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Abstract— System scenario-based design methodologies aiie switched to the most cost-optimal configuration for this
applied to reduce the costs of dynamic embedded systensystem scenario.
At design-time, the system is optimized for a set of system Note, that system scenarios are conceptually different
scenarios with different costs, e.g., alternative schiedul from the more common use-case scenarios. While both of
of tasks. At run-time, certain parameters are monitoredthem aim at reducing the total costs, use-case scenarios are
scenario changes are detected, and mapping and schedulirgxtracted from the obvious system parameters, modes or
are reconfigured accordingly. In this process, optimizedusage pattern which can be detected without detailed knowl-
identification of parameters and system scenarios is esdge of the algorithmic implementation. System scenarios
sential. Previously, the parameters have been limited tare identified from the observed costs and then charaaterize
control variables, or variables with a limited number of in terms of implementation parameters. System scenarios do
distinct values. This paper presents a scenario identificat not depend on obvious parameters, modes or usage patterns
approach based on polyhedral partitioning of the parameterand can hence be efficiently applied even if the application
space for systems where the parameters may have a wid® not contain any of them.
range of data-dependent values. We evaluate our approach This paper targets the scenario identification technique
on a biomedical application. The results indicate that within system scenario based design methodologies, in partic-
20 system scenarios the average execution time cost cafar for systems having parameters with widely varying
be reduced with a factor 3 and brought within 15% of thedata-dependent values. Existing techniques assume #at th
theoretically best solution for the workload-adaptiveides.  parameters are control variables and/or that they have a
limited number of possible parameter values. They make use
of enumeration and apply a bottom-up approach to cluster
Keywords: Application-specific embedded systems, run-time re-these values into system scenarios [6], [4].However when
configuration, system scenario-based design the parameters are data-dependent, they may have thousands
. or even millions of possible data values making bottom-up
1. Introduction clustering and enumeration-based prediction impracteesg
Increasingly, modern applications are becoming dynamiGection 3). Our method should then instead be used because
resulting in input data dependent variations in systemscostit performs a scalable top-down polyhedral partitioning of
e.g., execution time and energy consumption. An over dithe parameter space. This is our first main contribution.
mensioned solution based on a few extreme workloads can Secondly, we apply our scenario identification technique
be very costly, or even impossible to implement, and ao a real application and demonstrate the feasibility of our
workload-adaptive reconfigurable design will be necessargpproach for different number of system scenarios.

[14]. The paper is organized as follows. Section 2 gives a
System scenario based design methodologies [5] providerdotivating example for our work. In Section 3 the existing
systematic way of constructing workload-adaptive embéddetechniques for scenario identification are reviewed and the
systems and have been successfully applied to multiplgecessary terminology is introduced. Our proposed approac
designs in multimedia and wireless domains [3], [11], [12],for scenario identification is detailed in Section 4. Experi

[13], [15], [17], [18]. Through structural analysis and pro mental results are presented in Section 5, followed by our
filing of the application code at design-time, a set of systentonclusions and plans for future work.

scenarios with different costs is identified along with the

parameters that determine the cost variations. The systeg Motivational example

is then separately optimized for each system scenario and’

augmented with a scenario predictor and switching mecha- Recent biomedical applications for outpatient care have a
nism. At run-time, the active system scenario is predictedlynamic nature and are at the same time subject to strict cost
up front from the actual parameter values and the systemonstraints. They continuously monitor patient’s sigrfals



