
Using Real Execution Timings to Enliven a Data
Structures Course

B. Boothe

Computer Science Department, University of Southern Maine, Portland, ME, USA

Abstract - Which is faster, an array list or a linked list? In
our data structures course we increase the engagement of
our students by asking them to predict the outcome of a
future race between competing data structures. We record
their predictions for future validation, and subsequently as
we analyze the data structures, students are more engaged
in the analysis because it either lends credence or doubt
towards the accuracy of their predictions. Some of their
expectations get radically broken by the analysis, and in the
end everyone gets surprised by the actual runtime results.
Everyone benefits because the class is more engaging and
the results are more memorable.

Keywords: Real Execution Timings, Data Structures

1 The Starting Line
 At the University of Southern Maine our initial
programming curriculum is taught in Java. Our Data
Structures course is the third course in our sequence of
programming courses. In our second course, students use
data structures such as Java’s ArrayList and LinkedList and
learn a bit about the internal mechanisms of how they work.
They know that array lists have to periodically grow the
internal array by creating a new one and copying everything
over, and they know that it is painfully slow to insert at the
start of an array list and move everything up. They have also
been convinced linked lists are slick because of how
efficiently they can insert new values between others
without needing to copy anything. Accurate or not, these are
their typical preconceived notions coming into data
structures.

The first day of class I propose that we use the online
ordered collection problem as a basis for analyzing and
comparing the variety of data structures that we will
encounter in this class. The online ordered collection
problem is to take N items and insert them into the data
structure while maintaining the data structure in sorted order
at every insert. The online aspect refers to the possibility of
using this data structure to perform a search at any point
while it is being built. Since building the data structure
involves searching for the positions to insert new members,
this is a concise benchmark that incorporates both the cost
of creating and growing the data structure as well as the cost
of searching it.

After I have introduced the ordered collection benchmark, I
then have students participate in a small group activity and
make their predictions on which will be faster, array lists or
linked lists. I pose this as a race between the best real
programs we can write, running on a real computer. Which
data structure will win?

I am not asking them to perform an order analysis, but
simply to discuss it in their groups and use their intuition
about these two data structures to predict the relative
runtimes. Will one data structure be a little faster, a lot
faster, or about the same as the other? The reader might
pause to consider this question themselves.

I have used this activity for several years. The majority of
groups always predict that linked lists will be either a little
faster or a lot faster than array lists. For justifications they
cite the high cost of inserting into the array and the cost of
repeatedly growing the array to make it larger. In contrast,
usually at least one group notes that the sorted array can be
binary searched much faster than the linear search required
of the linked list, and thus they predict that the array list will
be faster. Finally, there is usually another group that
remembers and utilizes order analysis to predict that both
data structures will perform about the same. I do a lot of
group activities and discussions in my class, and this
disparity in opinion is perfect. All the better to grab their
attention and later dispel their misconceptions.

With all of their predictions and justifications recorded on a
transparency, I tuck this away to be brought out in a couple
weeks after we have thoroughly studied and analyzed both
of these data structures. Students are always disgruntled to
learn that they will have to wait a couple weeks before they
see the outcome of the race. They are eager to know the
winner and whether their predictions are correct. Like a
good writer, I know the value of foreshadowing.

2 Handicapping
 Over the next couple weeks we discuss and analyze the
implementation choices and asymptotic analyses of Java’s
ArrayList and LinkedList. The final analyses for building
the ordered collection are shown in Tables 1 & 2. Overall

both data structures have an expected execution time of
𝑂(𝑁2).

Once they have seen that both the ArrayList and LinkedList
will be 𝑂(𝑁2), I give the students a chance to revise their
opinions. Most students, having placed their bets on the
LinkedList, stick with it beating the ArrayList, although
maybe not by such a wide margin as some had predicted.

In addition to the traditional runtime analysis, I also do
memory usage analysis of these data structures. For
analyzing memory usage we simply count the array
locations and/or visible object fields. These are summarized
in Table 3. These memory footprints will play a role in
explaining the real execution time results that the class will
be seeing soon.

