
Teaching with the Emerging GENI Network

James Griffioen, Zongming Fei, Hussamuddin Nasir, Xiongqi Wu, Jeremy Reed, and Charles Carpenter
Laboratory for Advanced Networking, University of Kentucky

301 Rose Street, Lexington, KY 40506, USA

Abstract— Over the last few years the National Science
Foundation (NSF) has been investing in and developing a
new network calledGENI, a wide-area testbed network for
at-scale experimentation with future internet designs. The
GENI network has recently become available for use and is
beginning to attract users.

In this paper, we take a closer look at GENI with a partic-
ular focus on how GENI can be used to enhance education
in the areas of computer science and computer engineering.
We describe what GENI is, the resources available in GENI,
and how instructors might use GENI in their classes. Being
early adopters, we describe our experience using GENI in
our classes, and we point out various features and challenges
of using GENI. Finally, we provide tips and pointers to
instructors who are interested in incorporating GENI into
their own classes.

Keywords: hands-on experiment, GENI, network testbed, net-
work monitoring, network lab assignment

1. Introduction
Although the Internet has been extremely successful and

has transformed essentially every aspect of our culture, there
is wide-spread agreement that the existing Internet architec-
ture suffers from various problems and limitations that are
constraining the development of new and innovative services.
To address this issue the National Science Foundation (NSF)
has launched several efforts designed to investigate new
network architectures capable of supporting the types of
applications and services desired in a “future internet” (e.g.,
the Future Internet Design (FIND) program [1] and the
Future Internet Architecture (FIA) program [2]). In addition,
NSF noted that the only way to truly evaluate new network
architectures and designs is to construct an at-scale (i.e.,
Internet-scale) testbed network on which researchers can
experiment with their ideas. To that end, NSF created
and charged the GENI Project Office (GPO) with the task
of implementing a large-scale testbed network that could
be used for the development of next generation internet
architectures.

After several years of development, theGlobal Envi-
ronment for Network Innovations (GENI) [3]has recently
become available for use and is rapidly attracting researchers
working on novel network architectures and applications.
Although GENI is also available for educational use, the

vast majority of the GENI effort to-date has been focused
on, and involved, the networkresearchcommunity.

The goal of this paper is to present ways in which
GENI can be used to enhanceeducation, particularly in
the areas of computer science and computer engineering.
Section 2 begins by giving a brief overview of GENI and
the types of resources available in GENI. Section 3 then
provides an example of one of the possible ways in which a
user might access and control/use the GENI infrastructure.
Having provided an introduction to GENI, we then offer
some potential educational uses for GENI in Section 4.
Section 5 then describes projects that we have used in our
networking classes at the University of Kentucky. We then
briefly compare GENI to alternative approaches in Section 6
and offer some concluding remarks and tips to instructors in
Section 7.

2. GENI Overview
The goal of GENI is to enable users to build and operate

their own Internet-scale networks. To that end, GENI has
resources(e.g., computers, routers, network links) all across
the nation (and to some extent internationally via federation)
that are available for users to reserve and use in their
own (private) network. For example, a user working on
new data center services might build a testbed network by
reserving desktop style computers (physically located) in
Utah, Wisconsin, Kentucky, and Georgia for use as “clients”
in their network, server machines in Salt Lake City to mimic
a “data center”, and routers in Atlanta, Washington DC,
Kansas City, and Salt Lake city, with links that interconnect
the “clients” and “data center” into a complete network.
In the past, building such a network would be impossible
for the normal user, and would even be challenging, if not
impossible, for ISPs that own and operate network routers
and data centers. However, with GENI, it becomes relatively
easy to create such a network; in fact, the above network
could be created for the user in a matter of minutes.

Alternatively, consider a user that wanted to test out new
services run out of a data center supporting mobile (wireless)
users. In this case, the user might build a test network by
reserving a set of mobile (wireless) nodes in New Jersey and
in Wisconsin connected via routers in Washington DC and
Atlanta to a set of “data center” machines in Georgia and
Kentucky.



