
A Configurable VHDL Template for Parallelization of 3D Stencil
Codes on FPGAs

ERSA’12 Distinguished Paper

Franz Richter, Michael Schmidt and Dietmar Fey
Department of Computer Science, Chair of Computer Science 3 - Computer Architecture,

Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany

Abstract— 2D and 3D stencil code applications are very
common in scientific computing, but their performance is
mostly limited by the memory bandwidth. Elaborate on-
chip buffering techniques minimize memory transfers, but
they cannot be directly realized on fixed general-purpose
processors or GPUs.

FPGAs instead offer flexibility regarding the processing
scheme, the degree of parallelism and the numerical rep-
resentation of values. This enables FPGA-based problem-
solvers to perfectly scale from low-power embedded de-
vices to high-performance accelerators with a much higher
performance-to-power ratio than conventional processing
nodes. To reach optimal performance, elaborate buffering
techniques within the FPGA are necessary to avoid redun-
dant memory access, first of all in 3D space.

We created a generic VHDL template to ease development
of 3D stencil-based applications, using Full Buffering to
minimize data transfers. The template allows a custom
number format, together with variable parallelization in
space and time. The parameters can be set according to the
capabilities of the underlying hardware and the requirements
of the application.

Keywords: Stencil Codes, FPGA, Full Buffering

1. Introduction
In numerical approximations a specific problem is often

discretized in both, space and time. It is therefore mapped
on a regular grid and computing one step in time for a single
grid point at a certain position, referred to as cell, can be
put down to a function of itself and its surrounding [1].
To perform one iteration, this function, also called stencil,
is applied to every cell of the grid, while several thousand
iterations are often needed for convergence of the results.

Applications of these stencil codes include 2D image
preprocessing operations, which we already have analyzed
in detail [2]. In high performance computing (HPC), 3D
stencils are often used for physical simulation, like the heat
dissipation with the Jacobi Iterator [3] or a particle behavior
with Lattice Gas or Lattice Boltzmann methods [4].

These applications are very data-intensive, first of all for
the 3D problem space. Using off-the-shelf hardware like

CPUs and GPUs, stencil codes are mainly memory bound,
which means that the external memory bandwidth is the
bottleneck in the processing chain.

Fortunately, this limit can be shifted by using clever strate-
gies for buffering and parallelization on FPGAs, because
they can be strongly customized to the problem, instead of
having to adapt the algorithm to a fixed architecture. Fur-
thermore, even high-performance FPGAs have a moderate
power consumption, in contrast to normal CPUs and GPUs,
which allows HPC applications to be realized efficiently [5].

1.1 Buffering
To circumvent the performance limit on FPGAs, extensive

use of on-chip memory is necessary to avoid redundant
memory access and allow parallelization of computation.
The high amount of resources of today’s FPGAs enables
hardware designers to use Full Buffering (FB) in favor of
Partial Buffering (PB) [6].

For PB, only the data needed by the current computation
is stored to minimize memory consumption. Fig. 1a shows a
three-dimensional problem space of size M ×N ×O. Each
block represents one value and its shade gives its current
role in computation. The light gray blocks have neither been
loaded nor processed yet. Values which are needed by the
current stencil update are medium gray. Here, an X×Y ×Z-
wide area is used, which is called neighborhood. To perform
the next update, Y · Z dark gray blocks are needed, and as
much as data is now obsolete and can be evicted (the most
left column of the neighborhood).

Hence, for a single computation, several values have
to be loaded from external memory, limiting the resulting
performance.

In contrast to that, the main idea of FB is to store
data internally until all computation relying on it has been
performed. In Fig. 1b, these additionally stored values are
shaded differently, compared to PB. Data has still to be
loaded to perform an update, but it depends no longer on
the size of the stencil. Instead, only a single value is needed,
since all other data is already present.

During computation, the stencil is applied row-wise, from
the top to bottom and plane-wise from the front to the back.
Thus, a value must have been used for computation at every



N

Y

Z

M

OX

(a)

N

Y

Z

M

OX

(b)

Fig. 1
3D PARTIAL BUFFERING (PB) (A) AND FULL BUFFERING (FB) (B)

position of the stencil, i.e X · Y · Z-times, until is can be
evicted.

