
Identifying Data-Dependent System Scenarios in a Dynamic
Embedded System

E. Hammari1, F. Catthoor2, P. G. Kjeldsberg1, J. Huisken3, K. Tsakalis4 and L. Iasemidis4
1Dept. of Electronics and Telecom., Norwegian Univ. of Scienceand Technology, Trondheim, Norway

2imec and Katholieke Univ. Leuven, Leuven, Belgium;3imec/Holst Centre, Eindhoven, The Netherlands
4Dept. of Electrical Engineering, Arizona State Univ., Tempe, AZ, USA

Abstract— System scenario-based design methodologies are
applied to reduce the costs of dynamic embedded systems.
At design-time, the system is optimized for a set of system
scenarios with different costs, e.g., alternative scheduling
of tasks. At run-time, certain parameters are monitored,
scenario changes are detected, and mapping and scheduling
are reconfigured accordingly. In this process, optimized
identification of parameters and system scenarios is es-
sential. Previously, the parameters have been limited to
control variables, or variables with a limited number of
distinct values. This paper presents a scenario identification
approach based on polyhedral partitioning of the parameter
space for systems where the parameters may have a wide
range of data-dependent values. We evaluate our approach
on a biomedical application. The results indicate that with
20 system scenarios the average execution time cost can
be reduced with a factor 3 and brought within 15% of the
theoretically best solution for the workload-adaptive designs.

Keywords: Application-specific embedded systems, run-time re-
configuration, system scenario-based design

1. Introduction
Increasingly, modern applications are becoming dynamic

resulting in input data dependent variations in system costs,
e.g., execution time and energy consumption. An over di-
mensioned solution based on a few extreme workloads can
be very costly, or even impossible to implement, and a
workload-adaptive reconfigurable design will be necessary
[14].

System scenario based design methodologies [5] provide a
systematic way of constructing workload-adaptive embedded
systems and have been successfully applied to multiple
designs in multimedia and wireless domains [3], [11], [12],
[13], [15], [17], [18]. Through structural analysis and pro-
filing of the application code at design-time, a set of system
scenarios with different costs is identified along with the
parameters that determine the cost variations. The system
is then separately optimized for each system scenario and
augmented with a scenario predictor and switching mecha-
nism. At run-time, the active system scenario is predicted
up front from the actual parameter values and the system

is switched to the most cost-optimal configuration for this
system scenario.

Note, that system scenarios are conceptually different
from the more common use-case scenarios. While both of
them aim at reducing the total costs, use-case scenarios are
extracted from the obvious system parameters, modes or
usage pattern which can be detected without detailed knowl-
edge of the algorithmic implementation. System scenarios
are identified from the observed costs and then characterized
in terms of implementation parameters. System scenarios do
not depend on obvious parameters, modes or usage patterns
and can hence be efficiently applied even if the application
do not contain any of them.

This paper targets the scenario identification technique
in system scenario based design methodologies, in partic-
ular for systems having parameters with widely varying
data-dependent values. Existing techniques assume that the
parameters are control variables and/or that they have a
limited number of possible parameter values. They make use
of enumeration and apply a bottom-up approach to cluster
these values into system scenarios [6], [4].However when
the parameters are data-dependent, they may have thousands
or even millions of possible data values making bottom-up
clustering and enumeration-based prediction impractical(see
Section 3). Our method should then instead be used because
it performs a scalable top-down polyhedral partitioning of
the parameter space. This is our first main contribution.

Secondly, we apply our scenario identification technique
to a real application and demonstrate the feasibility of our
approach for different number of system scenarios.

The paper is organized as follows. Section 2 gives a
motivating example for our work. In Section 3 the existing
techniques for scenario identification are reviewed and the
necessary terminology is introduced. Our proposed approach
for scenario identification is detailed in Section 4. Experi-
mental results are presented in Section 5, followed by our
conclusions and plans for future work.