s s R a——— is followed [5].
13— Channel 19 1 The Lyapunov exponent calculator is a good example of
an applicatin were more traditional use-case scenarios can
il ‘ not be applied. It repeatedly performs the same calculation
0 W’ l m il ,ﬂ‘y\w““” i ‘“‘“““"p'\“ \mlﬂI“\fw‘lﬂ“\wW\ on equal-sized packages of input data. A system scenario
| \ | approach can, however, be used to exploit the potential
benefits of a reconfigurable platform.
The system scenario-based design methodology is a pow-
S 200 400 600 aggnnul%‘%%r 1200 1400 1600 1800 erful tool that can also be used for fine grain optimizatians a
the task abstraction level and for simultaneous optinvrati
Fig. 1: Energy consumption of Lyapunov exponent calculation inof multiple system costs. The ability of handling multiple
6 hours EEG recording. and nonlinear system costs differentiates system-based de
- o sign methodologies from the dynamic run-time managers
an anomaly and perform_specmc task§ when it is detecteqqiended for DVES type platforms [10]. DVFS method-
They may use complex signal processing on multiple chang|ogies concentrate on optimization of a single cost - the
nels and are required to be powered by a battery for months,ergy consumption of the system, that scales monotopicall
or even years. One such example is an epileptic seizugii, frequency and voltage. They perform direct selection
predictor, [7], [8], which tracks EEG signals from up 10 of the system reconfiguration from the current workload
32 channels and may warn patients of upcoming seizure§ation. This, however, cannot be generalized for costs t
hours in advance. A front-end part of this predictor perferm depend on the parameters in a nonuniform way. That makes
calculations of Lyapunov exponents for each channel oncg,e decision in one run-time step too complex. Scenario-
every 10 seconds. Figure 1 shows the variations in the energysqeq design methodologies solve this problem by a two-
consumption of different runs of the Lyapunov exponentgiage approach decided both at run-time: they first identify
calculation of two channels over a six hour period. Due tQynat scenario the working situation belongs to and then
different EEG input data, the energy consumption of ongpoose the best system reconfiguration for that scenario.
calculation can vary widely from 6 mJ to 13 mJ. The peakgjnce the relationship between the parameters and the costs
energy consumption for this application occurs only onc&yjji in practice be very complex, the scenario identificatio
in the 6 hours long EEG recording. A system designedg however performed at design-time.

based on this worst case energy consumption will consume This paper targets fine grain optimization of a single
829 J/channel while processing the recording. system cost.

An ideal workload-adaptive system is able to reconfigure
the system optimally in each run so that it consumes tha. Theory and related work

minimum amount of energy possible. A heavily optimized The term Run-Time Situation (RTS)s an important
thread-level workload-adaptive design for the Lyapunov eXconcept used in task level system scenario-based design
ponent calculation will require only 567 J/channel for themethodologies [5]. Each instance of running a task has
same recording. However it can never be built in practice ag corresponding cost (e.g., energy consumption). The run
the costs of reconfiguring such system, storing the differenpstance and its cost is treated as a unit denoted an RTS.
configurations and predicting them would be excessive. gpe complete run of the application on the target platform
A system scenario-based design methodology uses thepresents the sequence of RTSs.
same concept of adaptively reconfiguring the system, but A scenario identification technique lies at the heart of any
allows only a limited set of possible configurations. A givensystem scenario-based design methodology. It determines
system scenario has a fixed system cost corresponding to hew the different observed RTSs should be divided into
system configuration. It contains the group of runs for whichgroups with similar costs - the system scenarios, and how
this configuration is better than any of the other configurathe system scenarios should be represented to make their
tions in the limited number of scenarios. For most runs theuntime prediction as simple as possible.
system will then require a small energy overhead compared Two examples of techniques for task-level scenario iden-
with running on the optimal configuration. E.g., with 10 tification are presented in [6] and [4]. Both of them split
scenarios, the Lyapunov exponent calculator will consumscenario identification into two steps. In the first step,
594 J/channel processing the EEG recording above. Théte variables in the application code are analyzed, either
is, somewhat more than the ideal workload-adaptive systenstatically, [6], or through profiling of the application it
but far less than the system based on the worst case energyrepresentative data set, [4]. The variables having most
consumption. There will be an added energy consumptioimpact on the runtime cost of the system are determined.
related to the scenario detection and reconfiguration,Hisit t These variables are called RTS parameters, denoted by
can be kept low if the guidelines for scenario based desig§, &o, .. ., &, and are used to characterize system scenarios

Energy consumption [mJ]
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and design the scenario prediction mechanism. Typically a ~

Runtime prediction

small set of RTS parameters is selected to keep the runtime G
prediction overhead low. C:
The output of the first step is the set of the selected RTS i

parameters and, for each RTSits RTS signatureis given
by Equation 1 below:

i) = €00, (1), - €60); (), @ /i ?