It is obvious that this is optimal regarding the utilization
of external memory, at the expense of a high demand for
local buffer space. However, this paper will show that FB
is worth on modern FPGAs, since it is the only way to
optimally minimize redundant memory access and it is
furthermore predestined for stream processing, making it
perfectly compatible with typical stencil codes.

The following sections give an overview of prior work
concerning stencil codes on FPGAs and explain the motiva-
tion for our generic approach, before the template itself is
explained.

1.2 Related Work
Stencil code applications on FPGAs are well discussed

and several different architectures have been proposed.
Ref. [7] uses finite-difference schemes for real-time sound

synthesis. They use a two-dimensional array of processing
elements (PE), each containing an independent controller,
internal memory (distributed or Block RAM) and a fixed-
point arithmetical unit. Parallelism is achieved by using
several PEs, which in turn can contain multiple and pipelined
arithmetical units. All input data is spread over of the PEs,
if enough on-chip space is available. Otherwise, external
memory has to be used, limiting the total amount of PEs
available since all PEs have to communicate simultaneously.
For large inputs, it is not analyzed further how the memory
bandwidth affects the overall performance.

The different degrees of parallelization are similar to
ours, but at a different level of abstraction. We do not see
any advantage of implementing multiple PEs, each with
separate control logic and memory access, on a single FPGA.
Instead, enlarging a single PE to the architectural limits
significantly reduces the overhead for maintenance since a
single controller is sufficient.

The authors of [8] [9] claim to have developed the first
hardware accelerator card for the 3D finite-difference time-
domain method. They build a memory hierarchy consisting
of on-chip BlockRAM, coupled with on-board SRAM and
DRAM, connected to PCI-bus of the host system. The
BlockRAM is mainly used as input and output buffer to the
external DRAM to allow bursts of data. Each arithmetical
unit, of which more than one may exist for parallelization,
accesses disjoint on-chip buffers and performs computation
on single precision floating point numbers. They also inde-
pendently exchange data with external memory, but we do
not see multiple memory accesses in parallel with totally
different addresses to be feasible.

In [10], an architecture for star-shaped stencil codes of
size n×(n+1)×n, for even n, with single precision floating
point data is proposed. It consists of the front-end, which is
mainly responsible for external memory access and buffering
of the data already loaded, and the back-end, implementing
the actual update logic, running at twice the clock frequency
of the front-end. The engines are controlled by the input
FIFO and stalled if necessary. They rely on an extended
PB, minimizing memory access along one axis. The paper
emphasizes the speed of on-chip data transfers to maximize
stencil throughput. This throughput depends on the clock
frequency, the amount of BlockRAMs used for parallel data
access and the degree of parallelization of computation, but
we do not expect any of the three to be a bottleneck, despite
of the external memory bandwidth, which is not primarily
minimized in this approach.

The most recent publication [11] shows a similar approach
to ours. They use an FB scheme for the 3D Reverse Time
Migration algorithm, with the same argument as ours, that



the limitations by the external memory bandwidth is the
main bottleneck in today’s applications. They also cover
different shapes of stencils, coming to the conclusion that
compact ones are more suitable in FB-based applications
due to less memory requirements, even if they have a
higher computational intensity. Despite of our work, they
do not give a detailed description of the hardware structure
and the resource consumption for different configurations.
Furthermore, they only consider 2D blocking to allow ar-
bitrary problem spaces, though 1D blocking involves less
redundancy, compared to 2D, as it is explained in Sec. 2.2.

1.3 Template
In contrast to the work listen above, our goal was to

provide a flexible framework to ease the development of fu-
ture 3D stencil-based streaming-applications on FPGAs, but
offering the performance and transparency of a customized
solution. This general approach is new to out knowledge. It
is an advancement of our prior work on 2D stencil codes, for
which we already have developed a VHDL template, firstly
presented in [2].

The 3D template is based on the results of [12]. It can
be adapted by different parameters, configuring the size of
the problem space, the size of the stencil or the amount
of bits per cell, to fit the application’s needs. Furthermore,
the degree of parallelization in both, space and time, can
be adapted, according to the memory bandwidth and the
FPGA-resources available. If the problem space is too large,
partitioning may be necessary, imposing a certain degree of
overhead. This scalability allows the template to be used in
all ranges of complexity, from low-power embedded devices
to HPC-accelerators, without having to bother with data
handling.

