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Abstract - Which is faster, an array list or a linked list? In 
our data structures course we increase the engagement of 
our students by asking them to predict the outcome of a 
future race between competing data structures. We record 
their predictions for future validation, and subsequently as 
we analyze the data structures, students are more engaged 
in the analysis because it either lends credence or doubt 
towards the accuracy of their predictions. Some of their 
expectations get radically broken by the analysis, and in the 
end everyone gets surprised by the actual runtime results. 
Everyone benefits because the class is more engaging and 
the results are more memorable. 
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1 The Starting Line 
  At the University of Southern Maine our initial 
programming curriculum is taught in Java. Our Data 
Structures course is the third course in our sequence of 
programming courses.  In our second course, students use 
data structures such as Java’s ArrayList and LinkedList and 
learn a bit about the internal mechanisms of how they work.  
They know that array lists have to periodically grow the 
internal array by creating a new one and copying everything 
over, and they know that it is painfully slow to insert at the 
start of an array list and move everything up. They have also 
been convinced linked lists are slick because of how 
efficiently they can insert new values between others 
without needing to copy anything. Accurate or not, these are 
their typical preconceived notions coming into data 
structures. 

The first day of class I propose that we use the online 
ordered collection problem as a basis for analyzing and 
comparing the variety of data structures that we will 
encounter in this class. The online ordered collection 
problem is to take N items and insert them into the data 
structure while maintaining the data structure in sorted order 
at every insert. The online aspect refers to the possibility of 
using this data structure to perform a search at any point 
while it is being built. Since building the data structure 
involves searching for the positions to insert new members, 
this is a concise benchmark that incorporates both the cost 
of creating and growing the data structure as well as the cost 
of searching it. 

After I have introduced the ordered collection benchmark, I 
then have students participate in a small group activity and 
make their predictions on which will be faster, array lists or 
linked lists. I pose this as a race between the best real 
programs we can write, running on a real computer.  Which 
data structure will win? 

I am not asking them to perform an order analysis, but 
simply to discuss it in their groups and use their intuition 
about these two data structures to predict the relative 
runtimes.  Will one data structure be a little faster, a lot 
faster, or about the same as the other? The reader might 
pause to consider this question themselves. 

I have used this activity for several years.  The majority of 
groups always predict that linked lists will be either a little 
faster or a lot faster than array lists.  For justifications they 
cite the high cost of inserting into the array and the cost of 
repeatedly growing the array to make it larger.  In contrast, 
usually at least one group notes that the sorted array can be 
binary searched much faster than the linear search required 
of the linked list, and thus they predict that the array list will 
be faster.  Finally, there is usually another group that 
remembers and utilizes order analysis to predict that both 
data structures will perform about the same.  I do a lot of 
group activities and discussions in my class, and this 
disparity in opinion is perfect.  All the better to grab their 
attention and later dispel their misconceptions. 

With all of their predictions and justifications recorded on a 
transparency, I tuck this away to be brought out in a couple 
weeks after we have thoroughly studied and analyzed both 
of these data structures.  Students are always disgruntled to 
learn that they will have to wait a couple weeks before they 
see the outcome of the race.  They are eager to know the 
winner and whether their predictions are correct.  Like a 
good writer, I know the value of foreshadowing.  

2 Handicapping 
 Over the next couple weeks we discuss and analyze the 
implementation choices and asymptotic analyses of Java’s 
ArrayList and LinkedList. The final analyses for building 
the ordered collection are shown in Tables 1 & 2. Overall 



both data structures have an expected execution time of  
𝑂(𝑁2). 
 
Once they have seen that both the ArrayList and LinkedList 
will be 𝑂(𝑁2), I give the students a chance to revise their 
opinions.  Most students, having placed their bets on the 
LinkedList, stick with it beating the ArrayList, although 
maybe not by such a wide margin as some had predicted. 

