infrastructures turned out to be efficient for executing

applications in sciences such as astronomy [1], high energy

physics [2] and others.

The challenge faced by the scientists in these fields is

how to use cyber-infrastructure for transferring knowledge

from the scientific environments to the distributed

computing environments. The workflow is the most

common approach to describe an application in a high level

form regardless of the distributed computing environment.

A workflow is represented in a ―Direct Acyclic Graph‖

(DAG) with nodes and edges representing the tasks and

data dependencies between the tasks, respectively. Once an

application is transformed into the workflow structure, a

workflow management system will be ready to control and

manage the execution of workflow on the distributed

infrastructure. In these environments, indeed, access to the

shared computational resources is carried out through the

queue-based Local Resource Management (LRM) system.

The grid computing is an interactive environment in

which at one end, the users are expecting to receive

services for their applications, whereas the resource

providers are ready to offer services to the users at the

other. The resource providers advertise the available

resources set to be planned by the users, brokers and the

application-level schedulers who receive fees upon

providing services. An environment characterized with the

above-mentioned users and service providers is known as

Utility Grids. A competition develops among users caused

by the resources-pricing policies so that users begin being

involved in a competition with one another only to gain a

resource with an affordable cost and an efficient processing

capability. Similarly, resource providers are driven into a

competition with one another to sell their idle resources to

the users in order to gain more profits as well as enhance

the resource utilization.

The scheduling problem becomes highly complicated

and NP-complete [3] in such an environment due to the

different resource consumers and providers so that each

side pursues its own profits. It is worth noting that the

resource consumers and providers are acting independently

with conflicting aims. The resource consumers seek the

minimum time (makespan) and allocation-cost for

scheduling application, whereas the resource providers

seek the resource utilization gains. Thus, the main

challenge confronted by the users in this environment, will

be scheduling an application on the heterogeneous

resources in which the users have no explicit control so that

both time and allocation-cost can be minimized.

The present paper deals with developing a Workflow

Planning Cost-based (WPC) model in order to effectively

schedule an application in the Utility Grids so that the

application makespan and allocation-cost can be

minimized. In fact, the WPC model allows the users to

make a trade-off between an application makespan and

allocation-cost. Next, a First-fit Cost-Time Trade-off

(FCTT) heuristic algorithm is employed to solve the WPC

model. The FCTT is a heuristic algorithm that schedules an

application in a form that both the makespan and the

allocation-cost can be optimized due to the trade-off factor.

The trade-off factor shows the preference of the allocation-

cost optimization to the turnaround-time. Finally, to study

and evaluate the efficiency of the proposed algorithm on

the proposed model, a handful of experiments have been

conducted and simulated. The simulation results show that

the FCTT algorithm is effective due to an increase in

workflow size. The main contributions of the present paper

are as follows:

 Developing a WPC model based on provisioning the
resources for scheduling a workflow, so that the
application makespan and allocation-cost can be
minimized.

 Developing a multi-objective FCTT heuristic algorithm
based on the WPC model with an effective performance
due to an increase in the workflow size.

The rest of this paper is organized as follows: Section

2 discusses the related works. Section 3 introduces an

application scheduling problem and execution

environment. A proposed detailed model and heuristic

algorithm is described in section 4. Section 5 involves a

simulation setup and its relevant experiments in order to

evaluate the efficiency of the proposed algorithm. In

section 6, the results have been analyzed. Finally, section 7

ends with a conclusion.

2 Related works

As shared multiprocessing systems advance, the issue

of the application scheduling has been the main concern.

To tackle the problem, the providers seek to maximize the

utilization of the resources whereas the users seek to

minimize turnaround time of the application. There is a

comprehensive introduction on the job scheduling

strategies [4, 5]. Moreover, in [6], the computational

models are surveyed for Grid scheduling problems and

their resolutions using the heuristic and meta-heuristic

approaches.

In the queue-based systems, the users submit the tasks

to the resource queues, whereas the resource allocation will

subsequently be conducted due to the strategy of LRM

system. In such systems neither has the user explicit

control on the allocating resources to the tasks nor can the

user optimize the performance. This delivered quality of

service to the users is known as the best effort QoS.