In short, GENI offers a wide range of resources all
across the nation that users can quickly and easily compose
into a network of their own design. Moreover, GENI can
support multiple user networks simultaneously – each being
independent of the others. In other words, each user gets
their own network composed of a set of resources that
have been reserved for that network. In GENI terminology,
a user’s network is called aslice of GENI (a subset of
the GENI resources allocated for the user’s network). Each
individual resource in the network is called asliver of the
slice. The list of resources that comprise a slice are often
represented by aResource Specification (RSPEC).

The set of resources that make up GENI are owned and
operated by different entities. The set of resources that
are operated by a particular entity is called anAggregate.
When a user reserves resources, GENI contacts the various
aggregate operators where those resources are located to
verify that the resource is available and that it can be
reserved. Consequently, each aggregate operator has the
ability to allow or deny requests for its resources.

Many resources are programmable, implying that the user
is free to design, implement, deploy, and control the software
that runs on the resource. In particular, users are able to
develop their own network protocol stacks and are not
required to use the standard TCP/IP protocol stack. Ideally
users could build their own network from the ground up,
starting with their own physical and data link layers and all
the layers up to the application layer. However, for pragmatic
reasons the current version of GENI only allows users to
select from a set of conventional technologies at the physical
and data link layers (e.g., Ethernet, 802.11, etc). However,
beyond that users are free to build/use any network layers
they desire. For example, if a user wanted to write and test
their own network layer protocol (instead of using IP), GENI
would support it. If they wanted to add new services or
processing into routers in the middle of the network (things
that might be viewed as layering violations in the current
Internet architecture), GENI would support it. In short, GENI
allows users to throw out the current Internet (TCP/IP) model
and start all over should they want to.

2.1 GENI Resources
Unlike other wide-area testbed networks such as Planet-

lab [4] and Emulab [5] which offer one (or very few) types
of resources (e.g., a raw PC or Vserver virtual machine),
GENI was designed to offer a wide range of different types
of resources ranging from PCs, to (truly) mobile nodes, to
network processors, to high-speed packet capture devices,to
high-end compute servers.

GENI resources can be allocated to a single user for
exclusive use. For example, a raw PC can be included
in a slice, and the creator of the slice can request that a
specific version and distribution of Linux operating system
(e.g., Ubuntu 10) be installed and loaded on the PC. The

slice creator has complete control over the machine. On the
other hand, GENI resources can be virtualized and shared
by multiple users. The virtualization technology makes it
possible for each user to get a piece of the resource,
such as an OpenVZ container or a virtual router, without
interferences from other users. The user can pretty much do
whatever she/he want within her/his slice.

Three categories of resources are provided by GENI.
The first category of GENI resources are end hosts, which
include raw PCs, virtual PCs such as OpenVZ and Vserver,
and virtual platforms such as python sandbox environments
provided by the million node GENI [6]. As the GENI
project installs GENI server racks on more campuses, server
class computers with fast processors and large storage space
will become available as high-performance end hosts to be
included in the user slice.

The second category of GENI resources are routers. When
setting up a network experiment, PCs and virtual PCs can
be configured to act as routers. GENI also provides physical
routers (such as Juniper routers installed at Atlanta, Wash-
ington DC, Kansas City and Salt Lake City connected to the
Internet2 backbone). The user can request Juniper logical
routers (virtualized routers) from the GENI ShadowNet
aggregate [7]. In addition, wireless access points, open flow
switches, network processors (NetFPGAs) and mobile nodes
can be allocated to set up a customized network testbed for
users.