2. Motivational example
Recent biomedical applications for outpatient care have a

dynamic nature and are at the same time subject to strict cost
constraints. They continuously monitor patient’s signalsfor

0 200 400 600 800 1000 1200 1400 1600 1800
5

7

9

10

13

14

Run number

E
ne

rg
y

co
ns

um
pt

io
n

[m
J]

Channel 5
Channel 19

Fig. 1: Energy consumption of Lyapunov exponent calculation in
6 hours EEG recording.

an anomaly and perform specific tasks when it is detected.
They may use complex signal processing on multiple chan-
nels and are required to be powered by a battery for months
or even years. One such example is an epileptic seizure
predictor, [7], [8], which tracks EEG signals from up to
32 channels and may warn patients of upcoming seizures
hours in advance. A front-end part of this predictor performs
calculations of Lyapunov exponents for each channel once
every 10 seconds. Figure 1 shows the variations in the energy
consumption of different runs of the Lyapunov exponent
calculation of two channels over a six hour period. Due to
different EEG input data, the energy consumption of one
calculation can vary widely from 6 mJ to 13 mJ. The peak
energy consumption for this application occurs only once
in the 6 hours long EEG recording. A system designed
based on this worst case energy consumption will consume
829 J/channel while processing the recording.

An ideal workload-adaptive system is able to reconfigure
the system optimally in each run so that it consumes the
minimum amount of energy possible. A heavily optimized
thread-level workload-adaptive design for the Lyapunov ex-
ponent calculation will require only 567 J/channel for the
same recording. However it can never be built in practice as
the costs of reconfiguring such system, storing the different
configurations and predicting them would be excessive.

A system scenario-based design methodology uses the
same concept of adaptively reconfiguring the system, but
allows only a limited set of possible configurations. A given
system scenario has a fixed system cost corresponding to its
system configuration. It contains the group of runs for which
this configuration is better than any of the other configura-
tions in the limited number of scenarios. For most runs the
system will then require a small energy overhead compared
with running on the optimal configuration. E.g., with 10
scenarios, the Lyapunov exponent calculator will consume
594 J/channel processing the EEG recording above. That
is, somewhat more than the ideal workload-adaptive system,
but far less than the system based on the worst case energy
consumption. There will be an added energy consumption
related to the scenario detection and reconfiguration, but this
can be kept low if the guidelines for scenario based design

is followed [5].
The Lyapunov exponent calculator is a good example of

an applicatin were more traditional use-case scenarios can
not be applied. It repeatedly performs the same calculation
on equal-sized packages of input data. A system scenario
approach can, however, be used to exploit the potential
benefits of a reconfigurable platform.

The system scenario-based design methodology is a pow-
erful tool that can also be used for fine grain optimizations at
the task abstraction level and for simultaneous optimization
of multiple system costs. The ability of handling multiple
and nonlinear system costs differentiates system-based de-
sign methodologies from the dynamic run-time managers
intended for DVFS type platforms [10]. DVFS method-
ologies concentrate on optimization of a single cost - the
energy consumption of the system, that scales monotonically
with frequency and voltage. They perform direct selection
of the system reconfiguration from the current workload
situation. This, however, cannot be generalized for costs that
depend on the parameters in a nonuniform way. That makes
the decision in one run-time step too complex. Scenario-
based design methodologies solve this problem by a two-
stage approach decided both at run-time: they first identify
what scenario the working situation belongs to and then
choose the best system reconfiguration for that scenario.
Since the relationship between the parameters and the costs
will in practice be very complex, the scenario identification
is however performed at design-time.

This paper targets fine grain optimization of a single
system cost.

3. Theory and related work
The term Run-Time Situation (RTS)is an important

concept used in task level system scenario-based design
methodologies [5]. Each instance of running a task has
a corresponding cost (e.g., energy consumption). The run
instance and its cost is treated as a unit denoted an RTS.
One complete run of the application on the target platform
represents the sequence of RTSs.