The alternative approach is one of the planning-based

systems [7]. In these systems, according to agreements the

start time of the task can be established in advance instead

of the task waits in queue in order to get access to the

resource. The above-mentioned agreements are based on an

abstract description, so-called ―slot‖ so that the slots are

specified by the start time, the number of available

processors, the cost and the duration parameters. In this

paper, the planning-based system is exploited as the

resource management strategy.

In [8], a heuristic algorithm is presented for

scheduling many parallel applications on the Utility Grids

so that it can manage and optimize the cost-to-time trade-

off. This approach is close to the studies conducted for this

paper and its main difference from that of the proposed

approach lies scheduling the parallel applications, whereas

the approach adopted by present paper is based on

scheduling the workflow application. Due to the data

dependencies among tasks, scheduling the workflow

application becomes more complex than scheduling the

parallel application.

The main objective of the conventional workflow

scheduling is the minimization of the time. A large number

of the workflow-based scheduling algorithms rest on the

list-scheduling technique. Due to this technique, a rank is

typically assigned to each application task, the tasks are,

subsequently, sorted and scheduled in a descending order

of the corresponding rank. The Heterogeneous Earliest

Finish Time (HEFT) algorithm [9] is one of the most

common list-based workflow scheduling algorithms. To

obtain the list-scheduling, the HEFT takes the task runtime

and the data transfer between the tasks and the

heterogeneity of the resources into account. The HEFT

schedules the workflow application with a high

performance in the heterogeneous environment [9, 10].

There is a handful of the different studies conducted

on the cost optimization of the workflow scheduling close

to the current paper’s study. In [11], a genetic algorithm is

proposed to find an optimized mapping of the tasks to the

resources which minimizes both financial cost and

makespan. This approach is developed in [12, 13] which

presents the cost-based model in which the resource

providers advertise the available resource slots to the users.

A multi-objective genetic algorithm is presented which is

capable of provisioning a subset of the resource slots to

minimize the application makespan under the minimum

resource allocation-cost. The main difference between

these cost minimization algorithms and the present paper’s

algorithm lies in the fact that these minimization

algorithms rely on a cluster with all processors which are

homogeneous. Thus, in [12, 13], the entire resources

possess identical CPU ratings and cost processing whereas

in the proposed model, all resources are constituted of the

heterogeneous clusters with different processing cost and

CPU ratings in the real-world Utility Grids environments.

Hence, removing this resource homogeneity complicates

the identification of an appropriate resource selection.

Since the above-mentioned cost optimization

algorithms [12, 13] are genetic-based ones, the runtime

takes a longer time. In case, the slots’ characteristics

undergo a change during scheduling, the slots’

characteristics are to be updated and a rescheduled

resulting in a far longer runtime. Hence, these approaches

do not serve the purpose in the dynamic environments such

as the Grids.

3 Application scheduling problem

Workflow execution planning is carried out prior to

the workflow execution. It intends to examine users'

execution requirements and to generate suitable execution

schedules. The formulation of the optimization problem of

the workflow execution and execution environment is

presented for the workflow planning problem beneath.

The agreement-based resource management allows an

application-level scheduler to attain the resources in the

desired time. The workflow management system, therefore,

ensures access to the desired resources within the agreed

time and cost. In the most resources, an abstract-agreed

structure is reached between the provider and consumer in

terms of available time slots. In clusters, for instance a slot

indicates the availability of a number of the related

processors, start time, duration and cost. Once a slot is

obtained, it can later on be used without an extra

interaction between the provider and consumer. For

example, a slot on a cluster is likely to be used to execute a

workflow consisting of a number of tasks.

A workflow-application is represented in a DAG. A

DAG is defined as G = (V, E), where V is a set of nodes,

each node representing a task, and E is a set of links, each

link representing the execution precedence order between

two tasks. For example, a link (i, j) ∈ E represents the

precedence constraint that task vi needs to be completed

before task vj starts. The data is a V*V matrix of the

communication data, where dij is the amount of the data

required to be transmitted from the task vi to the task vj. As

a workflow may consist of sub-workflows with multiple

entries and exits so the first thing to be done is to add two

pseudo-tasks, a top task and a bottom task, with zero

execution time indicated by 0 and n + 1, respectively. The

top task spawns all actual entry tasks of the workflow to be

linked to a single node, while the bottom task joins all

actual exit tasks to a single node.