The third category of GENI resources are links, both
wired (such as copper and optical links) and wireless. GENI
provides layer 2 connections between different aggregates.
The user can request that a layer 2 physical link be reserved
between routers or end hosts for a given slice. To study the
behavior of residential users, one can even include cables
to the home as a part of slice, in order to collect the usage
data [8]. Virtual links can also be established among nodes
in an experiment. They can be VLANs set up among nodes
within an aggregate or GRE tunnels/TCP-UDP tunnels set
up between nodes from different aggregates.

2.2 GENI Measurement Infrastructure
In addition to resources, GENI provides a rich set of

instrumentation and measurement tools for monitoring user
experiments. They enable users to collect measurement data
easily and make sure that experiments behave as expected.
For example, GENI instrumentation and monitoring tools
(INSTOOLS) has been developingslice-specific monitoring
infrastructure to capture, record, and display information
about a user slice, based on the consideration that exper-
imenters are primarily interested in the behavior and perfor-
mance of their experiment [9]. After the user instructs the
system to instrument a slice, INSTOOLS will automatically
deploy, configure, and run monitoring software or services
on the resources that comprise the slice. It will also set up
servers to collect the information captured at these resources,



process the information, and make it available to the user via
a graphical user interface.

Three categories of data are collected. The first one is
network tables such as ARP tables, IP address tables, and
routing tables. The second one is traffic information, such
as IP, ICMP, TCP, or UDP traffic over time. The last one is
operating system information, such as CPU load, memory
load, and loaded modules. All these data are presented via
a portal, which provides a “one-stop shop" to access all
the data collected from the experiment. The traffic and load
information are presented as graphs showing how it changes
over time, while other information is presented as tables.
They are accessible from any web browser through the
Internet. The user can quickly identify abnormal behavior
by observing these graphs and tables.

3. Using GENI
The first step to use GENI is to get an account from

a GENI aggregate. After answering several questions to
provide the identity of the applicant, the user’s account
will be approved by a GENI administrator. As GENI is
a federated system, a user having an account with any
aggregate can request resources from other aggregates to
be included in her/his slice, subject to the policies of the
aggregates involved.

GENI provides users with a graphical user interface called
Flack, which is a Flash application accessible from a web
browser [9]. It was developed as a part of the ProtoGENI
project [10]. After logging into Flack, the user can find
resources available across the GENI aggregates. To create
a new experiment, the user only needs to drag the icons of
the corresponding resources (raw or virtual nodes) from the
desired aggregate onto the canvas, as shown in Figure 1. The
user can specify which operating system image will be used
in these nodes. Links can be set up between these nodes.
Typically, a VLAN will be created for nodes from the same
aggregate, while a GRE tunnel (IP-in-IP encapsulation) [11]
will be created for nodes from different aggregates. The user
can also drag a delay node from an aggregate to be used as
a part of the link. The delay node will be used to emulate
different characteristics, such as latency, bandwidth andloss
rate, of the link.

After the “submit” button is clicked by the user, the GENI
system will automatically allocate the resources from the
corresponding aggregates and set up the experiment. This
may take several minutes to finish because the machines
will be booted and configured according to the specification
provided by the user.

Once an experiment has been created, the slice can be
instrumentized as shown in Figure 2. The first step is to click
on the plugins tab. The “instrumentize” button will show up.
The second step is to click the “Instrumentize” button. The
instrumentation tool will distribute measurement software to
experimental nodes and configure them to capture traffic

Fig. 1: Flack interface.

and load information on these nodes. One measurement
controller will be added for the slice at each aggregate. It will
be used to collect and process data captured at experimental
nodes, and act as a server to present the measurement data
to the user. When the instrumentation process is finished,
clicking on the “Go to portal” button (step3 in the figure)
opens a browser window to the INSTOOLS portal for the
experiment.

Fig. 2: Instrumentize an experiment

The portal presents the user with the collected informa-
tion. Figure 3 shows the physical topology of the experiment
to the user. It is a map view overlaid with the resources and
network topology used in the slice. The user can also choose
to look at the logical topology, which ignores the location
information and can be read more easily. The user can click
on any node or any link and a dialog box will appear, from
which the user can choose what performance information to
observe. Whatever is picked by the user will show up on the
left-hand side of the interface.



