
From Streaming Models to FPGA Implementations
ERSA’12 Industrial Regular Paper

Hugo Andrade, Jeff Correll, Amal Ekbal, Arkadeb Ghosal, Douglas Kim, Jacob Kornerup, Rhishikesh Limaye,
Ankita Prasad, Kaushik Ravindran, Trung N. Tran, Mike Trimborn, Guoqiang Wang, Ian Wong, Guang Yang

National Instruments Corportation, USA.

Abstract—Application advances in the signal processing and
communications domains are marked by an increasing demand
for better performance and faster time to market. This has
motivated model-based approaches to design and deploy such ap-
plications productively across diverse target platforms. Dataflow
models are effective in capturing these applications that are
real-time, multi-rate, and streaming in nature. These models
facilitate static analysis of key execution properties like buffer
sizes and throughput. There are established tools to generate
implementations of these models in software for processor targets.
However, prototyping and deployment on hardware targets, such
as FPGAs, are critical to the development of new applications.
FPGAs are increasingly used in computing platforms for high
performance streaming applications. Existing tools for hardware
implementation from dataflow models are limited in their capa-
bilities. To close this gap, we present DSP Designer, a framework
to specify, analyze, and implement streaming applications on
hardware targets. DSP Designer encourages a model-based design
approach starting from a Parameterized Cyclo-Static Dataflow
model. The back-end supports static analysis of execution prop-
erties and generates implementations for FPGAs. It also includes
an extensive library of hardware actors and eases third-party IP
integration. Overall, DSP Designer is an exploration framework
that translates high-level algorithmic specifications to efficient
hardware. In this paper, we illustrate the modeling, analysis, and
implementation capabilities of DSP Designer. Through a detailed
case study, we show that DSP Designer is viable for the design of
next generation signal processing and communications systems.

I. INTRODUCTION

Dataflow models are widely used to specify, analyze, and
implement multi-rate computations that operate on streams of
data. The Static Dataflow (SDF) model of computation is well-
known for describing signal processing applications [1]. An
SDF model is a graph of computational actors connected by
channels that carry streams of data. The semantics require the
number of data tokens consumed and produced by an actor per
firing be fixed and pre-specified. This guarantees decidability
of key execution properties, such as deadlock-free operation
and bounded memory requirements [2].

Over the years, several extensions of SDF have been
developed that improve the expressiveness of the model
while preserving decidability, such as Cyclo-Static Dataflow
(CSDF) [3], Parameterized Static Dataflow (PSDF) [4], Het-
erochronous Dataflow (HDF) [5], Scenario-Aware Dataflow
(SADF) [6], and Static Dataflow with Access Patterns (SDF-
AP) [7]. Complementing these modeling advances, algorithmic
solutions for static analysis have been studied in depth. Viable
techniques have been developed for computation of through-
put, buffer sizes, and schedules [2] [8] [9].

The expressiveness of dataflow models in naturally cap-
turing streaming applications, coupled with formal compile

time analyzability properties, has made them popular in the
domains of multimedia, signal processing, and communica-
tions. These high level abstractions are the starting points for
model-based design approaches that enable productive design,
fast analysis, and efficient correct-by-construction implemen-
tations. Ptolemy II [10], LabVIEW [11], and Simulink [12] are
examples of successful tools built on the principles of model-
based design from dataflow models.

These tools predominantly deliver software implementations
for general purpose and embedded processor targets. However,
ever-increasing demands on performance of new applications
and standards have motivated prototyping and deployment
on hardware targets, such as Field Programmable Gate Ar-
rays (FPGAs). FPGAs are integral components of modern
computing platforms for high performance signal processing.
Surprisingly, few studies have been directed to the synthesis
of efficient hardware from dataflow models.

The configurability of FPGAs and constraints of hard-
ware design bring unique implementation challenges and
performance-resource trade-offs. FPGAs permit a range of
implementation topologies of varying degrees of parallelism
and communication schemes. Fine-grained specification of
actor execution at the cycle level enables execution choices
between fully specified static schedules and more flexible
self-timed schedules. Communication between actors could
be through direct wires, handshake protocols, shift registers,
shared registers with scheduled access, or dedicated FIFO
buffers. Each mechanism poses different requirements on the
interface and glue logic to stitch actors. Finally, a key re-
quirement for hardware design is the integration of pre-created
configurable intellectual property (IP) blocks. Hardware actor
models must capture relevant variations in data access patterns
and execution characteristics of different configurations.