The paper is structured as follows. The next section
explains the components and parameters of our template.
The third section presents some mathematical background,
together with estimations and measurements of processing
time and resource consumption. In the last section, we
present a demonstrator design.

2. Template Design
The main goal of the template is to allow an optimal use of

resources on an FPGA for a given problem, while taking full
advantage of the external memory bandwidth. Stencil codes
are usually very unbalanced regarding the amount of data
required for a single update and the computational intensity.
Therefore, they are often limited by memory bandwidth, first
of all for 3D problems. Hence, an optimal buffering scheme
is needed to optimize the overall performance.

2.1 Full Buffering for 3D Stencil Codes
FB reduces memory transfers to a minimum by keeping

data inside of much faster on-chip memory as long as it
is required for computation. On FPGAs, a limited amount

of on-chip SRAM with a latency of a single clock cycle is
available for buffering.

The total amount of values AFB, which have to be buffered
internally for an FB scheme, is given by (1) (see Fig. 1).

AFB = M ·N · (Z − 1) +M · (Y − 1) +X (1)

Note that each value of the grid is represented by a
constant amount of bits. In scientific computing, single- and
double-precision floating point numbers are very common,
though the wide range of values is often not needed by
the application. In fact, a fixed-point number format may
allow a much more hardware-efficient implementation of
arithmetical units, and even raise the accuracy of values
within the interval. Therefore, the parameter D is used for
the width of a single value, instead of a fixed data type.

As mentioned above, the size of buffer space required AFB
depends on the stencil itself since each value has to be stored
until is has been streamed through the stencil, starting at the
bottom-right of the last dimension and ending at the top-left
of the first dimension, if it is applied in a row- and plane-
wise fashion. As a result, the space required is independent
from the parameter O.

More complex problems or higher requirements on accu-
racy often lead to larger stencils, which results in a strong in-
crease of buffer space. High order compact schemes[13][14]
reduce the size of the stencil at the expense of computation,
which is not regarded to be critical on FPGAs, despite of
the capacity of on-chip memory.

In a PB approach, solely the processed stencil of size
X × Y × Z is stored which requires much less data to be
buffered by the FPGA, with the drawback that X ·Y values
have to be loaded to update a single value. This leads to a
lot of redundant memory access in a PB scheme, which is
therefore unfavorable if enough on-chip storage is available,
as it is on current FPGAs.

Apart from PB and FB, we think it is not worth to
implement a CPU-like memory hierarchy since caches are
intended to speed up applications with an unpredictable
memory access pattern, which is not necessary for streaming
applications, since data is consumed sequentially.

Elaborate techniques like multi-buffering, well known
from cluster computing to hide memory latency, are also
not able to speed up the FB-approach any further since
the external memory bandwidth remains as bottleneck. In
general, the actual data transfer between the template and
external memory should make excessive use of sequential
burst transfers, but since the exact conditions are user- and
application-specific, data transfer is not to be handled by the
template itself.

2.2 Blocking
Depending on the size of the stencil and the FPGA

used, it is likely that an FB approach is not possible for



bm
O

M

N

ghost zones

(a)

bm
O

M

bnN

ghost zones

(b)

Fig. 2
SCHEME FOR 1D (A) AND 2D BLOCKING (B)

the complete input space. A sufficient compromise for the
buffering scheme has to be found. The input space has to
be split into blocks. FB is then applied to a block and all
blocks are processed consecutively for each iteration. This
is called blocking.

There are two main blocking methods. For 1D blocking as
in Fig. 2a, the input space is split into slices, each spanning
two whole dimensions. It is recommended for a non-square
input space to choose O as the largest dimension to fully
exploit the streaming character, because as shown in the
section before, AFB is independent of the parameter O.
This maximizes the throughput and hides the initial wind-
up overhead to fill the buffer. Using N for the smallest
dimension reduces the size of the buffer and thus allows
less blocks at all.

If the input space is even too large for 1D blocking to be
feasible, which would result in many slices with a limited
width bm, blocking in two dimensions is applicable (see
Fig. 2b). Again, the largest dimension of the input space
should be used for O.