Fig. 3: The monitoring portal

4. Educational Uses for GENI
Networking classes have long used a variety of different

“lab” environments to give students hands-on experience.
Examples range from a single PC executing a network of
virtual machines (e.g., VMware, Virtual Box, OpenVZ, etc.),
to custom-built networking lab facilities [12], to emulation
facilities like Emulab [5], to wide-area overlays like Planet-
lab [4]. This raises the obvious question “What can GENI
do that these others cannot?” or stated another way, “Why
should I use GENI?”

The short answer to that question is that GENI is in many
ways a superset of these other approaches. Because GENI is
based on Emulab, Planetlab, etc, most anything that can be
done in one of these other environments can also be done
in GENI; but GENI also offers features not available in
these other environments. In particular, GENI is designed
to support “at-scale” networks that can scale up in terms
of the number of resources offered, the types of resources
offered, and the speed/performance of resources offered. As
a result, a variety of new types of experiments and students
projects are enabled by GENI–projects that are difficult, if
not impossible to implement using past approaches. The
following briefly outlines various types of projects that are
enabled by the new GENI infrastructure.

4.1 Types of Projects Enabled by GENI
The following is not intended to be a comprehensive list

of the types of projects possible on GENI, but rather is
presented to give an idea of the potential uses for GENI
in computer science and computer engineering courses. The
first two types of projects mentioned below are possible
using past systems and have been widely used in operating
system and networking classes. GENI not only supports
these, but enables a variety of new types of network ex-
periments:

1) Conventional OS/Networking Assignments: These
projects ask the student to make modifications to
existing OS and networking code to create their own
(routing) protocols or network services. Systems like
Emulab, virtual machine networks, and custom lab
facilities have long been used to support these types
of assignments. Many GENI resources also allow
students to have complete control over the software
that runs on GENI resources.

2) Network Monitoring Assignments:These projects ask
the student to write active (intrusive) and passive
monitoring code to measure the performance of the
Internet. GENI, like PlanetLab, offers geographically
distributed resources that have been particularly useful
as a basis for these types of assignments.

3) Data Center/Cloud Assignments:With the emergence
of cloud computing, GENI, unlike past systems, of-
fers high-performance clusters that can be used to
implement “data center” services using custom or
conventional (e.g., hadoop) data center software.

4) Mobile Networking Assignments:Because GENI in-
cludes a variety of (virtualized) mobile resources, it
is an excellent platform on which to do assignments
involving mobile users and code.

5) Wireless Assignments:GENI supports a variety of
wireless network technologies including both mobile
and fixed infrastructure that allows students to do as-
signments that must deal with the realities of wireless
networks (e.g., variable loss rates).

6) Home Networking Assignments:While there are lim-
ited home network resources (e.g., cable modem/DSL)
available, the ability to write code that utilizes the
resources of opt-in home users is a unique feature of
GENI.



7) High-performance Networking Assignments:Most stu-
dent assignments are designed to build something that
works, with performance as an afterthought. However,
GENI offers high-performance servers, programmable
network processors, and optical networks that enable
assignments that test scalability of performance.

8) Application-level Monitoring Assignments:GENI in-
cludes some unique application-level resources such
as low-power radar sensors and web cameras that are
virtualized and accessible for use by users. Moreover,
the high-performance network links available in GENI
make it possible to move data off of these devices to
network servers in real-time.

9) Complete Network Assignments:Because GENI sup-
ports so many different resources, it is possible for
students to work on projects that involve every aspect
of a complex/complete network ranging from (mobile)
client nodes connected via wireless links to an optical
backbone networks with advanced services built-into
the network structure, as well as data center computing
power offering cloud services.