We address these challenges with DSP Designer, a frame-
work for hardware-oriented specification, analysis, and im-
plementation of streaming dataflow models. The intent is to
enable DSP domain experts to express complex applications
and performance requirements in algorithmic manner and to
auto-generate efficient hardware implementations. The main
components of DSP Designer are: (a) a graphical specification
language to design streaming applications, (b) an analysis en-
gine to validate the model, select buffer sizes and optimize re-
source utilization to meet throughput constraints, and perform
other pertinent optimizations, and (c) implementation support
to generate an efficient hardware design and deploy it on
Xilinx FPGAs. The specification is based on the Parameterized
Cyclo-Static Dataflow (PCSDF) model of computation, which

is a sufficiently expressive model for wireless communications
applications [13] [14]. DSP Designer provides an extensive
library of math and signal processing functions that harness the
resource elements on the FPGA. It also facilitates integration
of custom-designed hardware blocks and third-party IP into
the design. The back-end eases exploration of design trade-
offs and translates a high level algorithmic specification to
an efficient hardware implementation. Thus, DSP Designer
simplifies the creation of complex streaming applications
targeted for FPGA deployment.

In this paper, we highlight salient features of DSP De-
signer and illustrate a design flow to implement streaming
applications. We then present a case study on the deployment
of an Orthogonal Frequency Division Multiplexing (OFDM)
wireless communication link from the Long Term Evolution
(LTE) [15] mobile networking standard on a Xilinx FPGA.

II. RELATED WORK

Synthesis flow from Register Transfer Level (RTL) logic
and behavioral languages (typically C, C++, or SystemC)
for hardware targets has been a popular topic of several
studies. However, there is limited prior art on hardware gener-
ation from non-conventional high level models like dataflow.
Ptolemy II is a prominent academic framework for graphical
specification and analysis of dataflow models [10]. While these
tools provide some support for RTL generation from restricted
models, the focus is more on proof-of-concept and less on
optimized hardware implementation.

On the commercial front, LabVIEW FPGA from National
Instruments is a popular tool that supports FPGA deployment
from dataflow models [16]. However, LabVIEW FPGA only
supports the Homogeneous Static Dataflow (HSDF) model
of computation, which does not allow native specification
of streaming multi-rate computations. System Generator from
Xilinx is another related offering that supports FPGA imple-
mentations of synchronous reactive and discrete time models
of computation [17]. However, these models are not suit-
able for data driven streaming specifications. SystemVue ESL
from Agilent supports more expressive dataflow models and
provides libraries and analysis tools for the RF and DSP
domains [18]. However, it primarily serves as an exploration
and simulation environment, and does not offer a path to
implementation in hardware.

The closest effort in synthesizing hardware from dataflow
programs is the Open Dataflow framework [19]. The CAL
actor language supported in Open Dataflow is an important
step in formalizing actor and interface definitions. It has
been adopted by the MPEG Video Coding group to develop
codecs for future standards [20]. CAL builds on the Dynamic
Dataflow model of computation but this model is undecidable
and cannot be subject to static analysis. In contrast, the PCSDF
model used by DSP Designer enables analysis of deadlock-
free execution, and memory and throughput requirements.
Also, CAL is a textual specification language, whereas DSP
Designer provides an intuitive graphical design environment.

In summary, DSP Designer is an attempt to integrate the
respective strengths of the previously discussed tools into a
unified framework for hardware implementation. The graphical
design environment is intended for algorithm designers who
are generally not experts in hardware design. The framework
supports analysis capabilities relevant to hardware implemen-
tation and includes an extensive library of common math, sig-
nal processing, and communications functions. It also enables
easy integration of IPs from native and third-party libraries,
like the Xilinx CoreGen library [21], which are essential to
practical efficient hardware design.

III. MODEL SPECIFICATION AND ANALYSIS

The foundation of DSP Designer is its models of computa-
tion – SDF, CSDF, and their parameterized extensions. We dis-
cuss the relevant characteristics of these models, and illustrate
their suitability for specifying signal processing applications.

A. SDF and CSDF

A dataflow model consists of a set of actors inter-connected
via channels. The actors represent computational units while
the channels denote communication. The data is abstracted as
tokens. In the Static Dataflow (SDF) model of computation, at
each firing, an actor consumes a fixed number of tokens from
each input channel, and produces a fixed number of tokens on
each output channel. The channels store the tokens until an
actor consumes the tokens.