containing parameter valu€s (i), (%), ..., & (i) and the _
corresponding task cosis(i). l.e., each run instance of A e o,
each task will have its own RTS signature. The number, RTS parameter space

N, of RTS signatures will hence be very large. Depending Fig. 2: System scenarios and runtime prediction.
on the number of RTS parameters and how many different
values each of them can take, there will be a small or larggPace will define all theoretically possible values for tH&R
number ofdifferent RTS signatures. This is important for Parameters in the application. We will call such spac&as
the complexity of step 2 of the scenario identification. ~ Parameter spaceWhen static max and min constraints on
In the second step, the RTS signatures are divided inte values are added, the space reduces to one or several
groups with similar costs - the system scenarios. In [6] and-dimensional domain(s).
[4] this is done by a bottom-up clustering of RTS signatures Assuming a(k + 1)-dimensional cost representation for
with a resulting multi-valued decision diagram (MDD) that €ach RTS, all signatures can then be plotted as points in a
is used as a predictor for the upcoming system scenaridk + 1)-dimensional space. In the profiling sequence, several
The limitation for this technique is that the size of an MDD identical signatures may exist, giving coinciding poimtstie
explodes for many-valued parameters making it infeasibléPace. The number of times a point repeats itself is useful
for the runtime prediction. information as it quantifies the probabilities of occurente
The two techniques differ in how they evaluate the impac€ach RTS.
of RTS parameters. The first one [6] is based on pure static With the representation above, the scenario identification
analysis of the code and do not take into consideration thisk can be viewed as a distribution of points into S differen
frequencies of occurrence of different RTS parameter galue 9roups, representing system scenarios, according to which
It may therefore produce system scenarios that almost nevéte overall configuration cost is minimized. An RTS point
occur. The second one [4] extends the first one [6] witlf IS assigned to scenarigp whenever its cost(i) falls
profiling information and forms a system scenario set thatto that scenario’s cost rangeC{;j)min, C(j)maz}- The
exploits runtime statistics. Our scenario identificatiesht- ~ Scenario cost ranges are determined by a balancing function
nique uses the same approach for the selection of RTS pglat ensures that all scenarios have a near-equal prdpabili
rameters as the second technique [4]. This approach tjpicalto occur at run-time. In this way, rare system scenarios are
leads to only a limited amount of parameters being labele@voided since their storage cost will exceed the gains of
as important enough to incorporate in the identificatiop.ste @dding them. We measure this probability by the number
That is crucial to limit the complexity. of points, including the repeating ones, that each scenario
Identification of thread-level system scenarios has beefontains and call iscenario sizeThe maximum scenario
studied in [16]. This is fully complementary to the focus of Size equals the number of all RTS signatur€s divided
our paper which considers intra-thread-level system seenaby the number of system scenariés Given a listr of
i0s. RTS signatures sorted by descending cost, the scenario cost
As we have seen the existing scenario identification apt@nges are given by the indices corresponding to the irltegra
proaches cannot be used in a system with many-valugaumber of the scenario size:
RTS paramete_rs, causmg an explosion pf states in the MDD C(j)maz =7 ((j —1) - N/S +1) 2
and the associated runtime/implemenation costs. In the nex CG)min =7 (() - N/S) 3)
section we will discuss a possible solution to this problem.
The cost of scenarioj is defined as the maximum cost of
4. Proposed method any of the RTS signatures that it includes; = C(j)max-
. The projection of scenarios onto the RTS parameter space
4.1 General overview (see Figure 2) will produc@/ > S regions that characterize
Figure 2 illustrates the theoretical concepts of our sdenar the system scenarios in terms of RTS parameter values.
identification technique. Givelt RTS parameters and/  Each region can be described as a polyhedron, and the run-
profiled RTS signatures from Equation 1. If we assign one ditime scenario prediction can be done by checking which
mension to each RTS parameter, the resulkirdimensional polyhedron contains the RTS parameter values of the next