For memory usage they have seen that the object references
stored in Java’s array list are compactly stored in N adjacent
memory locations, with up to an additional N/2 unused
memory locations allocated as space for future growth.

For linked lists they have seen that each node in a doubly
linked list has a data object reference as well as references
to the next and previous nodes. This means that its memory
footprint is 3N to hold N data objects.

At this point student attitudes are generally not overly
interested in memory footprints since modern computers
have enormous memories. In fact, in earlier classes I
sometimes encourage students to be profligate with
memory, if it can simplify their algorithms.

Over the duration of the semester we build a summary table
of the data structures as we study them. For each new data
structure, we note its key strengths and weaknesses, and we
record its memory footprint and our analysis of its runtime
on the online ordered collection benchmark (if appropriate).
This table serves as a backbone for the class. As each new
data structure is studied, we can quickly see its benefits and
tradeoffs compared to the previously studied data structures.

3 The Race
 Everyone takes pride in making a fast program, and
thus students are always interested and eager to see the
results from the race. The results are shown in Figure 1.
This is a log-log plot of the execution times versus the
problem sizes for 4 different data structures. At this point in
the class, however, I show them a simpler version of this
graph with only the performance curves for the ArrayList
and the LinkedList. The lines for the ChunkList and
TreeSet are added later as we analyze these data structures. I
present only the single graph in this paper to save space.

These execution times are from a 2.4 GHz Intel Core 2 Duo
with a 2MB L2 cache and 3.25 GB of RAM running Java 6.
The testing code was written to be as efficient as possible.
For array lists I used binary search to find the insertion
point. For linked lists I used iterators. The objects inserted
into the data structures are random Integer objects so as to
minimize the amount of time spent comparing the objects
and thus focusing on the time spent by the data structure
manipulations themselves.

Students generally are quite startled to see the 60 times
difference between the performances of these two data
structures, especially since the majority had bet on the loser
of the race! When I first created this activity I was myself
surprised by the magnitude of the difference. I had expected
the array list to win, but not by such a large margin.

4 Explanation
 Why has our order analysis led us astray? Our
expectation was that they were both O(N2), and thus they
would perform similarly. Order analysis ignores constant
factors, but a factor of 60 is startlingly large! It even
appears from the increasing gap as the problem size grows,
that measured in real time the LinkedList may in fact be of a
higher order than the ArrayList.

I offer the class two explanations for the performance
difference. I have not tried to quantify the importance of one
factor over the other.

1. A method call versus a memory access. Focus on
the 𝑂(𝑁2) factors. For the linked list this was the
searching time. Each insertion must linearly search
down the list to find the insertion point. In total this

Table 1. Using an ArrayList to build an ordered collection.

building and growing 𝑂(𝑁)
searching 𝑂(𝑁 log𝑁)
inserting 𝑂(𝑁2)
total: 𝑂(𝑁2)

Table 2. Using a LinkedList to build an ordered collection.

building 𝑂(𝑁)
searching 𝑂(𝑁2)
inserting 𝑂(𝑁)
total: 𝑂(𝑁2)

Table 3. Memory Footprints (as explained to students)

ArrayList 1N active, plus up to N/2 reserved for
future growth

LinkedList 3N (data reference, previous node and
next node references)

involves 𝑂(𝑁2) method calls to the comparator. In
contrast, for the array list, the 𝑂(𝑁2) factor was the
insertion time incurred as each item was inserted
somewhere into the array and everything in the array
above the insertion point was moved up to make room
for the new item. This involves N calls to
System.arraycopy(), with each call moving 𝑂(𝑁)
memory locations for a total of 𝑂(𝑁2) memory
locations moved. The difference is that arraycopy() is
a tuned system routine very efficiently moving a
contiguous block of memory [5]. When compared to
the 𝑂(𝑁2) individual comparator calls for the linked
list, this is a big speed advantage for the array list.

