The Parameterized Complexity of Perfect Code in Graphs without Small Cycles

Yong Zhang
Department of Computer Science, Kutztown University of Pennsylvania, Kutztown, PA 19530

Abstract—We study the parameterized complexity of k-PERFECT CODE in graphs without small cycles. We show that k-PERFECT CODE is W[1]-hard in bipartite graphs and thus in graphs with girth 4. On the other hand, we show that k-PERFECT CODE admits a $k^2 + k$ kernel in graphs with girth ≥ 5.

Keywords: parameterized complexity, perfect code

1. Introduction

Parameterized complexity is a powerful framework that deals with hard computational problems. A parameterized problem is a set of instances of the form (x,k), where x is the input instance and k is a nonnegative integer called the parameter. A parameterized problem is said to be fixed parameter tractable if there is an algorithm that solves the problem in time $\text{poly}(k)|x|^{O(1)}$, where poly is a computable function solely dependent on k, and $|x|$ is the size of the input instance. The kernelization of a parameterized problem is a reduction to a problem kernel, that is, to apply a polynomial-time algorithm to transform any input instance (x,k) to an equivalent reduced instance (x',k') with $k' \leq k$ and $|x'| \leq g(k)$ for some function g solely dependent on k. A parameterized problem is fixed parameter tractable if and only if it is kernelizable. On the other hand, many fixed parameter intractable problems can be classified in a hierarchy of complexity classes $\text{W}[1] \subseteq \text{W}[2] \ldots \subseteq \text{W}[i]$. For example, k-INDEPENDENT SET and k-CLIQUE are known to be $\text{W}[1]$-complete and k-DOMINATING SET is known to be $\text{W}[2]$-complete. We refer the readers to [1], [2] for more details.

Let $G = (V,E)$ be an undirected graph. For a vertex $v \in V$, let $N(v)$ and $N[v]$ be the open neighborhood and closed neighborhood of v, respectively. A perfect code in G is a subset of vertices $D \subseteq V$ such that for every vertex $v \in V$, there is exactly one vertex in $N[v] \cap D$.

Definition 1.1: Given an input graph G and a positive integer k, the k-PERFECT CODE problem is to determine whether G has a perfect code of size at most k.

In the literatures k-PERFECT CODE is also known as EFFICIENT DOMINATING SET, PERFECT DOMINATING SET, and INDEPENDENT PERFECT DOMINATING SET. It is a well-known NP-complete problem. Its computational complexity in various classes of graphs has been extensively studied. See Lu and Tang [3] for an overview. In terms of parameterized complexity, k-PERFECT CODE is known to be $\text{W}[1]$-complete [4], [5] in general graphs. Guo and Niedermeier [6] showed that k-PERFECT CODE is fixed parameter tractable in planar graphs by giving a $84k$ kernel. Dawar and Kreutzer [7] showed that it is fixed parameter tractable in effectively nowhere-dense classes of graphs.

The girth of a graph is the length of the shortest cycle contained in the graph. In this paper we study the parameterized complexity of k-PERFECT CODE in graphs with certain girths, i.e., graphs without small cycles. The parameterized complexity of several related problems, including k-DOMINATING SET and k-INDEPENDENT SET [8], and $\text{k-CONNECTED DOMINATING SET}$ [9] in graphs without small cycles has been studied. In this paper we show that k-PERFECT CODE is $\text{W}[1]$-hard in bipartite graphs, and thus in triangle-free graphs or graphs with girth 4. Then we show that k-PERFECT CODE admits a $k^2 + k$ kernel in graphs with girth ≥ 5 and is therefore fixed parameter tractable.

2. Main results

2.1 Bipartite Graphs

To show the $\text{W}[1]$-hardness of k-PERFECT CODE in bipartite graphs, we give a reduction from the problem $\text{k-MULTICOLORED CLIQUE}$: Given a graph $G = (V,E)$ and a vertex-coloring $\kappa : V \to \{1,2,\ldots,k\}$, decide whether G has a clique of k vertices containing exactly one vertex of each color. $\text{k-MULTICOLORED CLIQUE}$ is known to be $\text{W}[1]$-complete by Fellows et al. [10].

Theorem 2.1: k-PERFECT CODE is $\text{W}[1]$-complete in bipartite graphs.

Proof: Let $(G = (V,E),\kappa)$ be an input instance of $\text{k-MULTICOLORED CLIQUE}$. For each color i, $1 \leq i \leq k$, let V_i be the set of vertices in G with color i. Let n_i be the number of vertices in V_i. Without loss of generality, we assume that $n_i > 1$ for all i. We fixed an ordering of the vertices in each V_i. To simplify the presentation, we abuse notations here: for two vertices $u,v \in V_i$, $u > v$ means u is in front of v with respect to the fixed ordering. Without loss of generality, we also assume that no edge in G connects two vertices of the same color. For any two colors i and j, $1 \leq i < j \leq k$, let E_{ij} be the set of edges in G that connect
vertices in \(V_i \) and \(V_j \). Let \(m_{ij} \) be the number of edges in \(E_{ij} \).