On the other hand, blocking introduces redundancy be-
cause neighboring blocks must contain overlapping values

BRAM

BRAM

BRAM

BRAM

BRAM

BRAM

back Dimension

center Dimension

front Dimension

BRAM

BRAM

ExecutorKernel1Kernel0

Z Y

X

input

output

Fig. 3
SCHEMATIC OF FB TEMPLATE. EXECUTOR CONSISTS OF SEPARATE

DIMENSIONS WITH INTERMEDIATE BUFFERS AND TWO KERNELS

(P = 2) FOR A STENCIL OF SIZE X = Y = Z = 3

in order to update the boundaries, called ghost zones.
This blocking mechanism can also be used to efficiently

distribute the stencil computation of the input space to sepa-
rate devices, if a multi-FPGA platform is used for example,
which even does not have to be homogeneously due to
the configurability of the template. For such a solution, the
synchronization overhead is regarded to be negligible due
to the deterministic character of the template. To minimize
communication among separate FPGAs, it is applicable to
enlarge the overlapping, even though it raises redundancy
in memory transfers. That way, multiple iterations can be
computed without having to communicate off-chip. These
techniques are also well-known from the area of cluster
computing using MPI and can be adapted to FPGAs.



2.3 Implementation
We implemented a generic VHDL design based on FB,

allowing different degrees of parallelism, and supporting
arbitrary problem sizes by spatial blocking. To be flexible,
no vendor-specific library components are used but only be-
havioral descriptions, to make full usage of the synthesizer’s
inference capabilities. The main components of the template
are Kernel, Dimension and Executor. Their dependence is
illustrated in Fig. 3 and is explained in the following.

The Executor encapsulates the buffering and computation
of the template. For each update, new data is streamed
into the Executor, and results computed by the Kernel are
streamed out. To be able to embed the template in different
environments, it is controlled by a simple clock-enable signal
which has to be activated if new data is available.

The Kernel implements the computation of the stencil and
depends on the application. A Kernel has access to all data
required for the realization of a stencil operation on a cell
of the input space. It has to be implemented by the user
and may contain either combinational or sequential logic,
depending on the complexity of the algorithm. Updates of
a cellular automata, e.g. for the realization of the Lattice
Gas model, may be performed in a single clock cycle, while
a lot of other stencil codes are more complex, leading to
considerable critical paths. Adding intermediate registers al-
lows pipelining of operations in order to increase the system
frequency. Though this raises the latency of a single update
operation, it does not limit the application’s performance,
because with each clock cycle, a new result is available,
similar to pipelining of a microprocessor. The size of the
kernel depends on the X , Y , and Z of the stencil and can be
configured. Nevertheless, it is recommended to use minimal
stencils if possible, even if they imply a higher computational
intensity, to save buffer space.

Based on registers and FIFOs, an instance of the compo-
nent Dimension holds the rows of an M × N -wide plane
which are currently covered by the Kernel. The remaining
data of each plane is stored in a separate FIFO, except for the
last plane, which directly consumes data from the Executor’s
input (see Fig. 1b).

In detail, each row within a Dimension contains X times
D-wide registers and a separate M − X values wide
BlockRAM-FIFO. The registers are used as input to the
Kernel, since FIFOs can not handle multiple reads simul-
taneously if they are realized with BlockRAM. On FPGAs,
one cell of BlockRAM usually only has two ports. These
registers are queued, allowing data to be shifted from one
end to the other. The end of a queue is connected to the
output port of a FIFO, which contains the remaining data
of the row. On each update, the registers and FIFOs are
shifted by one, allowing the next values to be processes by
the Kernel. If a value is shifted out of the register queue, it
is either sent to the row spatially above, the next plane, or,
if it is not needed any more, it is discarded.

The explained buffering scheme allows to perform one
update with a single load and store. This can be increased
by introducing different degrees of parallelism, which is
explained in the next section.

2.4 Parallelization
Depending on the amount of bits per value D and the

external memory bandwidth, the degree of spatial paralleliza-
tion P can be adapted. With single precision floating point
numbers, 64 bit wide dual-port ram, and an the same clock
frequency for FPGA and memory, P = 2 allows to exploit
the available bandwidth. Two ports are needed to read and
write data simultaneously.

By setting P , several neighboring values are updated
simultaneously with only P − 1 additional values that have
to be buffered. The demand for processing logic increases
due to multiple Kernels, but this is not a limiting factor
for common stencils, so P is only limited by the external
memory bandwidth.