A scenario identification technique lies at the heart of any
system scenario-based design methodology. It determines
how the different observed RTSs should be divided into
groups with similar costs - the system scenarios, and how
the system scenarios should be represented to make their
runtime prediction as simple as possible.

Two examples of techniques for task-level scenario iden-
tification are presented in [6] and [4]. Both of them split
scenario identification into two steps. In the first step,
the variables in the application code are analyzed, either
statically, [6], or through profiling of the application with
a representative data set, [4]. The variables having most
impact on the runtime cost of the system are determined.
These variables are called RTS parameters, denoted by
ξ1, ξ2, . . . , ξk, and are used to characterize system scenarios

and design the scenario prediction mechanism. Typically a
small set of RTS parameters is selected to keep the runtime
prediction overhead low.

The output of the first step is the set of the selected RTS
parameters and, for each RTSi, its RTSsignatureis given
by Equation 1 below:

r(i) = ξ1(i), ξ2(i), . . . , ξk(i); c(i), (1)

containing parameter valuesξ1(i), ξ2(i), . . ., ξk(i) and the
corresponding task costsc(i). I.e., each run instance of
each task will have its own RTS signature. The number,
N, of RTS signatures will hence be very large. Depending
on the number of RTS parameters and how many different
values each of them can take, there will be a small or large
number ofdifferent RTS signatures. This is important for
the complexity of step 2 of the scenario identification.

In the second step, the RTS signatures are divided into
groups with similar costs - the system scenarios. In [6] and
[4] this is done by a bottom-up clustering of RTS signatures
with a resulting multi-valued decision diagram (MDD) that
is used as a predictor for the upcoming system scenario.
The limitation for this technique is that the size of an MDD
explodes for many-valued parameters making it infeasible
for the runtime prediction.

The two techniques differ in how they evaluate the impact
of RTS parameters. The first one [6] is based on pure static
analysis of the code and do not take into consideration the
frequencies of occurrence of different RTS parameter values.
It may therefore produce system scenarios that almost never
occur. The second one [4] extends the first one [6] with
profiling information and forms a system scenario set that
exploits runtime statistics. Our scenario identification tech-
nique uses the same approach for the selection of RTS pa-
rameters as the second technique [4]. This approach typically
leads to only a limited amount of parameters being labeled
as important enough to incorporate in the identification step.
That is crucial to limit the complexity.

Identification of thread-level system scenarios has been
studied in [16]. This is fully complementary to the focus of
our paper which considers intra-thread-level system scenar-
ios.

As we have seen the existing scenario identification ap-
proaches cannot be used in a system with many-valued
RTS parameters, causing an explosion of states in the MDD
and the associated runtime/implemenation costs. In the next
section we will discuss a possible solution to this problem.

4. Proposed method
4.1 General overview

Figure 2 illustrates the theoretical concepts of our scenario
identification technique. Givenk RTS parameters andN
profiled RTS signatures from Equation 1. If we assign one di-
mension to each RTS parameter, the resultingk-dimensional

Fig. 2: System scenarios and runtime prediction.

space will define all theoretically possible values for the RTS
parameters in the application. We will call such space anRTS
parameter space. When static max and min constraints on
the values are added, the space reduces to one or several
k-dimensional domain(s).

Assuming a(k + 1)-dimensional cost representation for
each RTS, all signatures can then be plotted as points in a
(k+1)-dimensional space. In the profiling sequence, several
identical signatures may exist, giving coinciding points in the
space. The number of times a point repeats itself is useful
information as it quantifies the probabilities of occurenceof
each RTS.