We construct a graph \(G' = (V', E') \). The vertex set \(V' \) is a union of the following sets of vertices:

\[
S_1 = \{ a[i, v], b[i, v] \mid 1 \leq i \leq k, v \in V_i \} \\
\cup \{ x[i] \mid 1 \leq i \leq k \}
\]

\[
S_2 = \{ c[i, j, e], d[i, j, e] \mid 1 \leq i < j \leq k, e \in E_{ij} \} \\
\cup \{ y[i, j] \mid 1 \leq i < j \leq k \}
\]

\[
S_3 = \{ f[i, j, v] \mid 1 \leq i < j \leq k, v \in V_j \}
\]

\[
S_4 = \{ g[i, j, v] \mid 1 \leq i < j \leq k, v \in V_j \}
\]

The edge set \(E' \) is a union of the following set of edges:

\[
E_1 = \{ (a[i, v_1], b[i, v_2]) \mid 1 \leq i \leq k, v_1, v_2 \in V_i \} \\
\text{and } v_1 \neq v_2
\]

\[
E_2 = \{ (x[i], b[i, v]) \mid 1 \leq i \leq k, v \in V_i \}
\]

\[
E_3 = \{ (c[i, j, e_1], d[i, j, e_2]) \mid 1 \leq i < j \leq k, e_1, e_2 \in E_{ij} \}
\]

\[
E_4 = \{ (g[i, j], c[i, j, e]) \mid 1 \leq i < j \leq k, e \in E_{ij} \}
\]

\[
E_5 = \{ (b[i, v_1], f[i, j, v_2]) \mid 1 \leq i < j \leq k, v_1, v_2 \in V_i \text{ and } v_1 \geq v_2 \}
\]

\[
E_6 = \{ (b[j, v_1], g[i, j, v_2]) \mid 1 \leq i < j \leq k, v_1, v_2 \in V_j \text{ and } v_1 \geq v_2 \}
\]

\[
E_7 = \{ (c[i, j, e_1], f[i, j, v]) \mid 1 \leq i < j \leq k, e = (v_1, v_2) \in E_{ij}, v_1, v_2 \in V_i \text{ and } v_1 < v_2 \}
\]

\[
E_8 = \{ (c[i, j, e_1], g[i, j, v]) \mid 1 \leq i < j \leq k, e = (v_1, v_2) \in E_{ij}, v_2, v_1 \in V_j \text{ and } v_2 < v_1 \}
\]

Informally speaking, for each \(V_i \), \(1 \leq i \leq k \), we construct a vertex selection gadget that contains \(2n_i + 1 \) vertices. For each \(v \in V_i \), there are two vertices \(a[i, v] \) and \(b[i, v] \). For two vertices \(a[i, v_1] \) and \(b[i, v_2] \), \(v_1, v_2 \in V_i \), they are adjacent if and only if \(v_1 \neq v_2 \). There is a dummy vertex \(x[i] \) which is adjacent to all vertices \(\{ a[i, v] \mid v \in V_i \} \) and none of the vertices \(\{ a[i, v] \mid v \notin V_i \} \). Then, for each edge \(E_{ij} \), \(1 \leq i < j \leq k \), we construct an edge selection gadget that contains \(2m_{ij} + 1 \). For each edge \(e \in E_{ij} \), there are two vertices \(c[i, j, e] \) and \(d[i, j, e] \). There is also a dummy vertex \(y[i, j] \). They are connected in a similar fashion as in the vertex selection gadget. Finally, for each pair of colors \(i \) and \(j \) with \(1 \leq i < j \leq k \), we also construct a validation gadget that contains \(n_i + n_j \) vertices, namely \(\{ f[i, j, v] \mid v \in V_j \} \) and \(\{ g[i, j, v] \mid v \in V_j \} \). The vertices in the validation gadget are not adjacent to each other, instead they are adjacent to vertices in the vertex selection gadgets for \(V_i \) and \(V_j \), and the edge selection gadget for \(E_{ij} \). For a vertex \(v_1 \in V_i \), the corresponding vertex \(b[i, v_1] \) is adjacent to \(f[i, j, v_2] \) for all \(v_2 \in V_j \) such that \(v_1 \geq v_2 \) with respect to the fixed vertex ordering of \(V_i \). Similarly, for a vertex \(v_1 \in V_j \), the corresponding vertex \(b[j, v_1] \) is adjacent to \(g[i, j, v_2] \) for all \(v_2 \in V_j \) such that \(v_1 \geq v_2 \) with respect to the fixed vertex ordering of \(V_j \). On the other hand, for an edge \(e = (v_1, v_2) \in E_{ij} \) with \(v_1 \in V_i \) and \(v_2 \in V_j \), the corresponding vertex \(c[i, j, e] \) in the edge selection gadget is adjacent to \(f[i, j, v] \) for all \(v \in V_j \) such that \(v > v_1 \), and to \(g[i, j, v] \) for all \(v \in V_j \) such that \(v > v_2 \). See Figure 1 for an illustration of the construction. Clearly \(G' \) is a bipartite graph.