Especially for applications with small D, it leads to a
significant rise of performance. This mechanism also benefits
from the fact that the data format used on the FPGA is fully
customizable.

If P is set properly, the only way to improve performance
is to reduce the amount of data to be transferred by temporal
parallelization of computation, called pipelining. Multiple it-
erations are computed per sweep by queuing up I Executors.
Each Executor has its own FB of the current region and
enhances the iteration by one. It’s output is used as input to
the next one, again enhancing the iteration. In theory, it is
possible to compute all iterations with only a single load and
store per value, but multiple Executors raise the demand for
on-chip memory by factors. Pipelining also raises the latency
of the template, but it is tolerable if a high amount of data
is processed.

If blocking is required due to the size of the problem
space, the demand for memory even grows. For every
iteration to be processed within one sweep, additional values
surrounding the current block are required, called . Because
the block size of bm×bn×O has to be set with regard to the
available internal memory, the actual data block is smaller
if more than one iteration is realized.

Several ways to configure the template have been intro-
duced by now. All of them, the variable blocking mechanism,
i.e. 1D or 2D, the block size, the amount of P neighbors
computed in parallel or the depth of the Executor-pipeline
I either depend on the on-chip resources available or the
external memory bandwidth or both. It is an optimization
problem to find optimal parameters for an actual problem.
For 2D stencil code applications, we have already analyzed
such optimization in more detail [15] and developed an
analytical model. At the moment, we are working on an
advanced version of our model to get an optimal parameter
set also for 3D.



Table 1
PARAMETER DEFINITION

Identifier Description

M ×N ×O Width, height, depth of input with border
m× n×O Size of block with data to be processed
bm× bn×O Size of block, with ghost zones
k Number of blocks
X × Y × Z Size of the stencil
D Bits per value (per cell)
P Spatial parallelization
I Temporal parallelization
AFB Buffered cells for Full Buffering
AI Buffered cells with pipelined Executors
cblock Total memory accesses with blocking
cFB Total memory accesses without blocking
PFBL Performance of blocking
PFPB Performance of Partial Buffering

As a rule of thumb, P is set as mentioned above. The
problem space is split into equal blocks that barely fit into
the FPGA. If resources are still available, I is increased.

3. Evaluation
In this section, the mathematical background of the tem-

plate is analyzed. Furthermore, syntheses results and the
performance are presented. Tab. 1 gives an overview of
the parameters of the template. Most of them have been
introduced by now.

3.1 Overhead of Blocking
Based on 1, we determine the performance of blocking

in relationship to an FB of the complete input space and
compute the amount of redundant memory access.

The size of the ghost zone depends on the stencil size.
For simple X = Y = Z = 33 stencils the width of the
ghost zone is one for a single iteration. The block size bm×
bn, which also has to contain the required ghost cells, has
to be determined by D and the available on-chip memory,
according to (1). The size of the block m × n of actual
processed values can then be determined as shown in (2).

m = bm−X + 1

n = bn− Y + 1
(2)

Depending on the size of the input space, the number of
blocks k, which have to be processed consecutively, can be
determined by (3).

k =
M ·N
m · n

(3)

The total amount of memory accesses for FB on the
whole input space, cFB, can be determined by (4), and with
blocking, denoted as cblock, by (5). Note that for 1D blocking,
bn becomes N , reducing redundancy.

cFB = k ·m · n ·O (4)

cblock = k · bm · bn ·O (5)

For FB, all redundant memory accesses are eliminated,
leading to an optimal performance. The ratio between cFB
and cblock, giving the fraction of performance that remains
due to redundancy of the ghost areas, is ascertained by (6).

PFBL =
cFB

cblock
=

m · n
bm · bn

=
(bm−X + 1) · (bn− Y + 1)

bm · bn
(6)

Eq. (6) proves our expectations. A greater internal mem-
ory allows a greater block size bm × bn and, hence, a
higher performance because the amount of data needed for
the ghost area is strongly dominated by the data enclosed.
Furthermore, a greater stencil size implies a greater ghost
zone width, leading to an increase in redundancy and, thus,
to a lower performance.

Another interesting issue at this point is the performance
of blocking with regard to PB, where (7) values have to be
loaded.