5. Experience of Teaching with GENI
We have been using GENI to teach network courses at

the University of Kentucky, including hands-on projects that
use GENI. Students have enjoyed many features provided
by GENI. The controlled environment makes it worry-free
for unexpected changes to operating systems and network
connections. The widely distributed GENI aggregates enable
experiments to be deployed over machines distributed across
the Internet. The easy setup and teardown let students make
mistakes and modify and improve their experiments within
minutes. In this section we describe in some detail three
networking experiments that are helped by the availabilityof
GENI. We have given the first two projects in our networking
classes. The third project is one that we are considering
giving in the future.

5.1 Reliability Protocols
Reliability is one of the most important concepts in com-

puter networks. Traditional mechanisms for implementing
reliability include Stop and Wait, Go Back N, and Selective
Repeat. TCP uses a slightly different reliability protocol
by using cumulative acknowledgment and buffering out-of-
order packets at the receiver.

A programming assignment can let students implement
one of the reliability mechanisms. The sender and receiver
can be implemented as a UDP client and a UDP server. A
timer must be implemented in order to deal with the cases
when data or acknowledgment packets are lost. The goal is
to observe the behavior of the programs in a wide variety
of loss scenarios.

The problem with testing these programs in a general pur-
pose computer lab is that we typically do not observe much

loss in normal networking conditions. Therefore, all data
packets to the receiver and all acknowledgment packets back
to the sender get through without loss. Consequently the
timeout and retransmission mechanisms will not be tested.
Ideally, we would like to have a controlled environment in
which we can get whatever loss rate we would like for any
links. The scenarios should be repeatable. This is hard, if
not impossible, to achieve in a general purpose lab.

Fig. 4: Sender and receiver connected with a delay node as
the link between them.

In contrast, GENI allows students to set up a network
topology with a sender node, a receiver node and a link
between them as in Figure 4. The link can be implemented
by a delay node. GENI allows the delay node to control the
link characteristics, especially the loss rate in this case. All
these can be easily set up using the GUI provided by GENI
and the experiment can be up running in a few minutes.
Students can run their programs on the sender node and
the receiver node, which typically are loaded with standard
Linux OS. The loss rate can be specified to whatever values
we want. We can do stress test of the protocol implemented
to see whether it can handle all kinds of extreme scenarios.

5.2 Network Configuration and Automatic
Route Control

In this project, students first create a network topology
and then manually configure the network routing using
conventional network administration software. In the second
phase, students implement, deploy, and test a new/emerging
type of router that separates routing from forwarding. In
particular, they will write a Forward Information Base (FIB)
controller process that allows remote control of the forward-
ing operation of a router. This creates the potential to run
Routing Decision (RD) services remotely - for example, on a
centralized controller node. By sending commands to a FIB
Controller, an RD server is able to modify the Forwarding
Information Base in a router.

The first step of this project is to create a network topology
using the ProtoGENI Flack interface. For example, students



can create a 4-node topology as shown in Figure 5, where the
two nodes on the top are shared nodes from the utahemulab
component manager and the two nodes at the bottom are
from the ukgeni component manager.

Fig. 5: A sample network topology.

Students login to these machines and use Unix commands
such asifconfig, netstat, arpand route, to observe and set
up routing so that one can ping from any node to any other
node. This manual configuration process helps students gain
experience with the basics of IP, ARP and routing.

The second part involves writing programs to act as a
FIB controller at each node and the RD server to control
the routing through the FIB controllers.

The FIB controller is a process that runs on every router.
It accepts commands from RD servers and then inserts or
deletes the appropriate routes in the FIB (routing tables).To
insert or delete entries in the FIB, the FIB Controller uses the
Unix “system()” system call or the UNIX “exec()” system
call to run the Unixroute program. The FIB Controller and
the RD Server speak a FIB Controller Protocol (FCP) that
students design and implement. Students are free to design
any FCP protocol. The only requirement is that the FCP
be run over the UDP protocol (i.e., carried in the payload
of UDP packets). The FIB Controller should receive UDP
packets (from the RD servers) on a predefined UDP port
number.