![Fig. 1: A partial illustration of the construction of \(G' \).](image)

Lemma 2.2: \(G \) has a \(k \)-multicolored clique if and only if \(G' \) has a perfect code of size \(k' = 2k + 2k(k-1)/2 \).

Proof: For the direct implication, suppose \(G = (V, E) \) has a \(k \)-multicolored clique \(K \subseteq V \) such that \(K = \{ v_i \mid 1 \leq i \leq k, v_i \in V_i \} \), then it is easy to verify that the following set \(D \) of vertices in \(V' \) is a perfect code of size \(k' \) for \(G' \):

\[
D = \{ a[i, v_1], b[i, v_2] \mid v_i \in K \} \cup \{ c[i, j, e] \mid d[i, j, e] \mid 1 \leq i < j \leq k, e \in E_{ij} \}
\]

For the reverse implication, suppose \(D \) is a perfect code of size \(k' \) for \(G' \). First observe that the dummy vertex \(x[i] \) in the vertex selection gadget for \(V_i \) cannot be in \(D \) since otherwise vertices \(\{ a[i, v] \mid v \in V_i \} \) cannot be dominated. To dominate \(x[i] \), \(D \) must contain exactly one vertex from the set \(\{ b[i, v] \mid v \in V_i \} \). Let \(b[i, v] \) be such a vertex, \(b[i, v] \) dominates all vertices \(\{ a[i, v] \mid v \in V_i \} \) except \(a[i, v] \), this implies that \(a[i, v] \) must also be in \(D \). By this argument, we see that \(D \) must contain exactly two vertices from each vertex selection gadget and each edge selection gadget. In another word, the following \(2k + 2k(k-1)/2 \) vertices must be in \(D \):

\[
\{ a[i, v_1], b[i, v_2] \mid 1 \leq i \leq k, v_i \in V_i \} \cup \{ c[i, j, e_1], d[i, j, e_2] \mid 1 \leq i < j \leq k, e \in E_{ij} \}
\]
So no vertex from the validation gadgets will be in D.

Let $b[i, v_i]$ and $b[j, v_j]$ be the two vertices in D. We see that $b[i, v_i]$ dominates vertices $f[i, j, v]$ for all $v \leq v_i$ in V_i and $b[j, v_j]$ dominates vertices $g[i, j, v]$ for all $v \leq v_j$ in V_j. By the construction of G', to perfectly dominate the rest of the validation vertices, $f[i, j, v]$ for all $v > v_i$ and $g[i, j, v]$ for all $v > v_j$, the vertex $c[i, j, e]$ must be in D where $e = (v_i, v_j) \in E_{ij}$. Conversely, if $c[i, j, e]$ with $e = (v_i, v_j) \in E_{ij}$ is a vertex in D, $c[i, j, e]$ dominates $f[i, j, v]$ for all $v < v_i$ in V_i and $g[i, j, v]$ for all $v < v_j$ in V_j, to perfectly dominate the rest of validation vertices, $b[i, v_i]$ and $b[j, v_j]$ must be in D. Therefore the set $\{v_i \mid b[i, v_i] \in D\}$ is a k-multicolored clique in G.

\[2.2 \text{ Graphs with girth } \geq 5 \]

Let $G = (V, E)$ be a graph with girth ≥ 5. To obtain a $k^2 + k$ kernel, we only need the following simple reduction rule.

Reduction Rule 1: If a vertex $v \in V$ has degree $> k$, then remove v and all vertices adjacent to v from G and decrease k by 1.

Lemma 2.3: Reduction Rule 1 is correct.

Proof: Let $v \in G$ be a vertex with degree $> k$. We claim that if G has a set S which is a perfect code of size at most k, then v must be in S. Suppose this is not true and $v \notin S$. Let w_1, w_2, \ldots, w_l be the neighbors of v with $l > k$. Since v is not in S, exactly one of v's neighbors must be in S. Without loss of generality, let w_1 be the vertex that is in S. w_1 is not adjacent to any w_i for $1 < i \leq l$, since otherwise v, w_1, w_i forms a triangle in G. Therefore w_2, \ldots, w_l have to be dominated by vertices in S other than w_1. We claim that any vertex $s \in S$ with $s \neq w_1$ can be adjacent to only one w_i. Since this is not true, i.e., there is a vertex $s \in S$ such that $(s, w_i), (s, w_j) \in E$ for $1 < i, j \leq l$, then v, w_i, s, w_j forms a 4-cycle, contradicting that G has girth ≥ 5. Therefore S contains w_1 and $l - 1$ more vertices, one for dominating each w_i ($1 < i \leq l$), this makes $|S| \geq l$, contradicting the assumption that $|S| \leq k$.

Let G' be the reduced graph after Reduction Rule 1. Clearly any vertex in G' has degree at most k. Suppose G' has a perfect code S of size k, any vertex in G' is either in S or dominated by a vertex in S. Since each vertex in S can dominate at most k other vertices in G', the size of $G' - S$ is at most k^2 and thus G' has at most $k^2 + k$ vertices.

Theorem 2.4: k-PERFECT CODE admits a $k^2 + k$ kernel in graphs with girth ≥ 5.

References