RTS. Since we know which scenario the region belongs tosignatures in the overlap region to the higher cost system
we can foresee that the next running cost will be ho morecenario. GiverC; > Cs, these operation can be written as:
than the cost of that scenario. Checking if a point lies iasid scenario2.paramRegion- scenario2.paramRegion - overlap

a polyhedra is the classical point location problem fromscenariol.paramRegioa- scenariol.paramRegion overlap

the computational geometry domain, and the advantage of The complexity of this algorithm is calculated below:
using it for prediction instead of MDD is that it operates

on/stores only the vertices of polyhedral regions, not all OV S) = NO(ADDSIGNATURE) +(1/2)5(S —1)(O(OvERLAP)
possible parameter values. + O(ADJUSTBORDER)) + SO(NEWSCENARIO)  (4)

This top-down approach can handle arbitrary large doThys, it depends on the complexity of the underlying geo-
mains, provided that the number of regions stays reasonabfyetric algorithms in the labelled functions.
low. Otherwise prediction overhead will grow. The number Eor the fixed numbet of RTS parameters, the function
of regions depends on the number of system scenarios afgt\wscenario has a constant complexity O(1) as it only
the underlying structure of the system - the relationshi:opies the value of each parameter in a single RTS signature
between the cost locality of RTS points and the value logalit tg g scenario region.
of their RTS prameters. The function ADDSIGNATURE performs aCoNVEXHULL

The desired number of system scenarios is best definesheration on the existing border of the scenario and the
by the user according to the characteristics of the apicat projection point of the new RTS signature onto the RTS
domain. Typically this is limited to a few tens becauseparameter space. For a 2 or 3-dimensional RTS parameter
beyond that the potential gains in better following thespace an incremental convex hull algorithm has the complex-
system dynamics are counterbalanced with the additionqqu O(nlogn) [9], wheren is the final number of processed
cost complexity of detecting and exploiting the (too) largepgints, which here equals to the scenario six¢S. The
set of possible system scenarios. convex hull of a polygon has the expected numbew cf

For the biomedical application that we are investigatingo(logn) vertices and many of them may lie very close
a strong correlation is present in the locality of the RTSto each other. To limit the number of vertices in the hull
parameter values and the locality of the correspondingscostor faster run-time prediction, we modify the algorithm,
on the target DSP platform, resulting in a single regionsych that it calculates the distance between the points on
per scenario (see Figure 5). The locality of parameters anghe hull and removes those that are closer tha,,qz,
the corresponding costs is an important prerequisite fofyhere I, is the perimeter of the hull, and,,,. is a user
the efficiency of the current scenario identification tech-defined constraint of the maximum number of vertices in the
nique. Moreover, we assume that that there is a one-tqyediction polyhedra. For the application that we investtg
one correspondence between the cost of a scenario agdreasonable value of this parameter could be 10 (see
the system configuration. In other words, we target thesigure 5).
systems were scenarios are mostly defined by the application The functions OverLAP and ADpJusT BORDER apply
characteristics and not by the details of the platform. boolean set operations for intersection, difference aridrun
. . of two d-polytopes. For the casé = 2 andd = 3 these
4.2 Detailed algorithm operations can be done in @(,.. log v,.q.) time [2], giving

Our scenario identification algorithnGENERATESCENAR-  the total complexity of the algorithm:
I0SET, is presented in Figure 3. Line 2 is a preprocessin
step, where profiled RTS signatures are sorted by their cogt?% O( ) _ g?;](llzg\?)log N/S) + (3/2)5(5 = 1)O() + SO((;;
starting from the maximum cost. In line 4 the worst case
system scenario is created. In lines 6 to 8, the systerRecall that this scenario identification algorithm is rurlyon
scenario is filled in with signatures having the next costs irin the design phase of the embedded system. The run-time
the sorted sequence. When the size of the system scenaprediction of the next scenario is equivalent to a point{oca
exceeds the maximum allowable size, a new system scenatiion problem in the polyhedral partitioning of the paramete
is created (line 17). space. The time complexity of the point location problem is