The RD server runs on a separate node - a node that is
not acting like a router. The RD needs to be able to send IP
packets to every one of the FIB Controllers it is controlling.
This implies that there exists a direct link from the RD node
to each router, or there exists an IP path from the RD node
to every router. Students need to modify the above topology
to meet these requirements.

As mentioned above, the RD server will speak the FCP
protocol with the FIB controllers that it manages. The RD
server will not make any routing decisions itself. Instead,the
RD server will accept commands from a computer terminal
(command-line interface), translate the commands into the
FCP protocol and send them to the appropriate FIB Con-
troller to be install/deleted. The command-line interfacecan

include commands such as creating a path to a destination
address, deleting a path, showing the routes to an IP address.

5.3 Path Characteristics of WANs

Most of our network classes use the Internet as a basis
to teach principles of network design. To get a better
understanding of the Internet, it is essential to understand
the characteristics (such as delay, bandwidth, loss rate) of
the links/paths in the Internet. We can ask the following
common questions about the Internet. What is the typical
delay of a path from the east coast to the west coast?
How do delay, bandwidth, and loss rate differ between a
local link and a wide area path, or among different wide
area paths? Do they change a lot over time? The goal is
to understand these characteristics and how they affect the
design of Internet protocols. For example, we need to track
round trip time in TCP because it changes over time. TCP
congestion control protocol needs to dynamically adjust the
congestion window because available bandwidth over a link
will vary a lot depending on the competing traffic.

This project requires students to collect measurement
data from the current Internet. They have to compare the
characteristics of the different paths chosen, and then observe
how the performance changes over time for each path.
A simple tool such as ping can be used to measure the
round trip time. We can send ping traffic to some popular
websites, such as www.google.com. This has two problems.
The first problem is related to the high frequency pings
performed automatically by programs. Sometimes they may
be misunderstood as denial of service attacks. We did get
emails requesting explanation or termination of tests from
those sites in the early days. The second problem is that
these tests are one-way operations. We can send ping to these
well-known websites, but the responses are pre-determined
by the ICMP protocol. We can use other tools, but have
similar problems that we cannot program the target site to
reply in the way we want.

The alternative approach is to get guest accounts from
friends in other universities or corporations. Typically,the
number of these guest accounts is very limited, partially
because various security concerns lead organizations to
impose strict policies on guest accounts allowed.

GENI provides an easy way to have machines located
around the country and even globally. We can define a
topology consisting of machines from selected aggregates.
We can send traffic between these nodes either through the
dedicated links, or through the normal Internet paths via
their public interfaces. We have control over both ends of
the path we are interested in. With this capability, students
can write/run their programs or use existing tools such as
pathrate, pathchar, on the experimental machines allocated
by GENI. These programs can collect path information over
the wide area networks over time.



6. Related Work
Virtualization (vmware, virtualbox, etc) [13]–[15] has

been widely used in Operating System/Networking courses
for projects because it is a simple and cost effective way to
give students complete access over a computer. Logical links
can also be set up among VMs to establish the topology of a
network experiment. However, VMs have limitations on the
flexibility of communication with other machines and do not
offer the performance of real hardware. More importantly,
they do not offer the ability to control the delay/bandwidth
of the network links, or the geographic location/distribution
we get in GENI.

Emulab [5] is the original software the current ProtoGENI
is based on. It offers many of the features of GENI, such as
easy allocation of resources, easy setup of experiments and
friendly graphical user interface. However, it is a single site
facility and thus does not provide the geographic distribution
of resources. Besides, it consists of a cluster of PCs and
does not offer the wide range of resources (wireless/mobile,
compute servers, juniper, openflow, optical routers, etc) as
GENI does.

