
A C Language Compiler Design in Comprehensive
Experiment Methodology for Computer Science and

Technology

Tian Wang, Yongtao Hao
 College of Electronics Information & Engineering, Tongji University, Shanghai, China

Abstract - The problems that exist in computer science today
is too much attention has been paid to validate experiment,
experiment content is mainly on a single aspect of technology
and other issues. It is necessary to propose an experiment
reform program for the computer science professional
training. This program should cover the computer science
foundation and core courses such as digital logic and digital
IC, principle of computer organization, principle of
microcomputer and interface technology, assembly
programming, compiler theory and operating system. In this
paper, a theory of C-compiler for the MIPS I instruction set
processor is raised as an experiment reform program. The
program is based on the LLVM project, and it is more
innovative and practical compared to traditional compile-
principle experiment.

Keywords: Comprehensive experiment methodology, C
language, Compiler porting, LLVM, GCC

1 Introduction
 Low Level Virtual Machine (LLVM) is an open source
project undertaken by the University of Illinois [1]. It provides
support on the compiler, and can be used as a background for
a variety of language compiler and used for compiler
optimization, connection optimization, online compiler
optimization and code generation. LLVM reuses the GCC as
the frontend process tool of high-level language and provide
its unique backend porting infrastructure to avoid the heavy
workload of GCC backend porting [2].

2 LLVM Infrastructure
 The architecture of LLVM compiler follows the logic
compiler phasing rules[3], divided into the frontend of the
high-level language processing, optimization of intermediate
representation, backend code generator which is related to the
target processor[4] (as shown in Figure 1).

LLVM uses GCC to analysis the source code written in
high-level language and parse it into LLVM Intermediate
Representation (IR). The latest version has supported for C, C
+ +, FORTRAN, JAVA. Moreover you can add new language
support through frontend porting interface. The IR optimizer
which is established on the LLVM virtual instruction set will

process the IR generated in the previous step on standard
scalar optimization, loop optimization, as well as inter-
procedural optimization. This will generate optimized LLVM
IR. The backend code generator contains instruction selection,
register allocation, machine code optimization, code output
and so on. The three parts above are relatively independent
and optimization of one part does not affect the other two
parts, so that we can improve the reuse of the module and
reduce the unnecessary duplication of work [5].

3 LLVM Backend porting
Backend code generator will translate the LLVM IR,

which is generated by optimizer, to assembly code for a
specific processor. It contains two parts: the target code
generator which is processor independent and backend
transfer interface. Actual code is generated by the former
process and to deal with it differently according to the
description made by the latter part. This kind of division
reduces the cost of the development of backend code
generator greatly and makes the porting work reduced to the
implementation of backend transplant interface for target
processor.
 LLVM backend porting interface is made up of abstract
classes which describe the target processor architecture. Some
of the classes are listed in table 1. For each specific processor,
the first thing need to do is inheriting these classes, and then
the corresponding feature attribute function should be
implemented based on the new processor architecture. In this
way, support for the new processor should be gained.

Table 1 Examples of the LLVM backend transplant interface

CLASS USE
TargetMachine Global description
TargetLowering Description of IR conversion description
MRegisterInfo Description of register
TargetInstrInfo Description of instruction set

TargetFrameInfo Description of frame stack layout
TargetSubtarget Support of processor sub-series
TargetJITInfo Support of processor JIT

…… ……

TableGen In some cases, there may be a large number of

records of description for the target processor needed to be

Figure 1 LLVM infrastructure

Figure 2 the LLVM backend transplantation structure

maintained, and they may have a lot in common. If these
records are prepared artificially, it will spend a lot of time and
will be very prone to error. To this end, LLVM provides a
tool “TableGen” to reduce the workload of description. As
long as users use .td file fits TableGen grammar rules to
describe processor, tool tblgen can resolve it into C++ code.
In this way, transplantation can be divided into two parts,
using TableGen to describe the target processor and writing
C++ code to complement it. Figure 2 above describes the
structure of the LLVM backend porting [6].