Finally, in lines 10 to 15, each completed system scenari®(log vyo;), Wherewv,,; = S - vjnq, 1S the total number of
is checked for overlap with previously calculated highestco vertices in the partitioning. The required memory space is
system scenarios. An overlap means that the scenario B2gio® (v, log v:,:). TO compare, an MDD fod parameters with
in the RTS parameter space are not disjoint (see exampledistinct values ha$? states and a query time of @(1),
on Figure 6), and equals the intersection of the regionswherel > v.
overlap+ scenariol.paramRegion scenario2.paramRegiohhe For d > 3, i.e., for systems with more than 3 parameters,
intersections make prediction of scenarios ambiguous anithe complexity of convex hull, boolean set operations and
have to be eliminated. This is done by subtracting the operlathe point location algorithm, increases exponentiallydin
region from the lower cost system scenario and moving all2], similar to MDD. It remains an open research area to find



GENERATESCENARIOSET(SET rtsSignatures, INT S)
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SCENARIO solutions < ()
SORTBY COST(rtsSignatures)
weSignature < rtsSignature(1)
currentScenario « NEWSCENARIO(wcSignature)
MAX SCENARIOSIZE := N/S
for signature in rtsSignatures do
if (currentScenario.size < MAX SCENARIOSIZE) then
currentScenario.ADDSIGNATURE(signature)
else
for scenario in solutions do
overlap <— OVERLAP(scenario, currentScenario)
if (overlap # 0) then
ADJUSTBORDER(currentScenario, overlap)
end if
end for
solutions.INSERT(currentScenario)
currentScenario < NEWSCENARIO(signature)
end if
end for
return solutions

NEWSCENARIO(RTSSIGNATURE signature)
SCENARIO new
new.stze < 1
new.cost <— signature.cost
new.paramRegion < signature.paramV alues
return new

ADDSIGNATURE(RTSSIGNATURE signature)

thisScenario.size < thisScenario.size + 1
thisScenario.paramRegion <

CONVEXHULL (thisScenario.paramRegion,
signature.paramV alues)

return

an efficient representation of polytopes in higher dimemsio
that will decrease the complexity of the algorithms opexati

Fig. 3: Scenario identification algorithm

overhead may incur since algorithms processing concave
polyhedra are much more complex. A possible solution is to
split the concave projection into a set of convex polyhedra a
design-time and apply convex hull algorithms. The separate
polyhedra require still additional storage and processing

that should be kept low. To achieve that, a restriction must
be made on the number of reflex anglgsin the concave
projection, and also a careful consideration of the cosletra
offs is required. The refinement step is performed before
the OvErLAP and ApJusT BorDERfUNctions in Figure 3 and
currently includes only a geometric refinement of the border
by manual selection of additional vertices. The cost tréideo
considerations are the goals of our future work.

It should be noted that scenario overlaps may also be
produced by variables affecting the costs, but not selected
as RTS parameters, or by nondeterministic properties of
the underlying platform, resulting in different costs ftiet
same RTS parameters. Such overlaps indicate either a faulty
RTS parameter selection or the use of hardware components
unsutable for scenario-based design.

5. Experiments and Conclusions

We have evaluated our scenario identification algorithm on
two versions of the Lyapunov exponent calculator described
in Section 2. Energy numbers in Section 2 are obtained using
the CoolBio DSP platform, presented in [1], and have been
extracted through layout back-annotated power simulation
In our case we use the high performance mode, running the
DSP on 1.1V. For this voltage we reach 80MHz speed which
is required for this application in the worst-case conditio

In this section we present results for execution time
optimization using system scenarios. The improved execu-

on them. The complexity does not increase exponentialljion time can be exploited for reconfiguration in several
when the number of possible parameter values increasways. DVFS can be applied, possibly in combination with
however, the way it does for MDD. Thus, our algorithm rescheduling to allow other tasks to run in the idle time. On
is efficient for the systems with upto three important datafun-time reconfigurable multi-processor platforms, remap
variables that determine the data-dependent behaviotieof t Ping of tasks is possible to achieve an overall optimized

system and have a significant number possible values.