Each actor is associated with an execution time and an
initiation interval. Execution time is the time (in clock cycles)
that the actor needs to process inputs, perform computation,
and generate outputs. Initiation interval is the minimum time
(in clock cycles) between consecutive firings of an actor. If
initiation interval is less than execution time for an actor, then
the actor may fire in an overlapping (pipelined) fashion.

Fig. 1 shows an SDF model for computing the standard
deviation of non-overlapping blocks of 100 input samples
each. Every actor in this model except Sum is single-rate or
homogeneous, i.e. it consumes 1 token on every input, and pro-
duces 1 token on every output. The Sum actor consumes 100
input tokens and produces their sum as a single output token.
Execution times of the actors vary with their implementations.
Square, Decrement, Subtract execute in single cycle;
Divide, Square Root take multiple cycles, and could be
pipelined to have initiation interval of 1 cycle. Sum actor has
execution time and initiation interval of 100.

x2
_

-1

in

100

10011

100 1

100

1
1

11

1x2
11 out

11 11

1

1

1

1

1 1

1

Fig. 1. Computing standard Deviations of input blocks of fixed size 100.

The SDF model of computation fits well with fixed-length
computations. Such computations are abundant in signal pro-
cessing standards, for example, the processing of 8×8 blocks
of pixels during JPEG encoding. However, there are also
computations that follow a fixed cyclic pattern in the number

of tokens processed. An example is the normal CP mode of
LTE OFDM standard in which every slot has 7 symbols, with
the first special symbol different in length from the other
symbols. For such computations, the Cyclo-Static Dataflow
(CSDF) model of computation generalizes SDF by allowing
the number of tokens consumed or produced by an actor to
vary according to a fixed cyclic pattern [3]. Each firing of a
CSDF actor corresponds to a phase of the cyclic pattern. In
Fig. 1, if we replace the input token count of Sum actor by a
cyclic pattern (100, 200, 300), then we get a CSDF model that
computes standard deviation of input blocks whose lengths
vary deterministically from 100 to 200 to 300 and back.

The SDF and CSDF models of computation permits efficient
static analysis of key properties. The absence of deadlocks
(i.e., the ability of each actor to fire infinitely often), and
the consistency of execution rates (i.e., the ability to exe-
cute infinitely with bounded channels) can be verified effi-
ciently [1] [2] [3]. Further, there are efficient algorithms for
computation of throughput and buffer sizes [8], [9].

B. Parameterized Extensions

SDF and CSDF are static in nature. However, for many
applications, the number of tokens processed needs to vary at
run-time. For example, MP3 audio compression selects at run-
time between long blocks of 576 samples and short blocks of
192 samples. Fig. 2 shows a variation of the model in Fig. 1, in
which the Sum actors consume N tokens in each firing, where
N is from the set {100, 200, 300}. This computes standard
deviations of a mix of input blocks of lengths 100, 200 or
300 by varying N at run-time. This model of computation is
called Parameterized Static Dataflow (PSDF) [4].

x2

_

-1

in

N

N11 1

1
11

1

out
11 11

1

1

N 1

{100, 200, 300}

1

1x2
11 1

1

1

Fig. 2. Computing standard deviations of input blocks of varying size N .

The behavior of the PSDF model can be viewed as a
composition of several SDF models, one for each possible
value of the parameter (also referred to as configuration).
Fig. 2 has 3 possible values of the parameter, hence 3
configurations. At any point in execution, the behavior of the
PSDF model is the SDF model corresponding to the value
of the parameter. To avoid non-determinism, a change in
parameter value can take effect only at iteration boundaries.
The analysis of a PSDF model accounts for the analysis
for all possible configurations [4]. The CSDF model can
similarly be parameterized to form the Parameterized Cyclo-
Static Dataflow (PCSDF) model.

IV. REALIZING MODELS IN DSP DESIGNER

DSP Designer is a graphical environment backed by the
design and implementation flow of Fig. 3. In this section
we describe how the user specifies applications using models,
explores optimizations, and generates FPGA designs.

A. Design Flow

The user works in a graphical environment as shown in
Fig. 4. The starting point is the Application, e.g. a DSP
algorithm, which the user starts drawing by selecting actors
from the Actor Library and placing them on the editor canvas.
This begins the Model Specification step. The actor library
consists of a rich set of primitive actors (add, square root,
sine, etc.), stream manipulation actors (upsample, build stream,
etc.), third-party actors (e.g. FFT and FIR blocks from Xilinx
Coregen [21]), and user-defined actors that are either specified
in the LabVIEW programming language or constructed using
DSP Designer. This reuse of actors allows for hierarchical
composition of designs within the tool.