2. Memory Footprint. In modern computers the time

for a level 1 cache hit is more than 100 times faster
than access to actual memory [1,2]. As the memory
footprint of the data structure grows, more memory
accesses are pushed to lower and slower levels of the
memory hierarchy. In class we analyzed only the user
visible fields and came up with an active memory
footprint of 3 times larger for Java’s LinkedList than
its ArrayList. This means that the linked list is being

pushed into lower levels of the memory hierarchy
before the array list is. Furthermore the array copies
are nice sequential accesses that work well with
caches and pre-fetching compared to the linked list
accesses which are jumping all over memory. We
expect that this contributes to the increasing
performance gap between the two data structures as
the problem size gets larger. (At this point in class we
do not complicate the picture by pointing out that the
true memory footprint for Java’s LinkedList is
actually 7 times larger than that of an ArrayList due to
hidden fields used in the representation of objects and
the indirection table used for incremental garbage
collection. [6])

Considering these two explanations, the factor of 60
difference in performance is more plausible, and those
students who care strongly about fast execution times
suddenly grant their old professor a little more respect when
they realize he might be able to teach them more about the
Zen of programming than they had expected.

Figure 1. Execution times for building an ordered collection for 4 data structures.

5 Hybrid Data Structures
 Back in my days as a student, programming in C, we
often needed to build a variety of simple data structures.
These days programming languages provide excellent
libraries of well-designed generic data structures. Data
structures course have thus transformed into using these
data structures and understanding their performance
implications [4,7]. I, nevertheless, strongly feel that
students ought to experience creating their own data
structure from scratch. At some point in their careers they
are likely to work on a complex software project that
warrants creation of a new or custom data structure. I
address this by having one assignment in which students
implement a hybrid data structure, something incorporating
aspects of two traditional data structures.

Several years ago I invented, for pedagogical purposes, a
hybrid data structure that I called a ChunkList. A small
example is shown in Figure 2. (I am not the first person to
explore this hybrid data structure [3].) It is a linked list of
nodes, but with each node containing an array of keys.
When a node becomes full, it is split into 2 nodes. The
purpose of this ChunkList is to implement an ordered list.
Its add() method inserts a key in sorted order into the
collection of keys. It is thus exactly what we need to
implement the online ordered collection. Later students will
see that its interface is in fact a subset of Java’s TreeSet
interface.

It is presented to students as a hybrid of a linked list and an
array list having the best of both worlds. It has quicker
searching than a linked list by jumping a chunk at a time
through the list, but it also has quicker insertion than an
array list by only inserting into an individual chunk, rather
than inserting into a huge monolithic array. If chunks each
hold 100 keys, then we have the possibility of searching 100
times faster than with a simple linked list. (All of that
knowledge of linked lists has not gone to waste after all!)

One of my motivations for using a hybrid data structure is
that having something more unique than what is found in

textbooks decreases the chance that the less honest students
will be able to find a pre-existing implementation to copy
from. A quick Google search for ChunkList finds matches
for the name, but I examined the top ranked matches and
currently they provide nothing useful for the dishonest
student who is trolling for a working program online. I
would encourage anyone using this idea to think of a
variation on the name. I have also seen this called an
unrolled-linked list[3]. We might also call it a list of arrays
or a blocked list.

Students are asked to implement this with a tunable chunk
size and test it out with chunk sizes of 10 and 100. For
extra credit students are asked to determine the optimal
chunk size. I perform this analysis in class on the day they
turn it in. It is an excellent opportunity to use a little
calculus to minimize the execution time formula and
demonstrate that all those math requirements that they
grumble about weren't entirely immaterial to computer
science. The analysis shows that the optimal chunk size is
√𝑁 and that the overall runtime for the online ordered
collection problem using a ChunkList will then be 𝑂(𝑁√𝑁).

I now present to the class the earlier performance graph with
the ChunkList added on. (In this paper the chunk list was
already shown in Figure 1.) My ChunkList is a more
sophisticated implementation than that of the students. It
grows the chunk size in proportion to √𝑁. As the total list
size grows, so does the chunk size. From the performance
graph this is clearly much better than the 𝑂(𝑁2) of the
ArrayList. The real execution time is 30 times faster than an
array list, as the problem size reaches the maximum
comparable size shown.