Register description There are two aspects contained in
the register description, TableGen description on the target
processor and achieving class MRegisterInfo. That is to
implementation these three files: XXXRegisterInfo.td 、
XXXRegisterInfo.h and XXXRegisterInfo.cpp. The first file
describes properties of each register in processor, alias
relationship between registers and register allocation scheme
when programs are running. This is achieved by using the four
records provided by TableGen. XXXRegisterInfo.h and
XXXRegisterInfo.cpp need to inherit class MRegisterInfo and
implement virtual function contained within the class. These
virtual functions include providing the instruction that
transmit the value in register to stack slot, providing the

instruction that take the value from stack slot to register,
providing instruction that copy register and so on.

Instruction set description The instruction set description
also includes two aspects: TableGen description on the target
processor’s instruction set and inheriting class TargetInstrInfo.
The file XXXInstrInfo.td describes instruction set of the
target processor, instruction features, addressing method of
instructions, instruction operand, the instruction encoding
method, the output format and the relation between
instructions and virtual instruction set and so on. Document
XXXInstrInfo.h and XXXInstrInfo.cpp need to inherit class
TargetInstrInfo and implement the virtual functions in it.
These function interfaces include the judgment of an
instruction is a move instruction between registers[7], to
determine whether an instruction is to read or write the stack
slot command and so on.

IR conversion description IR conversion describes the
way how LLVM IR converts to the assembly code of target
processor. This can be taken down into three parts: the
legalization of the operands, instruction matching options and
other conversion description. As a matter of fact these can be
achieved by fulfill documents XXXLowering.h and
XXXLowering.cpp.

When LLVM IR’s type and the type of target processor
system are inconsistent, type conversion should be done. This
progress is called legalization of the operands. Instruction set
used by the LLVM IR is its virtual instruction set and this may
not match the instruction used by target processor [8], so the
conversion of instruction should be taken, too. Other
conversion should be set for the shift size of the shift
instruction type and target processor scheduling optimization
options.

4 Conclusion
 Currently, there has existed successful LLVM
transplantation in the processor ARM and processor NiosII,
thus porting LLVM to the processor based on MIPS I is
feasible. Compared with traditional compile-principle
experiment program, this program does not focus on the
lexical analysis, syntax analysis and IR generation process,
but on the assembly code generation. You will not be able to
describe the target processor and accomplish porting of
LLVM backend if you have not understood its structure and
instruction set. This arrangement complements the traditional
compiler theory experiment which is mainly on lexical
analysis and syntax analysis and linking the relatively isolated
compiler theory experiment to digital logic device design
experiment, assembly language program design experiment,
CPU design experiment which has been finished in the
experiment reform program. This will help students to see
these courses as a whole and to form their overall knowledge
of computer science and technology.

5 References
[1] Terei A, Chakravarty T. An LLVM backend for GHC[C].
Proceedings of the Third ACM Haskell Symposium on
Haskell. 2010:109-120.

[2] Xiaoxi Ren, Renfa Li, Kehuan Zhang, Yuanni Guo. A
compiler technology based on retargetable method for
embedded system[J]. Journal of Computer Applications 2004,
24(2):165-167.

[3] Lattner C, Adve V. Architecture for a next-generation
GCC[C]. First Annual GCC Developers. 2003:121-132.

[4] S. Ren, N. Lu, W. Zhang, and Z. Pan. LLVM-
infrastructure-based NIOS Ⅱ backend fast porting. Computer
Applications and Software, vol. 28, 2011.

[5] F. Dong, Analysis of LLVM Compiler Infrastructure and
Backend Porting For ARM[D]. vol. master: Shanghai Jiao
Tong University, 2007

[6] F. Dong, Y. Fu. Backend porting for ARM based on
LLVM infrastructure[J]. Information Technology. vol. 7,2007.

[7] G. Hadjiyiannis, S. Hanono, S. Devadas. ISDL: An
instruction set description language for retargetability[C], In
Proceedings of Design Automation Conference, pages 299-
302, June 1997.

[8] Vikram Advd, Chris Lattner, Micheal Brukman, LLVA: A
low-level virtual instruction set architecture[C]. Proc. of the
36th Annual ACM/IEEE International Symposium on
Microarchitecture (MICRO-36), San Diego, CA, December
2003.

	A C Language Compiler Design in Comprehensive Experiment Methodology for Computer Science and Technology
	1 Introduction
	2 LLVM Infrastructure
	3 LLVM Backend porting
	4 Conclusion
	5 References