Constraints

Validity Checking

Schedule Generation Code Generation

Buffer Sizing Throughput Analysis

Application

FPGA Design

3rd Party IP
Actors

User-Defined
Actors

Actor library

3rd Party IP
Blocks

Primitive
Actors

Properties Properties

Properties

Model
Specification

Clumping

Fig. 3. Design and Implementation Flow in DSP Designer.

The user continues by connecting the actors, and optionally
configuring their properties. Configurable properties of an
actor include the data types and the number of tokens for
its input and output channels. The number of tokens may
vary at run-time for parameterized actors, depending on the
current parameter value, resulting in a potentially distinct con-
figuration for each parameter value. To ensure analyzability,
the tool limits the value of each parameter to a finite set
specified by the user. Some actors can also be configured
for their throughput, pipeline depth, resource usage, or other
implementation-specific options. The actor library includes
cycle-accurate characteristics for each actor configuration,
including the initiation interval and the execution time.

The second input from the user is the Constraints, which in-
clude minimum throughput requirements on input/output ports
or internal channels of the design. Throughput is specified in
engineering units, such as Mega-Samples per second (MSps).

The tool performs several types of analysis on the design
in the background while the user is constructing it, with
immediate feedback on the current state of the design. Validity
Checking includes model consistency and deadlock checking.
It also performs automatic type checking and type propagation
across the design. Errors or warnings are immediately anno-
tated on the offending nodes on the canvas and reported under
the Errors & Warning tab in the tool. On a valid design, the

tool performs Clumping to identify regions that fit specialized
implementation schemes. Buffer Sizing and Throughput Anal-
ysis are then performed on the design. This determines the
buffer sizes required on the channels to satisfy user constraints
such as minimum throughput. If the constraints cannot be met,
the tool reports errors. Schedule Generation establishes a valid,
cycle-accurate schedule for the design, given the determined
buffer sizes and clumped regions. This schedule is viewable in
the schedule view part of the tool (as shown at the bottom of
Fig. 4), providing instant feedback on the run-time behavior
of the design, including the achievable throughput.

The user can simulate the functional behavior on the devel-
opment platform before invoking the hardware implementation
stage. As a part of the simulation, the user can specify stimulus
data and add graphical displays to the design to visualize the
response on output ports or on any wire in the design.

Fig. 4. DSP Designer Tool Implementing the Example in Fig. 1.

The final step is Code Generation that uses the results of
analysis to emit an FPGA design in the form of synthesizable
LabVIEW files. The tool can also generate a synthesizable
testbench that allows the user to stimulate the design from the
development computer and compare the response to validated
signals. The testbench includes the necessary code for DMA
communication between the FPGA device and the develop-
ment computer. The LabVIEW files can be used to generate a
bitfile used to implement the design on Xilinx FPGA devices
or for timing-accurate hardware simulation. Currently the tool
supports targeting Virtex 5 devices from Xilinx.

B. Implementation Strategy

DSP Designer uses a FIFO-based, self-timed implementa-
tion strategy to realize the designs on FPGA fabrics [8]. In the
FIFO-based strategy every channel in a model is conceptually
mapped to a hardware FIFO of appropriate size and every actor
is mapped to a dedicated hardware block that implements its
functionality. There is no resource sharing among two different
channels or two different actors in the current state of the
tool, but the model does not preclude this. In the self-timed
execution strategy every actor instance is fired whenever it has

a sufficient number of tokens on each of its input channels,
sufficient number of vacancies on each of its output channels,
and the initiation interval of the previous firing has expired.
This evaluation is done on every clock cycle, allowing for a
potentially more opportunistic execution than the conservative
block-based model used in most SDF-based tools, where a
downstream actor is not fired until a cycle after the one where
its upstream actors write the last output token into their shared
buffers. As a consequence, there is no global scheduling logic
in this implementation strategy, reducing the complexity of the
controller for each actor in the final design.

C. Actor and IP Stitching

The FIFO-based, self-timed implementation strategy is im-
plemented using harness logic that surrounds every actor
instance, providing a FIFO-based interface that realizes the
SDF model and its extensions discussed in Section III. The
generated code for all actors presents a standardized interface
to the harnesses, based on designated lines for data and
handshaking. This simplifies actor stitching since the tool can
use generic harness wrapper templates. It also allows the tool
to connect actors more directly and efficiently.