The user submits the application characteristics to the

application-level scheduler only to be executed on the grid

environment. The user expects to have his application

executed with the minimal time and allocation-cost.

Certainly, the users exploit trade-off factor in order to show

a preference for cost to time. In cases where this factor is

not specified by the users, the default trade-off factor is

considered as equal.

In fact, the application-level scheduler acts as a

mediator between the resource providers and users. Due to

the reports of the available slots obtained from the resource

providers, the application-level scheduler plans the

application. The entire slots exploited in planning the

application, will be submitted to LRM in order to provision

the resources. Each computational resource is equipped

with a number of the processors, the memory and the

network interfaces which reveals an independent

processing unit. The entire resources are fully-connected

while being capable of executing all application-tasks. All

of the computational resources can act as a service-

provider (site) for time-slots.

The application-tasks will be non-preemptively

executed, so that one or a multiple of computational

resources are exclusively applied to in order to be executed

in due time. We suppose that the application-task

performance models are clear on each resource. The

execution time of a certain task, therefore, may be obtained

from a certain resource due to application performance

models. Also, the execution of a single task consists of

three phases: (a) the input data retrieval from the resource

executing the immediate predecessors of the task (b) the

task execution and (c) the output data communication from

the current resources to the resources presumed to execute

successors of the task.

To transfer the data between the application-tasks,

three data-management strategies have been proposed by

Deelman et al. [14] known as the regular, dynamic cleanup

and the remote I/O (on demand). In this paper, the remote

I/O (on demand) strategy has been used, so that the output

data are submitted to the resource that is seeking to execute

immediate the successor-tasks from the immediate

predecessor-tasks using the existing high-speed network

among the resources. As the application tasks are assumed

to be rigid, eventually, processors in need are

simultaneously and exclusively handed over to desired task

throughout the execution time.

4 Proposed model and heuristic

algorithm

In general, the users are in need of two QoS: the

deadline and budget of their applications on the pay-per-

use services [15]. The users normally tend to run their

applications in as the minimum time and cost as possible.

Thus, a trade-off factor indicating the significance of the

cost to time will be used. In this section, the issue of

application scheduling will be stated and the WPC model

will be presented and then solved in order to optimize the

application cost-time trade-off. Finally, a heuristic

algorithm will be developed to conduct the application

scheduling with the aim of optimizing the cost and time.

4.1 The proposed multi-objective cost-based

model

The execution model consists of a set of

heterogeneous consumers and resource providers where the

consumers seek to schedule their workflow applications

with the minimum cost and time. In this model, R is a set

of available heterogeneous resources and V is a set of the

tasks of the workflow application. Each resource consists

of a set of slots for executing the task vi.

Services have different processing capabilities which

are delivered with different prices. The time(vij) is the

normalized completion time of vi on the resource rj and the

cost(vij) is the normalized allocation-cost of vi on the

resource rj. The normalization matters since it is not clear

what value ranges the allocation-cost and finish time will

take in a given solution. The scheduling optimization

problem seeks to generate solution S, which maps every

task vi to a suitable resource rj to achieve the multi-

objective cost-based metric defined by

() (1) cos (), ,ij ij ij i jS time v t v v V r R (1)

where α is a trade-off factor that indicates a preference of
the allocation-cost to the execution time of the workflow
scheduling. Thus, the objective function of the application
scheduling problem is obtained by the minimization of the
sum of the multi-objective cost-based metrics for the whole
application-tasks reached by

min(min).
j

i

ij
r R

v V

S

 (2)

The application scheduling problem involves

mapping each task vi to the suitable slot of the resource rj,

so that the application makespan and allocation-cost can be

minimized. Upon the completion of the whole application

tasks, makespan and allocation-cost will be computed. In

the following section, a heuristic algorithm is presented to

solve the WPC model as a whole.

4.2 The proposed heuristic algorithm

The FCTT is an algorithm which selects the most

appropriate slots for each task, which are ready to be

executed. There is a handful of choices for each task,

among which the choice capable of minimizing the multi-

objective cost metric of (1) will be selected as the best

solution. According to the best solution, the Earliest Start

Time (EST) needs to be computed to execute immediate

successor tasks and this procedure will be carried on so

long as the execution of the whole application tasks will be

finished.