PFPB =
M ·N ·O

M ·N ·O ·X · Y
=

1

X · Y
(7)

From the equations it follows that if FB is not possible,
blocked FB is still to be favored over PB since PFPB <
PFBL for all bm > X and bn > Y .

3.2 Pipelining
It was already mentioned above that for pipelined Execu-

tors, the actual block size m × n × O has to be wider to
be able to update border values correctly. For I iterations, a
block has to contain (m+I ·(X−1))×(n+I ·(Y −1))×O
values. For high I , it is feasible to use the template with
different parameters for every pipeline stage and omit the
outer border of the previous stage while streaming.

The amount of buffer entries of size D for a Executor
pipeline of depth I is then given by (8).

AI =

I−1∑
i=0

(
(m+ i(X − 1)) · (n+ i(Y − 1)) · i(Z − 1)

+(m+ i(X − 1)) · i(Y − 1) + i(X − 1) + 1
)
(8)

This shows why increasing the pipeline depth highly in-
creases the buffer space.

3.3 Synthesis
By now, only theoretical assumptions were made. To get

real numbers, the template was synthesized with Xilinx ISE
11.5 for a Xilinx Virtex-5 XC5VLX110T FPGA. The FPGA
contains 69120 Flip-Flops (FFs) and Lookup-Tables (LUTs)
respectively, and 148 BlockRAM cells with a capacity of
2KiB each.



Table 2
SYNTHESIS RESULTS

M ×N ×O · P · I FFs LUTs BlockRAM MHz

32 × 32 × 32 · 1 · 16 11328 2113 80 317
32 × 32 × 32 · 1 · 28 19824 3697 140 317
64 × 64 × 64 · 1 · 1 728 157 11 303
64 × 64 × 64 · 2 · 4 4816 496 80 308
64 × 64 × 64 · 4 · 4 7088 416 128 316

128 ×128 ×128 · 1 · 1 748 209 35 301
128 ×128 ×128 · 4 · 1 1782 1860 53 282
128 ×128 ×128 · 1 · 4 2992 833 140 301
256 ×256 ×256 · 1 · 1 770 239 131 298
256 ×256 ×256 · 2 · 1 1228 208 140 306
256 ×256 ×256 · 4 · 1 1814 168 152 257

These BlockRAMs are predestined to be used for buffer-
ing data on-chip, but they are less flexible than Lookup-
Tables. Large values for D and P could lead to a higher
demand on blocks needed due to the limited interface-width
of 36 bit of each port. If the target architecture is fixed,
technology-dependent optimization of allocated resources
may reduce the demand. For fixed parameters of the problem
space and the stencil, even further optimization is possible,
e.g. by implementing the shorter row-buffers as distributed
RAM.

Tab. 2 shows the results for different parameters with
D = 32. It can be seen that the main limitation for
the template is the available on-chip memory, as already
explained before. Even a small input space of 256×256×256
almost exhausts the capacity, leaving no room to increase
I but only P . Hence, for large input spaces, blocking is
inevitable to achieve a notable speedup.

3.4 Performance
Tab. 3 shows some performance estimations. The runtime

is based on a clock frequency of 400 MHz for a block size
of M = N = O = 128, and a stencil of X = Y = Z = 3.
Note that the actual frequency depends on the speed of the
FPGA and the complexity of the Kernel. To get a reasonable
runtime, 1000 iterations are assumed. The first column shows
the total amount of memory transfers for reading and writing,
followed by the on-chip space needed in multiples of D. The
runtime is estimated for a dual-channel 64bit wide memory
interface with D = 32.

It can be seen that an optimal buffering strategy like FB
can greatly reduce the runtime for 3D stencil code appli-
cations. Furthermore, the speedup can be highly increased
by spatial and temporal parallelization. Compared to regular
FB, the asymptotic speedup with optimization is P · I .

It is necessary to clarify that the accuracy of performance
estimations of hardware descriptions differ from theoretical
peak performance of CPUs and GPUs because it is totally
deterministic and thus predictable what happens during one
clock cycle. Therefore, the performance of the template can

Table 3
COMPARISON OF DIFFERENT CONFIGURATIONS

r|w ·109 Buffer Speedup Runtime [s]

No buffering 54.0| 2.0 27 1 140
PB 18.0| 2.0 27 2.8 50
FB 2.1| 2.0 33027 13.7 10
P = 2 1.1| 1.0 33028 26.7 5
P = 2, I = 2 0.6| 0.5 66056 50.9 3
P = 2, I = 4 0.3| 0.25 132112 180.0 1.4

be exactly given without benchmarking. Of course, for an
actual application, additional components are needed, but the
memory interface remains the bottleneck.