A faithful realization of the SDF model of computation
requires extra resources for the harness logic and the FIFOs
on each channel. In the synthesized design this overhead can
be significant compared to the resource usage of the actors
themselves. To reduce this overhead the tool applies a series
of clumping transformations on the design to reduce both the
number of harnesses and FIFOs in the design. These transfor-
mations preserve the observable flow of tokens on the input
and output ports, while preserving or increasing throughput.
The clumping activity is akin to the process of converting
an asynchronous design, where all actors are connected by
FIFOs, into a GALS [22] (Globally Asynchronous Locally
Synchronous) architecture, where FIFOs connect regions of
synchronously connected actors called clumps.

V. OFDM TRANSMITTER & RECEIVER CASE STUDY

In this section, we present a case study on the design
and implementation of a real-time single antenna OFDM
transmitter and receiver using DSP Designer.

A. System Specifications & Hardware Architecture
Our single antenna OFDM link design is based upon the

LTE standard [15] with system specifications that include
a transmission bandwidth of 5 MHz, 7.68 MSps sampling
rate, 512 FFT length, 128 cyclic prefix (CP) length (extended
mode), 250 data subcarriers, 50 reference subcarriers, and
variable 4/16/64 Quadrature Amplitude Modulation (QAM).
The proposed communication system is implemented on the
National Instruments (NI) PXI Express platform shown in
Fig. 6, where the transmitter (TX) and receiver (RX) consist
of the following four main components.

• PXIe-8133 Real-time (RT) controller equipped with a
1.73 GHz quad-core Intel Core i7-820 processor and 8
GB of dual-channel 1333 MHz DDR3 RAM.

 Single Antenna Transmitter Baseband Signal Processing Block Diagram

 Single Antenna Receiver Baseband Signal Processing Block Diagram

Data Bit

Generation

4/16/64-QAM

Modulation

Ref. Symbol

Generation

6/12/18 Mbps 3 MSps

0.6 MSps

Data & Reference

Symbol Interleaving

Zero

Padding

512 IFFT

with 128

CP Insertion

LabVIEW

3.6 MSps 6.144 MSps
Sample Rate

Conversion
7.68 MSps DAC

DSP Designer

RT Controller FlexRIO FPGA Module NI-5781

50 MSps

RT Controller

LabVIEW

ADC

NI-5781

50 MSps
Sample Rate

Conversion
7.68 MSps

Time & Frequency

Offset Correction
7.68 MSps

512 FFT

with CP

Removal

6.144 MSps
Zero Pad

Removal
3.6 MSps

Data & Reference

Symbol

Demultiplexing

Channel

Equalization

Reference Symbol

Generation

0.6

MSps

Channel

Estimation

3 MSps

0.6 MSps

0.6 MSps

BER

Calculation
3 MSps

DSP Designer

FlexRIO FPGA Module

4/16/64-QAM

Demodulation
6/12/18 Mbps

Fig. 5. Hardware and Software Mapping of Transmitter and Receiver Block Diagrams.

Fig. 6. National Instruments PXI Express Real-Time Signal Processing
Platform with Ettus Research RF Front-End.

• PXIe-7965R FPGA module equipped with a Virtex-5
SX95T FPGA optimized for digital signal processing,
512 MB of onboard RAM, and 16 DMA channels for
high-speed data streaming at more than 800 MBps.

• NI-5781 40 MHz baseband transceiver module equipped
with dual 100 MSps 14-bit inputs, dual 100 MSps 16-bit
outputs, and eight general purpose IO lines.

• Ettus Research XCVR-2450 802.11a/b/g compliant, 40
MHz, dual 2.4 GHz and 5.2 GHz band RF transceiver
with 100 mW of transmit power.

Fig. 5 shows the TX and RX block diagram representations
of the various signal processing blocks implemented in the
devices. Also shown is a mapping of the various blocks to the
underlying hardware targets and the respective design tools
used in their implementation; e.g., the TX Data Bit Generation
block (programmed using LabVIEW RT) executes on the
PXIe-8133 RT controller, while the higher rate 512 IFFT with
128 CP Insertion block (implemented using DSP Designer)
executes on the PXIe-7965R FPGA module. The various data
rates associated with the inputs and outputs of each block
are also shown; e.g., the TX Sample Rate Conversion block
up-samples input data streaming at 7.68 MSps to 50 MSps in
order to meet the sample rate constraints of the NI-5781 DAC.