The FCTT algorithm pseudo-code is presented in

algorithm 1 which operates according to the WPC model.

The algorithm obtains the available slot lists to all

resources and the unscheduled tasks as an input parameter

(lines 1, 2). Moreover, the EST is initialized with

simulation current time (line 3). The application-level

scheduler carries out the planning of each application task

due to available slots list characteristics with an eye on the

multi-objective cost metric presented in (1), (lines 4 to 14).

Initially, a list of unplanned tasks which are eligible to be

executed is selected (line 5). Next, the eligible tasks are

defined as the ones whose parents’ tasks execution is

completed, though the very same tasks have not been

executed yet. The available slots list of each resource is

obtained by line 7. In line 8, the EST of the task T on all the

resources is computed. Eventually, the Earliest Finish Time

(EFT) of the task T is computed, (line 9).

The EST is computed on the basis of the completion-

time of the latest parents tasks T. Next, the best slot

capable of executing the task is selected for each task T on

each resource. In cases, the selected resource does not

match with the resource which executes the parents’ tasks,

the data-transfer time needs to be added to the EST.

 Once the best slot to execute task T is obtained on

each resource, the resource which minimizes the multi-

objective cost metric in (1) will be selected as the best

resource (line 10). Now, it comes to allocating the task T

to a selected resource (line 11) as well as updating the slots

list of the selected resource (line 12). This procedure needs

to be continued as long as there still exists an eligible task

(lines 4 to 14). Finally, when the entire application tasks

are planned, the time and allocation-cost need to be

computed. At the end of the completion of the whole

application tasks, the slots assigned to the application tasks

will be released.

5 Simulation setup

To conduct an experimental evaluation of the

efficiency of algorithm 1, the GridSim [16] is used to

simulate the application-level scheduler in the Utility Grids

environment. The Grids environment which is modeled in

this simulation consists of ten sites belonging to a subset of

the European Data Grid (EDG) spread across five countries

which are interconnected via a high-speed network [8, 17].

The workload simulated on these sites follows the

workload model generated by Lublin [18]. The main

purpose of the use of this model is to create a realistic

simulation environment where the tasks compete with one

another.

The Lublin workload model determines the arrival-

time, the number of required processors and the estimated

runtime parameters. This model is derived from the trace of

the existing model to do rigid tasks. Table 1 shows the

workload parameters values applied to in the Lublin model.

Table 2 shows resource configuration on the Grids test-bed

in order to simulate the distributed system as well as the

cost of using a processor, a CPU rating, the number of

CPUs and the site-location of each resource.

This resource configuration is used in order to show

the heterogeneity of the execution environment. The entire

resources are simulated using the advance reservation

policy and the conservative backfilling policy in order to

improve response time. In general, in the real-world, the

resource pricing is controlled by different economic

factors, thus, the time and allocation-cost minimization is

likely to conflict with one another.

To conduct experiments, a parameterized graph

generator is used to create a synthetic workflow application

[9]. The application characteristics contain n=100 tasks

with an average execution time of 1000 s [13]. The

workflow on the average consists of n levels (the

workflow graph depths) and n tasks at each level. Each

task on the average needs 25 CPUs for executing. The

mean value of the data transfer among the tasks is 1000

Gb. The mean bandwidth value among resources is 10 Gb/s

with a mean latency time of 150 s.

Algorithm 1: The pseudo-code for the FCTT algorithm

Input:

An application characteristics with an instruction length for
each task and the required CPUs
The resource characteristics and the available slots to each
resource

Output: The workflow scheduling

1 Get the list of the available time slots for all resources
2 UnScheduledTask = get the list of the tasks which have not

been scheduled yet.
3 Assign the simulation current time to the Earliest Start

Time(EST).
4 While UnScheduledTask is not empty do
5

EligibleTasks = select all tasks which executions of their
parents have been completed.

6 for each T in the EligibleTasks do
7 Acquire the available slots of each resource.
8 Compute the EST of the task T on each resource.
9 Compute the Earliest Finish Time (EFT) of the task T.
10

Find a time slot (TS) which is feasible for the task T
while minimizing the multi-objective cost-based
 metrics defined by (1).

11 Allocate the TS on the resource r to the task T
12 Update the list of available slots to the resource r

13 end for
14 end while
15 Compute the makespan and allocation-cost of the application.