4.3 Refining system scenarios

The functionAppSIGNATURE in Figure 3 produces convex of the application, i.e. different settings for the Lyapuno
scenario projections in the RTS parameter space. An exanexponent calculation, b) the platform, on which the exeguti
ple of convex scenarios is shown on Figure 5. However, inime was measured, and c) the input database for application
some situations concave scenario projections, repregentiprofiling. This results in different characteristics whieipre-

a geometrically tighter envelop of a set of points, aresent distinct benchmarks to test our algorithm performance
preferrable. This is the case when: a) the inherent coiwelat Figures 5 and 6 show the results of the experiments. Prior
between the RTS parameter values and the corresponding scenario identification, an RTS parameter selection, step
costs has a concave shape, b) the system scenarios overtamilar to [4], was performed, and two internal application
in the RTS parameter space and complete migration ofariables with the greatest impact on the execution timeswer
the signatures to the higher cost system scenarios resultdentified - Falsecountand Seglength The same variables

in considerable reduction of run-time gain. An example ofwere identified in both application versions and they have
concave scenarios is presented in Figure 6.

A concave scenario projection reduces the overlap ands RTS parameters, giving a two-dimensional RTS parameter
can potentially improve the run-time gain. However, largespace for our scenario identification algorithm.

execution.
We have run tests on three different setups, displayed in
Table 1. Throughout the tests we have varied: a) the version

upto a few thousands of distinct values. They were selected



Table 1: Experimental setup.

No  Application version Platform Database
I, settings: CoolBio 6 hrs continuous
1 nsize=2048, dimm=7, DSP EEG wi/seizures
evolv=12, idist=20, tau=4
11, settings: CoolBio 6 hrs continuous
2 nsize=1000, dimm=4, DSP EEG wi/seizures
evolv=6, idist=12, tau=4
I, settings: General 200 EEG samples
3 nsize=2048, dimm=7, purpose from epileptogenic

evolv=12, idist=20, tau=4 zone, no seizures

The results of the first two experiments are presented o
Figure 5. Here both application versions are investigated o
the potential target embedded platform, CoolBio DS
profiling of the application with a 6 hrs continuous EEG
recording shows that there is a clear correlation betwee
the RTS parameters and the execution workload (in cloc
cycles), and our scenario identification algorithm produae
set of non-overlapping system scenarios. The two appicati
versions have different size of the RTS parameter domai
but the identified system scenarios appear to be very simil
approximately a scaled version of each other. A relativel

P. A

a
Jealizable in practice. The results are presented for both

applied. Although a much smaller database is used for
this experiment, the real scenario borders from Figure 5
can be discerned in the point distributions of Figure 6.
The distortion in the scenario borders is caused by the
noise from the nondeterministic platform. The dashed line
indicates the convex hull of each scenario. It is determined
by the extreme points in the distribution and causes strong
overlap between the scenarios. In fact, the overlap is so
big, that after application obverLAP and ADJUSTBORDER
functions some of the scenarios would disappear totallg. Th
solid line is the concave hull of the scenarios and comes
ﬁignificantly closer to the real scenario borders, reducing
the overlap between them. If the point distributions here
were the inherent point distributions for this applicat{oe.
not caused by the platform noise), the identified concave
scenarios would improve the execution time of this system
gcenario-based design.

Figure 4 compares execution workload for running the
system with and without system scenarios for the first two

(£xperiments. It also shows the execution workload of the

ﬂweoretically optimal workload-adaptive design which @& n

small number of 5 to 20 system scenarios is generated &PPlication versions. Between 61% and 72% gain can be

preferred by users in scenario-based systems.

—A— Scenario-based design 1
—a=— Scenario-based design 2

A

Number of clock cycles

Ideal workload adaptive designs
0 , ,
15

20
Number of scenarios

Fig. 4: Total execution time of the largest Lyapunov expdnen
calculation (versions | and II) with different number of

achieved with 5 to 20 system scenarios. With 5 system
scenarios the total execution workload of the systemslis sti
situated well above the theoretically best solution - 58%
for system 1 and 67% for system 2. When the number
of scenarios is increased, however, the total executior tim
of both systems reduces towards the theoretical limit and
becomes at 20 scenarios less than 13% and 15% above
the theoretically best solution for system 1 and system 2
respectively.

The results presented here demonstrate the feasibility of
the proposed technique and show that it is possible to
reach near optimal execution time with a limited number
of scenarios. Future work includes optimization of scemari
borders to realize a trade-off between overestimation and
run-time prediction / switching complexity.
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