B. OFDM Transmitter Design Overview

Fig. 7 shows the DSP Designer implementation of the pro-
posed transmitter. Random bytes of data generated by the RT
controller are forwarded to the FPGA module for Multilevel
QAM (M-QAM) [23]. Depending upon the modulation order
value denoted by the parameterization port, Modulation, the
bytes of data are unpacked into groups of 2, 4, or 6 bits
corresponding to 4/16/64-QAM, respectively. Groups of bits
are then mapped to their respective complex symbols and
passed out of the output port of the sub-diagram.

After QAM modulation, 250 data symbols are interleaved
with 50 reference symbols stored in a look-up table forming
an array of 300 interleaved symbols which is then split into
two equal groups and padded with zeros forming an array of
512 samples. The 512 samples are passed through a 512 point
IFFT block translating the frequency domain samples into the
time domain. A 128 point CP is also inserted such that the
output of the block consists of 640 samples streaming at 7.68
MSps. Sample rate up-conversion is then performed through
two sets of FIR filters, converting the 7.68 MSps signal to 50
MSps. The samples are forwarded to the NI-5781 for digital-
to-analog conversion followed by RF up-conversion.

C. OFDM Receiver Design Overview

Fig. 7 shows the DSP Designer implementation of the
receiver. The RX begins with two FIR filters that perform
sample rate down-conversion taking the incoming 50 MSps
signal from the ADC down to 7.68 MSps. Time and carrier
frequency offset (CFO) estimation is performed using the blind
estimation technique proposed in [24]. Because the first L
samples (CP) and the last L samples of an N+L length OFDM
symbol are equal, the algorithm correlates the two, thereby
eliminating the need for a priori knowledge of the transmitted
signal. The correlation output is then used to estimate the start
index of an OFDM symbol and the CFO thereof.

In order to meet throughput without loss of data during
the estimation of the start index and CFO, the receive signal
is buffered into a memory block while simultaneously being

Sample Rate Down Conversion

Time & Carrier Frequency Offset Estimation Signal Buffering

Frequency Offset

Correction

CP Removal FFT Zero Pad

Removal

Reference & Data

Symbol Deinterleave

Channel Estimation

Zero Forcing

Equalization

Memory

Block

Sample Rate Up Conversion

FFT with

CP Insertion

Zero

Padding

Reference & Data

Interleave

Modulation Order Parameterization

OFDM Receiver

OFDM Transmitter

Fig. 7. DSP Designer Diagrams of OFDM Transmitter (top) and Receiver (bottom).

processed for time and CFO estimation. Once computed, the
start index is used to calculate a corresponding read address
pointer that indexes the beginning of an OFDM symbol stored
in memory. When it is synchronized to the beginning of an
OFDM symbol, the RX streams the signal out of memory
and into the CFO correction block wherein the synchronized
OFDM symbol is multiplied with a complex sinusoid gener-
ated by a direct digital synthesizer (DDS) block at a frequency
defined by the CFO estimate present at its input.

After CFO correction, the received OFDM symbol is passed
on for CP removal and FFT transformation returning the signal
to the frequency domain. Zero pads are then removed and the
reference and data symbols are separated in a deinterleave
operation. As shown in Fig. 7, the received reference symbols
are passed out of the first output of the deinterleave block for
channel estimation while the received data symbols are passed
out of the second for channel equalization.

In order to estimate the channel coefficients, we model the
received reference symbols as sk = hkrk + zk where k ∈
{0, . . . , 49}. The reference symbol and channel coefficients
are respectively modeled as rk = ejθrk and hk = |hk| ejθhk .
Lastly, zk represents additive white Gaussian noise.

The estimates of the channel coefficients, ĥk, are then cal-
culated by multiplying the complex conjugate of the reference
symbols, r∗k, to the received reference symbol. Moreover, be-
cause only one reference symbol is allocated to every five data
symbols, the 50 channel estimates, ĥk for k ∈ {0, . . . , 49}, are

up-sampled by five generating a total of 250 channel estimates,
ĥi for i ∈ {0, . . . , 249}.