Table 1: Lublin workload model parameter values.
Workload parameter Value

JobType
Maximum number of CPUs required by a
job(p)
uHi
uMed
Other parameters

Batch JOBS
1000
Log2(p)
uHi-2.5
As created by Lublin
model

Table 2: Simulated EDG testbed resources.
Resource name
(Location)

Number
of CPUs

Single CPU
rating(MIPS)

Processing
cost(G$)

RAL(UK) 20 1140 0.0061
Imperial College(UK) 26 1330 0.1799
NorduGrid(Norway) 265 1176 0.0627
NIKHEF(Netherlands) 54 1166 0.0353
Lyon(France) 60 1320 0.1424
Milano(Italy) 135 1000 0.0024
Torina(Italy) 200 1330 1.856
Catania(Italy) 252 1200 0.1267
Padova(Italy) 65 1000 0.0032
Bologna(Italy) 100 1140 0.0069

At this stage, the scheduling algorithm which uses the

best-effort QoS for scheduling, is simulated and tagged as

the BE. As the number of the resources is m and the

resources are heterogeneous in terms of CPU rating and

allocating-cost, a heuristic algorithm needs to be taken into

account to select a suitable resource in the best-effort QoS.

In BE, the exploited heuristic method selects a resource

with the minimum number of tasks in the waiting and

running queues. The majority of the resource management

systems make it possible for users to obtain the number of

the tasks in the waiting and running queues [13].

An application scheduling algorithm using cost model

is presented by Singh et al. [12, 13]. Their algorithm has

provisioned a set of the slots to optimize performance

under the minimum allocation-cost in order to execute

application on the provisioned slots. This cost-modeled

algorithm makes a trade-off between scheduling and

allocation-cost based on trade-off factor. After that, the

scheduling takes place using a multi-objective genetic

algorithm [19], as well as simulating the algorithm. It is

tagged as the MOGA for brevity [12, 13].

The FCTT, the MOGA and the BE algorithms are

simulated and their performance is evaluated through

conducting a number of experiments. Finally, the results

from the algorithms are compared with one another. In the

next section, simulation results which are compared will be

thoroughly analyzed.

6 Analysis of results

In this section, the application performance results are

compared and analyzed with criteria such as the makespan,

allocation-cost and runtime of the proposed FCTT

algorithm along with the MOGA and the BE algorithms

[12, 13]. Also, it will be shown how the proposed heuristic

schedules the application through optimizing the makespan

and the allocation-cost in the minimum runtime. According

to the presented characteristics in the section 3, a synthetic

workflow application is generated considering “trade-off

factor=0.5”. The rest of the simulation parameters is

compatible with the setups in the section 5. The Y-axis is

drawn in logarithmic scale to make the experiments results

discernable.

A few experiments have been conducted to determine

the impact of the workflow size on the allocation-cost,

makespan and runtime in terms of the number of the

application tasks. It is followed by an analysis of the

comparison between the FCTT, MOGA and BE

algorithms. The experiments were conducted with the

application tasks’ sizes of 25, 50, 100, 200, 300 and 500 in

order to study the impacts on the allocation-cost, makespan

and runtime in the application scheduling due to the

increasing number of the application tasks.

Figs. 1 and 2 show the impact of the workflow size on

the allocation-cost and makespan in the application

scheduling, respectively. As Figs. 1 and 2 indicate, the

allocation cost and makespan of the proposed algorithm

which the average of all its instances are around 37% and

1% less than the MOGA algorithm, respectively, and one

order of magnitude less than the BE algorithm. The low

cost and makespan in proposed algorithm is explained by

the fact that it selects a slot with the earliest start-time to

run the eligible task from the whole existing slots

according to the multi-objective cost metric of (1).

However, the MOGA algorithm randomly selects a subset

of the slots for scheduling the whole tasks. Due to the

existing data dependency among tasks, if the execution of

an eligible task is postponed, it will result in lengthening

the makespan. In the BE algorithm, as long as the

executions of the parent tasks are not completed, child-

tasks will not be submitted. As the workflow graph depth is

n , the higher the number of the tasks n is, the deeper the

workflow will be. Eventually, an increase in the workflow

graph depth leads to an increase in the number of the times

a task needs to wait, causing an increase in the makespan.