Planetlab allows users to set up experiments using Vserver
of Planetlab nodes widely distributed across the Internet [4].
It offers geographic diversity, but does not offer the ability
to control all layers of the network. The system does not set
up links for communications between experimental nodes.
Instead, the user has to create overlays links among nodes
to set up the topology of an experiment. Using Vserver
prohibits users from controlling the operating system in
experimental nodes. It also results in poor performance com-
pared to physical nodes. Although resources are distributed,
there are very few resources at each location – typically 2
nodes at each location.

Special purpose network lab facilities (like the hands-on
lab at Purdue, or the lab experiments by Jorg Liebeherr and
Magda El Zarki) can be used for hands-on experiments [12],
[16], [17]. However, these dedicated labs have cost and
maintenance issues, are not easily (concurrently) shared by
students, typically offer only a single configuration (e.g.,
network topology, operating system, application software)
that can only be modified on the timescale of days or weeks
(if at all possible), and can only be used when the lab
is “open”. It also requires a lab monitor to allocate lab
resources to users. Moreover, because resources are limited,
it is is impossible to experiment with large-scale systems
consisting of many nodes separated by large geographic
distances.

7. Conclusion
Hands-on experiments are an essential part of computer

science courses for students to learn practical skills by doing.
Many of these experiments are enabled by GENI because
of its unique features, such as its easy-to-use graphical
interface, quick setup and teardown of experiments, and
a wide range of available resources. Though GENI can
further improve the access methods of experimental nodes,
it definitely makes a dramatic advance in the ways in which
the hands-on experiments can be done. To explore further,
we recommend the ProtoGENI website [10] and the GENI
tutorial [9].

Acknowledgment
This material is based upon work supported in part by

the National Science Foundation under grant CNS-0834243.
Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not
necessarily reflect the views of BBN Technologies Corp, the
GENI Project Office, or the National Science Foundation.

References
[1] “NSF Future Internet Design Project,” http://www.nets-find.net/.
[2] “NSF Future Internet Architecture Project,” http://www.nets-fia.net/.
[3] The GENI Project Office, “GENI System Overview,”

http://www.geni.net/docs/GENISysOvrvw092908.pdf.
[4] “Planetlab: An Open Platform for Developing, Deploying, and Ac-

cessing Planetary-scale Services.” http://www.planet-lab.org.
[5] “The Emulab,” http://www.emulab.net.
[6] “Million Node GENI,” http://groups.geni.net/geni/wiki/ GeniAggre-

gate/MillionNodeGeni.
[7] “GENI ShadowNet Project,” http://groups.geni.net/geni/

wiki/Shadownet.
[8] “The HomeNet Project,” http://homenet.hcii.cs.cmu.edu/.
[9] J. Duerig, R. Ricci, L. Stoller, M. Strum, G. Wong, C. Carpenter,

Z. Fei, J. Griffioen, H. Nasir, and J. R. ans X. Wu, “Getting started
with geni: A user tutorial,”ACM SIGCOMM Computer Communica-
tion Review (CCR), January 2012.

[10] “ProtoGENI.” http://www.protogeni.net.
[11] D. Farinacci, T. Li, S. Hanks, D. Meyer, and P. Traina, “Gneric

Routing Encapsulation (GRE),” RFC 2784, March 2000.
[12] D. E. Comer, Hands-On Networking with Internet Technologies.

Upper Saddle River, New Jersey: Prentice Hall, 2004.
[13] “VMware.” http://www.vmware.com.
[14] “Xen Source™.” http://www.xensource.com.
[15] “The Linux Kernel-based Virtual Machine (KVM),”

http://kvm.sourceforge.net.
[16] J. Liebeherr and M. E. Zarki,Mastering Networks: An Internet Lab

Manual. Addison-Wesley, 2004.
[17] J. C. Adams and W. D. Laverell, “Configuring a multi-courselab for

system-level projects,” inProceedings of the 36th SIGCSE technical
symposium on Computer Science Education, February 2005, pp. 525–
529.