In order to correct the effects of the wireless channel,
zero forcing (ZF) channel equalization is employed where the
received data symbols, yi, are first multiplied by the complex
conjugate of the channel estimates, ĥ∗

i , and then divided by
their square magnitude, |ĥi|2, effectively inverting the channel.
The data symbol estimates, x̂i, are then transferred to the RT
controller at a data rate of 3 MSps for QAM demodulation
and bit error rate calculation.

D. FPGA Compilation & Run-Time Results
In addition to the portions of the design implemented in

DSP Designer, the compilation results include nominal logic
implemented in LabVIEW FPGA that manages data transfer
across the NI-5781 baseband transceiver and PXIe-7965R
FPGA module, and the PXIe-7965R FPGA module and PXIe-
8133 RT controller. The results also include additional logic to
control the NI-5781, such as ADC/DAC read/write operations,
sampling frequency configuration, and clock select.

Table I is a summary of the compiled FPGA resource
utilization. The first two columns show the various resources
available on the PXIe-7965R’s Virtex-5 SX95T FPGA and
the total number of elements associated with each resource.
The percentage utilization of the various resources for the TX
and RX are listed in the last two columns. For instance, there
are 14,720 slice elements available on each FPGA, 43.1% or
6,350 of which are used by the TX and 79.2% or 11,659 of

which are used by the RX. Due to significant differences in
computational complexity between the two designs, the RX
utilizes more than twice as many slice registers and LUT
resources compared to the TX. With regard to timing, the TX
and RX DSP diagrams are configured to be driven by 125 MHz
clocks, and both successfully met timing during compilation.

Resource Available Resource Transmitter Receiver
Name Elements Utilization Utilization
Slices 14,720 43.1% 79.2%
Slice Registers 58,880 21.6% 54.6%
Slice LUTs 58,880 24.7% 57.3%
DSP48s 640 2.7% 8.3%
Block RAM 244 8.2% 19.7%

TABLE I
FPGA RESOURCE UTILIZATION SUMMARY.

Fig. 8 is a screen shot of the OFDM receiver front panel
taken during an over-the-air test of the communications link.
In addition to carrier frequency, modulation order, and LNA
gain controls, a sample 16-QAM signal constellation plot is
shown along with two average bit error rate (BER) curves,
one taken on a single subframe basis (lower right hand plot),
and the other taken over all received subframes (upper right
hand plot). The average BER over all subframes converges to
an approximate value of 8 ∗ 10−4.

Fig. 8. Receiver Front Panel.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we presented the DSP Designer framework
to specify dataflow models, analyze them, and generate im-
plementations for hardware targets. The PCSDF model of
computation is sufficiently expressive in specifying complex
streaming applications, while capturing characteristics specific
to hardware design. The back-end performs key optimizations
related to buffer sizing and scheduling. The actor library
provides a rich set of building blocks to create complex signal
processing and communications applications. It also facilitates
easy integration of custom designed hardware IPs from native
and third-party sources. Thus, DSP Designer serves as a design
and exploration framework that enables algorithm experts to
productively specify applications using high level models and
still create efficient hardware implementations.

In the future we intend to (a) extend the DSP Designer
modeling and analysis capabilities to support more expressive
streaming models such as Heterochronous Dataflow (HDF);
(b) enhance the analysis back-end to address problems related
to dataflow pipelining and resource constrained scheduling; (c)
study how intra-cycle timing optimizations for hardware, such
as retiming and recycling, can be applied at the model level;

(d) derive more resource-efficient hardware implementations
through rate matching and clumping of multi-rate actors; and
(e) enlarge the DSP Designer actor library and standardize the
IP interface definition to ease third-party IP integration.

REFERENCES

[1] E. A. Lee and D. G. Messerschmitt, “Synchronous Data Flow,” Pro-
ceedings of the IEEE, vol. 75, no. 9, pp. 1235–1245, Sept. 1987.

[2] S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee, Software Synthesis
from Dataflow Graphs. Norwell, MA: Kluwer Academic Press, 1996.

[3] G. Bilsen, M. Engels, R. Lauwereins, and J. Peperstraete, “Cyclo-static
data flow,” in IEEE Intl. Conf. Acoustics, Speech, and Signal Processing,
vol. 5, 1995, pp. 3255–3258.

[4] B. Bhattacharya and S. Bhattacharyya, “Parameterized Dataflow Model-
ing for DSP Systems,” Signal Processing, IEEE Transactions on, vol. 49,
no. 10, pp. 2408 –2421, oct 2001.