 

In addition to the traditional runtime analysis, I also do 
memory usage analysis of these data structures. For 
analyzing memory usage we simply count the array 
locations and/or visible object fields.  These are summarized 
in Table 3. These memory footprints will play a role in 
explaining the real execution time results that the class will 
be seeing soon. 
 

For memory usage they have seen that the object references 
stored in Java’s array list are compactly stored in N adjacent 
memory locations, with up to an additional N/2 unused 
memory locations allocated as space for future growth. 
 
For linked lists they have seen that each node in a doubly 
linked list has a data object reference as well as references 
to the next and previous nodes. This means that its memory 
footprint is 3N to hold N data objects.  
 
At this point student attitudes are generally not overly 
interested in memory footprints since modern computers 
have enormous memories.  In fact, in earlier classes I 
sometimes encourage students to be profligate with 
memory, if it can simplify their algorithms. 

Over the duration of the semester we build a summary table 
of the data structures as we study them. For each new data 
structure, we note its key strengths and weaknesses, and we 
record its memory footprint and our analysis of its runtime 
on the online ordered collection benchmark (if appropriate). 
This table serves as a backbone for the class.  As each new 
data structure is studied, we can quickly see its benefits and 
tradeoffs compared to the previously studied data structures. 
 
3 The Race 
 Everyone takes pride in making a fast program, and 
thus students are always interested and eager to see the 
results from the race.  The results are shown in Figure 1.  
This is a log-log plot of the execution times versus the 
problem sizes for 4 different data structures.  At this point in 
the class, however, I show them a simpler version of this 
graph with only the performance curves for the ArrayList 
and the LinkedList.  The lines for the ChunkList and 
TreeSet are added later as we analyze these data structures. I 
present only the single graph in this paper to save space. 

These execution times are from a 2.4 GHz Intel Core 2 Duo 
with a 2MB L2 cache and 3.25 GB of RAM running Java 6. 
The testing code was written to be as efficient as possible. 
For array lists I used binary search to find the insertion 
point.   For linked lists I used iterators. The objects inserted 
into the data structures are random Integer objects so as to 
minimize the amount of time spent comparing the objects 
and thus focusing on the time spent by the data structure 
manipulations themselves. 
 
Students generally are quite startled to see the 60 times 
difference between the performances of these two data 
structures, especially since the majority had bet on the loser 
of the race! When I first created this activity I was myself 
surprised by the magnitude of the difference. I had expected 
the array list to win, but not by such a large margin. 
 
4 Explanation 
 Why has our order analysis led us astray?  Our 
expectation was that they were both O(N2), and thus they 
would perform similarly.  Order analysis ignores constant 
factors, but a factor of 60 is startlingly large!   It even 
appears from the increasing gap as the problem size grows, 
that measured in real time the LinkedList may in fact be of a 
higher order than the ArrayList. 

I offer the class two explanations for the performance 
difference. I have not tried to quantify the importance of one 
factor over the other. 
 

1. A method call versus a memory access. Focus on 
the 𝑂(𝑁2) factors. For the linked list this was the 
searching time. Each insertion must linearly search 
down the list to find the insertion point. In total this 

Table 1. Using an ArrayList to build an ordered collection. 
 

building and growing 𝑂(𝑁) 
searching 𝑂(𝑁 log𝑁) 
inserting 𝑂(𝑁2) 
total: 𝑂(𝑁2) 

  

Table 2. Using a LinkedList to build an ordered collection. 
 

building 𝑂(𝑁) 
searching 𝑂(𝑁2) 
inserting 𝑂(𝑁) 
total: 𝑂(𝑁2) 

  

Table 3. Memory Footprints (as explained to students) 
 

ArrayList 1N active, plus up to N/2 reserved for 
future growth 

LinkedList 3N (data reference, previous node and 
next node references) 

  



involves 𝑂(𝑁2) method calls to the comparator.  In 
contrast, for the array list, the 𝑂(𝑁2) factor was the 
insertion time incurred as each item was inserted 
somewhere into the array and everything in the array 
above the insertion point was moved up to make room 
for the new item. This involves N calls to 
System.arraycopy(), with each call moving 𝑂(𝑁) 
memory locations for a total of 𝑂(𝑁2) memory 
locations moved.  The difference is that arraycopy() is 
a tuned system routine very efficiently moving a 
contiguous block of memory [5]. When compared to 
the 𝑂(𝑁2) individual comparator calls for the linked 
list, this is a big speed advantage for the array list. 