Taking power consumption into account, the FPGA-based
stencil solution shows its actual potential. The FPGA in our
design needs about 1.1 W, independent of the actual problem.

An optimized implementation of the Jacobi-iteration for
Laplace’s equation on recent Nvidia Fermi and Geforce GTX
GPGPUs delivers a performance of 10 GLUPS1 per 250 W
or 40 MLUPS/W [16] for double-precision floating point
operations.

Based on the maximum clock frequency of approximately
100 MHz, 2.8 GLUPS for double precision can be reached on
a small input space of size 32×32×32 (see Tab 2, leading to
an efficiency of 2.5 GLUPS/W, which is magnitudes higher
than the GPGPUs, under the assumption that for each clock
cycle, new data is available, which can easily be fulfilled
due to the low frequency.

For larger problems, the performance drops, but even
0.2 GLUPS/W for P = 2 on a grid of size 256× 256× 256
outperforms the GPUs by far. By using multiple FPGAs,
power consumption scales linear with performance, allowing
to build „green“ HPC-systems. A very interesting example
for the potential of FPGAs for high performance is [17],
where a similar approach is used, but totally optimized
for high-performance streaming applications and at a much
higher degree of abstraction.

Furthermore, the FPGA used here is of medium size
and two generations behind current versions. For greater
applications, a larger FPGA offers even higher performance
due to more on-chip memory, with only a limited increase
of power consumption.

This analysis illustrates that FPGAs are able to outperform
GPGPUs by factors with regards to power efficiency.

The comparison of the power consumption of the single
FPGA-chip and the whole GPGPU-board is seen to be
reasonable since all components used for computation are
taken into consideration, e.g. the on-board RAM of the
GPGPUs vs. the FPGA’s on-chip BlockRAM.

1Giga Lattice Updates Per Second, conforms to single stencil applications
per second



(a) i = 10 (b) i = 26

Fig. 4
3D JACOBI-ITERATION FOR CENTRAL HOT SPOT

4. Reference Design
We implemented a demonstration application based on the

Jacobi-iteration to show the applicability and flexibility of
our template-based approach.

FloPoCo [18], an open and free generator for arithmetic
cores, was used to create the Kernel. The resulting FPU has
a pipeline depth of 13 cycles, and allows a target clock rate
of 100 MHz on the FPGA mentioned previously. If the FPU
is split up into more stages, a higher frequency is possible.
With only about 5 % of available resources of the FPGA,
the Kernel allows a high degree of parallelism.

The results of the demonstrator can be seen in Fig. 4. With
no loss of generality, an input space of only 16 × 16 × 16
was used. Visit2 was used to visualize the 3D volume.

5. Conclusion and Outlook
We presented a generic VHDL template for 3D stencil-

based applications, exploiting Full Buffering to minimize
external memory accesses and increase performance of
memory bound applications.

To configure the template, several parameters can be set,
according to the problem and target architecture. Execution
can be accelerated by spatial and temporal parallelization,
depending on the memory bandwidth and the amount of on-
chip storage available.

The main advantage of the template is its flexibility. Due
to minimized demands to the environment, it is possible to
embed it in a large variety of settings. This may be, for
example, a low-power embedded streaming application, or
a PCIe-based multi-FPGA accelerator for high performance
computations.

Together with the mathematical model we are developing,
we will be able to find an optimal mapping of a given
stencil-based streaming application to the resources of a
system and to implement it without having to bother with
data access, while preserving the advantage of efficiency of
FPGA designs.

2https://wci.llnl.gov/codes/visit/

References
[1] M. Sadiku, Numerical techniques in electromagnetics. CRC Press,

2000.
[2] M. Schmidt, M. Reichenbach, A. Loos, and D. Fey, “A smart camera

processing pipeline for image applications utilizing marching pixels,”
Signal & Image Processing: An International Journal (SIPIJ), vol.
Vol. 2, no. No. 3, pp. 137–156, 9 2011.