Fig. 3 reveals the FCTT, MOGA and BE algorithms’

runtime relative to an increase in the number of the

application tasks. As the figure shows, the proposed

algorithm in all instances is almost three orders of

magnitude less than the MOGA and the BE algorithms.

The low time-complexity of the proposed algorithm is

explained by the fact that it seeks the best slot for a single

task just once, while the MOGA algorithm is implemented

based on the genetic algorithm. One of the disadvantages

of the genetic algorithms is length of their runtime.

Moreover, in order to seek a subset of proper slots, the

MOGA algorithm needs to repetitively plan the whole

chromosomes of each generation of the population so that

the best solution of each generation can be selected. The

whole process involves a very high time-complexity.

Therefore, the higher the number of the application tasks

is, the longer the runtime of the algorithm will be. Due to

Fig. 3, if the number of the tasks increases from 300 tasks

to 500 tasks in the MOGA algorithm, its runtime will

increase around one order of magnitude. The BE algorithm

employs the best-effort service while neglecting the cost

metric optimization. After the executions of all the parent

tasks of a single task are completed the execution of the

desired task will start which results in a longer runtime.

According to Fig. 3, due to an increase in the

application tasks even when it is running 500 tasks the

FCTT algorithm requires much lower runtime. The runtime

required by the FCTT algorithm is around 0.7 second for

500 tasks to be executed, whereas in the MOGA algorithm,

the application runtime takes almost one hour and twenty

minutes. As a result, the FCTT algorithm is scalable caused

by an increase in the application tasks as well as capable of

scheduling huge applications with the lowest runtime in the

heterogeneous environment.

Figure 1. Workflow size impact on the application allocation-cost.

Figure 2. Workflow size impact on the application makespan.

Figure 3.Workflow size impact on the application runtime.

7 Conclusion

The present paper deals with designing, implementing

and evaluating the FCTT heuristic algorithm in order to

schedule a workflow application. The paper seeks to

optimize the multi-objective cost-time based on the

proposed WPC model. To develop a real distributed

environment, the resources workload is simulated based on

the Lublin model. Due to many experiments conducted on

a generated syntactic workflow, it was shown that the

FCTT heuristic algorithm is far more effective than the

existing algorithms in terms of the cost-time optimization

and scalability for scheduling the workflow application.

1

10

100

1000

10000

100000

1000000

10000000

100000000

25 50 100 200 300 500

C
o

st
/A

p
p

li
c
a

ti
o

n
(G

$
)

Number of tasks in workflow

BE MOGA FCTT

1

10

100

1000

10000

25 50 100 200 300 500

M
a

k
e
sp

a
n

(h
r
s)

Number of tasks in workflow

BE MOGA FCTT

1

10

100

1000

10000

100000

1000000

10000000

25 50 100 200 300 500

R
u

n
ti

m
e
 o

f
a

lg
o

r
it

h
m

(m
s)

Number of tasks in workflow

BE MOGA FCTT

Also, in this paper, a few experiments have been

conducted to determine the impact of the workflow size on

the allocation-cost, makespan and runtime in terms of the

number of the application tasks. Next, it is followed by an

analysis of a comparison between the FCTT, MOGA and

BE algorithms. As a result, it was shown the FCTT

algorithm is scalable due to an increase in the application

tasks as well as capable of scheduling huge applications

with the lowest runtime in the heterogeneous environment.

8 References

[1] D. S. Katz, J. C. Jacob, G. B. Berriman, J. Good,

A. C. Laity, E. Deelman, C. Kesselman, G. Singh,

M. H. Su, and T. A. Prince, "A comparison of two

methods for building astronomical image mosaics

on a grid," in proceedings of the 34th

International Conference on Parallel Processing

Workshops (ICPP 2005 Workshops), Oslo,

Norway, 2005.

[2] E. Deelman, C. Kesselman, G. Mehta, L. Meshkat,

L. Pearlman, K. Blackburn, P. Ehrens, A.

Lazzarini, R. Williams, and S. Koranda, "GriPhyN

and LIGO, building a virtual data grid for

gravitational wave scientists," in 11th IEEE

International Symposium on High Performance

Distributed Computing (HPDC-11), Edinburgh,

Scotland, UK, 2002.