 
2. Memory Footprint.  In modern computers the time 

for a level 1 cache hit is more than 100 times faster 
than access to actual memory [1,2]. As the memory 
footprint of the data structure grows, more memory 
accesses are pushed to lower and slower levels of the 
memory hierarchy. In class we analyzed only the user 
visible fields and came up with an active memory 
footprint of 3 times larger for Java’s LinkedList than 
its ArrayList.  This means that the linked list is being 

pushed into lower levels of the memory hierarchy 
before the array list is.  Furthermore the array copies 
are nice sequential accesses that work well with 
caches and pre-fetching compared to the linked list 
accesses which are jumping all over memory. We 
expect that this contributes to the increasing 
performance gap between the two data structures as 
the problem size gets larger. (At this point in class we 
do not complicate the picture by pointing out that the 
true memory footprint for Java’s LinkedList is 
actually 7 times larger than that of an ArrayList due to 
hidden fields used in the representation of objects and 
the indirection table used for incremental garbage 
collection. [6]) 

 
Considering these two explanations, the factor of 60 
difference in performance is more plausible, and those 
students who care strongly about fast execution times 
suddenly grant their old professor a little more respect when 
they realize he might be able to teach them more about the 
Zen of programming than they had expected. 
 

 
Figure 1. Execution times for building an ordered collection for 4 data structures. 

 



5 Hybrid Data Structures 
 Back in my days as a student, programming in C, we 
often needed to build a variety of simple data structures.  
These days programming languages provide excellent 
libraries of well-designed generic data structures. Data 
structures course have thus transformed into using these 
data structures and understanding their performance 
implications [4,7].  I, nevertheless, strongly feel that 
students ought to experience creating their own data 
structure from scratch. At some point in their careers they 
are likely to work on a complex software project that 
warrants creation of a new or custom data structure.  I 
address this by having one assignment in which students 
implement a hybrid data structure, something incorporating 
aspects of two traditional data structures. 

Several years ago I invented, for pedagogical purposes, a 
hybrid data structure that I called a ChunkList.  A small 
example is shown in Figure 2.  (I am not the first person to 
explore this hybrid data structure [3].) It is a linked list of 
nodes, but with each node containing an array of keys.  
When a node becomes full, it is split into 2 nodes. The 
purpose of this ChunkList is to implement an ordered list. 
Its add() method inserts a key in sorted order into the 
collection of keys. It is thus exactly what we need to 
implement the online ordered collection.  Later students will 
see that its interface is in fact a subset of Java’s TreeSet 
interface. 
 
It is presented to students as a hybrid of a linked list and an 
array list having the best of both worlds.  It has quicker 
searching than a linked list by jumping a chunk at a time 
through the list, but it also has quicker insertion than an 
array list by only inserting into an individual chunk, rather 
than inserting into a huge monolithic array.  If chunks each 
hold 100 keys, then we have the possibility of searching 100 
times faster than with a simple linked list. (All of that 
knowledge of linked lists has not gone to waste after all!) 
 
One of my motivations for using a hybrid data structure is 
that having something more unique than what is found in 

textbooks decreases the chance that the less honest students 
will be able to find a pre-existing implementation to copy 
from.   A quick Google search for ChunkList finds matches 
for the name, but I examined the top ranked matches and 
currently they provide nothing useful for the dishonest 
student who is trolling for a working program online. I 
would encourage anyone using this idea to think of a 
variation on the name. I have also seen this called an 
unrolled-linked list[3].  We might also call it a list of arrays 
or a blocked list. 
 