[3] G. Hager and G. Wellein, Introduction to High Performance Comput-
ing for Scientists and Engineers, ser. Computational Science. Taylor
& Francis, 2010.

[4] D. Wolf-Gladrow, Lattice-gas cellular automata and lattice Boltzmann
models. Springer, 2000.

[5] M. Herbordt, T. VanCourt, Y. Gu, B. Sukhwani, A. Conti, J. Model,
and D. DiSabello, “Achieving high performance with FPGA-based
computing,” Computer, vol. 40, no. 3, pp. 50 –57, march 2007.

[6] X. Liang, J. Jean, and K. Tomko, “Data buffering and allocation in
mapping generalized template matching on reconfigurable systems,”
J. Supercomput., vol. 19, pp. 77–91, May 2001.

[7] E. Motuk, R. Woods, S. Bilbao, and J. McAllister, “Design method-
ology for real-time fpga-based sound synthesis,” vol. 55, no. 12, pp.
5833–5845, 2007.

[8] J. P. Durbano, F. E. Ortiz, J. R. Humphrey, M. S. Mirotznik, and
D. W. Prather, “Hardware implementation of a three-dimensional
finite-difference time-domain algorithm,” vol. 2, pp. 54–57, 2003.

[9] J. P. Durbano, F. E. Ortiz, J. R. Humphrey, P. F. Curt, and D. W.
Prather, “FPGA-based acceleration of the 3D finite-difference time-
domain method,” in Proceedings of the 12th Annual IEEE Symposium
on Field-Programmable Custom Computing Machines. Washington,
DC, USA: IEEE Computer Society, 2004, pp. 156–163.

[10] M. Shafiq, M. Pericas, R. de la Cruz, M. Araya-Polo, N. Navarro,
and E. Ayguade, “Exploiting memory customization in FPGA for 3D
stencil computations,” in Field-Programmable Technology, 2009. FPT
2009. International Conference on, dec. 2009, pp. 38 –45.

[11] H. Fu and R. G. Clapp, “Eliminating the memory bottleneck: an
FPGA-based solution for 3d reverse time migration,” in Proceedings
of the 19th ACM/SIGDA international symposium on Field pro-
grammable gate arrays, ser. FPGA ’11. New York, NY, USA: ACM,
2011, pp. 65–74.

[12] F. Richter, “A full buffering based template for 3d stencil code appli-
cations on FPGAs,” Diploma Thesis, Department of Computer Sci-
ence, Chair of Computer Architecture, Friedrich-Alexander-University
Erlangen-Nuremberg, 2011.

[13] W. F. Spotz, “High-order compact finite difference schemes for
computational mechanics,” Ph.D. dissertation, University of Texas
at Austin, dec, see http://www.cisl.ucar.edu/css/staff/spotz/papers/
Dissertation/Spotz_Dissn.pdf.gz, visited 2011-09-22.

[14] G. Sutmann and B. Steffen, “High-order compact solvers for the three-
dimensional poisson equation,” Journal of Computational and Applied
Mathematics, vol. 187, no. 2, pp. 142 – 170, 2006. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0377042705001500

[15] M. Reichenbach, M. Schmidt, and D. Fey, “Analytical model for the
optimization of self-organizing image processing systems utilizing
cellular automata,” in SORT 2011: 2nd IEEE Workshop on Self-
Organizing Real-Time Systems, Newport Beach, 2011, pp. 162–171.

[16] A. Schäfer and D. Fey, “High performance stencil code algorithms for
GPGPUs,” Procedia Computer Science, vol. 4, no. 0, pp. 2027 – 2036,
2011, proceedings of the International Conference on Computational
Science, ICCS 2011.

[17] O. Lindtjorn, R. Clapp, O. Pell, H. Fu, M. Flynn, and O. Mencer,
“Beyond traditional microprocessors for geoscience high-performance
computing applications,” IEEE Micro, vol. 31, pp. 41–49, March
2011. [Online]. Available: http://dx.doi.org/10.1109/MM.2011.17

[18] F. de Dinechin and B. Pasca, “Designing custom arithmetic data paths
with flopoco,” Design Test of Computers, IEEE, vol. 28, no. 4, pp. 18
–27, july-aug. 2011.