[3] J. D. Ullman, "NP-complete scheduling

problems," Journal of Computer and System

Sciences, vol. 10, pp. 384-393, 1975.

[4] D. Feitelson and L. Rudolph, "Parallel job

scheduling: Issues and approaches," in 1st

Workshop on Job Scheduling Strategies for

Parallel Processing, Santa Barbara, CA, 1995, pp.

1-18.

[5] D. Feitelson, L. Rudolph, U. Schwiegelshohn, K.

Sevcik, and P. Wong, "Theory and practice in

parallel job scheduling," in 3rd Workshop on Job

Scheduling Strategies for Parallel Processing,

Geneva, Switzerland, 1997, pp. 1-34.

[6] F. Xhafa and A. Abraham, "Computational models

and heuristic methods for Grid scheduling

problems," Future Generation Computer Systems,

vol. 26, pp. 608-621, 2010.

[7] M. Hovestadt, O. Kao, A. Keller, and A. Streit,

"Scheduling in HPC resource management

systems: Queuing vs. planning," in 9th Workshop

on Job Scheduling Strategies for Parallel

Processing, Seattle, WA, 2003, pp. 1-20.

[8] S. K. Garg, R. Buyya, and H. J. Siegel, "Time and

cost trade-off management for scheduling parallel

applications on Utility Grids," Future Generation

Computer Systems, vol. 26, pp. 1344-1355, 2010.

[9] H. Topcuoglu, S. Hariri, and M. Wu,

"Performance-effective and low-complexity task

scheduling for heterogeneous computing," IEEE

Transactions on Parallel and Distributed Systems,

vol. 13, pp. 260-274, 2002.

[10] M. Wieczorek, R. Prodan, and T. Fahringer,

"Scheduling of scientific workflows in the

ASKALON grid environment," ACM SIGMOD

Record, vol. 34, pp. 56-62, 2005.

[11] G. Singh, C. Kesselman, and E. Deelman,

"Application-level resource provisioning on the

grid," in E-SCIENCE '06 Proceedings of the

Second IEEE International Conference on e-

Science and Grid Computing Amsterdam, The

Netherlands, 2006, pp. 83-83.

[12] G. Singh, C. Kesselman, and E. Deelman, "A

provisioning model and its comparison with best-

effort for performance-cost optimization in grids,"

in Proceedings of the 16th international

symposium on High performance distributed

computing, Monterey, CA, USA, 2007, pp. 117-

126.

[13] G. Singh, C. Kesselman, and E. Deelman, "An

end-to-end framework for provisioning-based

resource and application management," Systems

Journal, IEEE, vol. 3, pp. 25-48, 2009.

[14] E. Deelman, G. Singh, M. Livny, B. Berriman,

and J. Good, "The cost of doing science on the

cloud: the montage example," in Proceedings of

the 2008 ACM/IEEE conference on

Supercomputing, NJ, USA, 2008, pp. 1-12.

[15] J. Yu, R. Buyya, and C. K. Tham, "Cost-based

scheduling of scientific workflow application on

utility grids," in First International Conference on

e-Science and Grid Technologies (e-Science'05),

Melbourne, Australia, 2005, pp. 140-147.

[16] R. Buyya and M. Murshed, "Gridsim: A toolkit for

the modeling and simulation of distributed

resource management and scheduling for grid

computing," Concurrency and Computation:

Practice and Experience, vol. 14, pp. 1175-1220,

2002.

[17] W. Hoschek, J. Jaen-Martinez, A. Samar, H.

Stockinger, and K. Stockinger, "Data management

in an international data grid project," in Grid

Computing - GRID 2000: First IEEE/ACM

International Workshop, Bangalore, India, 2000,

pp. 333-361.

[18] U. Lublin and D. G. Feitelson, "The workload on

parallel supercomputers: modeling the

characteristics of rigid jobs," Journal of Parallel

and Distributed Computing, vol. 63, pp. 1105-

1122, 2003.

[19] C. M. Fonseca and P. J. Fleming, "Genetic

algorithms for multiobjective optimization:

Formulation, discussion and generalization," in

Proceedings of the 5th International Conference

on Genetic Algorithms, Urbana-Champaign, IL,

USA, 1993, pp. 416–423.