Students are asked to implement this with a tunable chunk 
size and test it out with chunk sizes of 10 and 100.  For 
extra credit students are asked to determine the optimal 
chunk size. I perform this analysis in class on the day they 
turn it in. It is an excellent opportunity to use a little 
calculus to minimize the execution time formula and 
demonstrate that all those math requirements that they 
grumble about weren't entirely immaterial to computer 
science. The analysis shows that the optimal chunk size is 
√𝑁 and that the overall runtime for the online ordered 
collection problem using a ChunkList will then be 𝑂(𝑁√𝑁).  
 
I now present to the class the earlier performance graph with 
the ChunkList added on. (In this paper the chunk list was 
already shown in Figure 1.)  My ChunkList is a more 
sophisticated implementation than that of the students.  It 
grows the chunk size in proportion to √𝑁. As the total list 
size grows, so does the chunk size. From the performance 
graph this is clearly much better than the 𝑂(𝑁2) of the 
ArrayList. The real execution time is 30 times faster than an 
array list, as the problem size reaches the maximum 
comparable size shown. 
 
6 The Shoo-in 

The eventual winner of course will be the binary 
search tree. Maintaining an ordered and quickly searchable 
collection is exactly what binary trees are intended for.  
Java’s TreeSet is implemented with red black trees. It is the 
last line plotted in Figure 1.  Its time for building the online 

 
Figure 2. A ChunkLlist. A hybrid data structure that is a linked list of arrays.  It is used to store an ordered list. 

 



ordered collection is 𝑂(𝑁 log𝑁) which is asymptotically 
superior to the ChunkList’s 𝑂�𝑁√𝑁�.  

The graph surprisingly shows only a factor of 2 advantage 
in real execution time of the TreeSet over the ChunkList.  I 
was again surprised when I saw the actual performance data. 
At a size of N=1,000,000, the last data points shown on the 
graph, one might expect a performance difference of a 
factor of 50 for a 𝑂(𝑁 log𝑁) algorithm compared to one 
that takes 𝑂�𝑁√𝑁�.  This is hard to explain. The 
contributing factors are: 
 

1. Red-black trees are complex. Undoubtedly some of 
that factor of 50 is used up by the frequent internal 
rotations used in maintaining balance within the red 
black tree. 
 

2. ChunkList tuning. The chunk list was tuned for 
optimal execution time.  Through empirical tests I 
found that a chunk sizes of 13√𝑁 gave the fastest 
execution times.   This larger chunk size gives more 
weighting to the faster array copy used in inserting 
into a chunk over the slower search of the linked list 
of chunks. 
 

3. TreeSet has a richer implementation.  For example 
the TreeSet provides both the Comparator and 
Comparable interfaces, whereas I asked the students 
only to implement the Comparator interface. Every 
option adds complexity and slows things down a tad. 
 

4. Java’s TreeSet is just a wrapper for its TreeMap 
class. In order to reuse code, Java’s TreeSet is in fact 
a TreeMap with its data fields ignored. Every call to a 
TreeSet method is in reality an indirect call to a 
TreeMap method. 
 

5. Memory footprint.  Again the memory footprint size 
undoubtedly plays a role. The active memory 
footprint for the ChunkList is slightly over 1N, but the 
visible memory footprint for a TreeSet is 6N and the 
true footprint is 9N. A larger memory footprint 
pushes it into lower and slower levels in the memory 
hierarchy. 
  

7 Conclusions 
I have found using real execution timings and analysis 

of memory usage to be valuable tools in teaching data 
structures and for increasing student interest levels in the 
comparative analysis of these data structures.  Students have 
great respect for real performance data and seem to trust it 
more than our mathematical analyses. Combining real 
execution times along with order analysis, and explaining 
the reasons for the discrepancies, has increased 
understanding of the value of asymptotic analysis and its 
limitations. 
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