[5] A. Girault, B. Lee, and E. A. Lee, “Hierarchical Finite State Machines
with Multiple Concurrency Models,” IEEE Transactions on Computer-
Aided Design, vol. 18, no. 6, pp. 742–760, June 1999.

[6] B. D. Theelen, M. C. W. Geilen, T. Basten, J. P. M. Voeten, S. V.
Gheorghita, and S. Stuijk, “A Scenario-aware Data Flow Model for
Combined Long-run Average and Worst-case Performance Analysis,”
in Proceedings of MEMOCODE’06, Jul. 2006, pp. 185–194.

[7] S. Tripakis, H. Andrade, A. Ghosal, R. Limaye, K. Ravindran, G. Wang,
G. Yang, J. Kormerup, and I. Wong, “Correct and non-defensive
glue design using abstract models,” in Proceedings of the seventh
IEEE/ACM/IFIP international conference on Hardware/software code-
sign and system synthesis, ser. CODES+ISSS ’11. New York, NY,
USA: ACM, 2011, pp. 59–68.

[8] O. M. Moreira and M. J. G. Bekooij, “Self-Timed Scheduling Analysis
for Real-Time Applications,” EURASIP Journal on Advances in Signal
Processing, vol. 2007, no. 83710, pp. 1–15, April 2007.

[9] S. Stuijk, M. Geilen, and T. Basten, “Exploring Trade-offs in Buffer
Requirements and Throughput Constraints for Synchronous Dataflow
Graphs,” in Proceedings of DAC ’06, 2006, pp. 899–904.

[10] J. Eker, J. W. Janneck, E. A. Lee, J. Liu, X. Liu, J. Ludvig, S. Neuen-
dorffer, S. Sachs, and Y. Xiong, “Taming Heterogeneity - The Ptolemy
Approach,” in Proc. of the IEEE, vol. 91, no. 1, 2003, pp. 127–144.

[11] H. A. Andrade and S. Kovner, “Software Synthesis from Dataflow
Models for G and LabVIEW,” in In Proceedings of the IEEE Asilomar
Conference on Signals, Systems, and Computers, 1998, pp. 1705–1709.

[12] The MathWorks Inc., “Simulink User’s Guide,” 2005,
http://www.mathworks.com.

[13] H. Kee, C.-C. Shen, S. Bhattacharyya, I. Wong, Y. Rao, and J. Kornerup,
“Mapping Parameterized Cyclo-static Dataflow Graphs onto Config-
urable Hardware,” Journal of Signal Processing Systems, pp. 1–17, 2011.

[14] H. Berg, C. Brunelli, and U. Lücking, “Analyzing Models of Com-
putation for Software Defined Radio Applications,” in International
Symposium on System-on-Chip (SOC), Tampere, Finland, November
2008, pp. 1–4.

[15] “3GPP LTE: The Mobile Broadband Standard,” Dec 2008,
http://www.3gpp.org/.

[16] National Instruments Corp., “LabVIEW FPGA,” www.ni.com/fpga.
[17] Xilinx Inc., System Generator for DSP: Getting Started Guide,

www.xilinx.com.
[18] C.-J. Hsu, J. L. Pino, and F.-J. Hu, “A mixed-mode vector-based dataflow

approach for modeling and simulating lte physical layer,” in Proceedings
of the 47th Design Automation Conference, ser. DAC ’10. New York,
NY, USA: ACM, 2010, pp. 18–23.

[19] J. W. Janneck, “Open Dataflow (OpenDF),” http://www.opendf.org/.
[20] J. Janneck, I. Miller, D. Parlour, G. Roquier, M. Wipliez, and M. Raulet,

“Synthesizing Hardware from Dataflow Programs: An MPEG-4 Simple
Profile Decoder Case Study,” in IEEE Workshop on Signal Processing
Systems, oct. 2008, pp. 287–292.

[21] Xilinx Inc., Xilinx Core Generator, ISE 12.1, Xilinx Inc., 2010.
[22] D. M. Chapiro, “Globally-Asynchronous Locally-Synchronous Sys-

tems,” Ph.D. dissertation, Stanford Univ., CA., October 1984.
[23] J. Proakis, Digital Communications, 4th ed. McGraw-Hill Sci-

ence/Engineering/Math, Aug 2000.
[24] M. Sandell, J.-J. van de Beek, and P. O. Brjesson, “Timing and

Frequency Synchronization in OFDM Systems Using the Cyclic Prefix,”
in In Proc. Int. Symp. Synchronization, 1995, pp. 16–19.