6 The Shoo-in

The eventual winner of course will be the binary
search tree. Maintaining an ordered and quickly searchable
collection is exactly what binary trees are intended for.
Java’s TreeSet is implemented with red black trees. It is the
last line plotted in Figure 1. Its time for building the online

Figure 2. A ChunkLlist. A hybrid data structure that is a linked list of arrays. It is used to store an ordered list.

ordered collection is 𝑂(𝑁 log𝑁) which is asymptotically
superior to the ChunkList’s 𝑂�𝑁√𝑁�.

The graph surprisingly shows only a factor of 2 advantage
in real execution time of the TreeSet over the ChunkList. I
was again surprised when I saw the actual performance data.
At a size of N=1,000,000, the last data points shown on the
graph, one might expect a performance difference of a
factor of 50 for a 𝑂(𝑁 log𝑁) algorithm compared to one
that takes 𝑂�𝑁√𝑁�. This is hard to explain. The
contributing factors are:

1. Red-black trees are complex. Undoubtedly some of
that factor of 50 is used up by the frequent internal
rotations used in maintaining balance within the red
black tree.

2. ChunkList tuning. The chunk list was tuned for
optimal execution time. Through empirical tests I
found that a chunk sizes of 13√𝑁 gave the fastest
execution times. This larger chunk size gives more
weighting to the faster array copy used in inserting
into a chunk over the slower search of the linked list
of chunks.

3. TreeSet has a richer implementation. For example
the TreeSet provides both the Comparator and
Comparable interfaces, whereas I asked the students
only to implement the Comparator interface. Every
option adds complexity and slows things down a tad.

4. Java’s TreeSet is just a wrapper for its TreeMap
class. In order to reuse code, Java’s TreeSet is in fact
a TreeMap with its data fields ignored. Every call to a
TreeSet method is in reality an indirect call to a
TreeMap method.

5. Memory footprint. Again the memory footprint size
undoubtedly plays a role. The active memory
footprint for the ChunkList is slightly over 1N, but the
visible memory footprint for a TreeSet is 6N and the
true footprint is 9N. A larger memory footprint
pushes it into lower and slower levels in the memory
hierarchy.

7 Conclusions
I have found using real execution timings and analysis

of memory usage to be valuable tools in teaching data
structures and for increasing student interest levels in the
comparative analysis of these data structures. Students have
great respect for real performance data and seem to trust it
more than our mathematical analyses. Combining real
execution times along with order analysis, and explaining
the reasons for the discrepancies, has increased
understanding of the value of asymptotic analysis and its
limitations.

8 References
[1] Trishul M. Chilimbi, Mark D. Hill, and James R. Larus,
“Cache-Conscious Structure Layout,” In Proceedings of the
SIGPLAN’99 Conference on Programming Language
Design and Implementation (PLDI), May 1999.

[2] David A. Patterson and John L. Hennessy, “Computer
Organization and Design, The Hardware / Software
Interface, 4th ed.”, Morgan Kaufmann 2009.

[3] “Unrolled Linked List”, http://end.wikipedia/wiki
/Unrolld_linked_list

[4] Elliot B. Koffman and Paul A. T. Wolfgang, “Data
Structures, Abstraction and Design Using Java, 2nd ed.”,
Wiley 2010.

[5] Oracle Sun Developer Network, “JAVA SE 6
Performance White Paper”, http://java.sun.com/performance
/reference/whitepapers/6_performance.html

[6] Neil Coffey, “Memory usage in Java”,
http://www.javamex.com/tutorials/memory.

[7] R. Lister, I. Box, B. Morrison, J. Tenenberg, and D. S.
Westbrook “The Dimensions of Variation in the Teaching of
Data Structures”, In Proceedings of the 9th annual SIGCSE
conference on Innovation and Technology in computer
science education (pp. 92-96)

http://end.wikipedia/wiki/Unrolld_linked_list
http://end.wikipedia/wiki/Unrolld_linked_list
http://java.sun.com/performance/reference/whitepapers/6_performance.html
http://java.sun.com/performance/reference/whitepapers/6_performance.html
http://www.javamex.com/tutorials/memory

	1 The Starting Line
	2 Handicapping
	3 The Race
	4 Explanation
	5 Hybrid Data Structures
	6 The Shoo-in
	7 Conclusions
	8 References