With the representation above, the scenario identification
task can be viewed as a distribution of points into S different
groups, representing system scenarios, according to which
the overall configuration cost is minimized. An RTS point
i is assigned to scenarioj whenever its costc(i) falls
into that scenario’s cost range {C(j)min, C(j)max}. The
scenario cost ranges are determined by a balancing function
that ensures that all scenarios have a near-equal probability
to occur at run-time. In this way, rare system scenarios are
avoided since their storage cost will exceed the gains of
adding them. We measure this probability by the number
of points, including the repeating ones, that each scenario
contains and call itscenario size. The maximum scenario
size equals the number of all RTS signaturesN , divided
by the number of system scenariosS. Given a list r of
RTS signatures sorted by descending cost, the scenario cost
ranges are given by the indices corresponding to the integral
number of the scenario size:

C(j)max = r ((j − 1) ·N/S + 1) (2)

C(j)min = r ((j) ·N/S) (3)

The cost of scenarioj is defined as the maximum cost of
any of the RTS signatures that it includes:Cj = C(j)max.

The projection of scenarios onto the RTS parameter space
(see Figure 2) will produceM ≥ S regions that characterize
the system scenarios in terms of RTS parameter values.
Each region can be described as a polyhedron, and the run-
time scenario prediction can be done by checking which
polyhedron contains the RTS parameter values of the next

RTS. Since we know which scenario the region belongs to,
we can foresee that the next running cost will be no more
than the cost of that scenario. Checking if a point lies inside
a polyhedra is the classical point location problem from
the computational geometry domain, and the advantage of
using it for prediction instead of MDD is that it operates
on/stores only the vertices of polyhedral regions, not all
possible parameter values.

This top-down approach can handle arbitrary large do-
mains, provided that the number of regions stays reasonably
low. Otherwise prediction overhead will grow. The number
of regions depends on the number of system scenarios and
the underlying structure of the system - the relationship
between the cost locality of RTS points and the value locality
of their RTS prameters.

The desired number of system scenarios is best defined
by the user according to the characteristics of the application
domain. Typically this is limited to a few tens because
beyond that the potential gains in better following the
system dynamics are counterbalanced with the additional
cost complexity of detecting and exploiting the (too) large
set of possible system scenarios.

For the biomedical application that we are investigating,
a strong correlation is present in the locality of the RTS
parameter values and the locality of the corresponding costs
on the target DSP platform, resulting in a single region
per scenario (see Figure 5). The locality of parameters and
the corresponding costs is an important prerequisite for
the efficiency of the current scenario identification tech-
nique. Moreover, we assume that that there is a one-to-
one correspondence between the cost of a scenario and
the system configuration. In other words, we target the
systems were scenarios are mostly defined by the application
characteristics and not by the details of the platform.

4.2 Detailed algorithm
Our scenario identification algorithm,GENERATESCENAR-

IOSET, is presented in Figure 3. Line 2 is a preprocessing
step, where profiled RTS signatures are sorted by their costs
starting from the maximum cost. In line 4 the worst case
system scenario is created. In lines 6 to 8, the system
scenario is filled in with signatures having the next costs in
the sorted sequence. When the size of the system scenario
exceeds the maximum allowable size, a new system scenario
is created (line 17).

Finally, in lines 10 to 15, each completed system scenario
is checked for overlap with previously calculated higher cost
system scenarios. An overlap means that the scenario regions
in the RTS parameter space are not disjoint (see example
on Figure 6), and equals the intersection of the regions:
overlap← scenario1.paramRegion∩ scenario2.paramRegion.The
intersections make prediction of scenarios ambiguous and
have to be eliminated. This is done by subtracting the overlap
region from the lower cost system scenario and moving all

signatures in the overlap region to the higher cost system
scenario. GivenC1 > C2, these operation can be written as:
scenario2.paramRegion← scenario2.paramRegion - overlap
scenario1.paramRegion← scenario1.paramRegion∪ overlap

The complexity of this algorithm is calculated below:

O(N,S) = NO(ADDSIGNATURE)+(1/2)S(S−1)(O(OVERLAP)

+ O(ADJUSTBORDER)) + SO(NEWSCENARIO) (4)

Thus, it depends on the complexity of the underlying geo-
metric algorithms in the labelled functions.

For the fixed numberd of RTS parameters, the function
NEWSCENARIO has a constant complexity O(1) as it only
copies the value of each parameter in a single RTS signature
to a scenario region.

The function ADDSIGNATURE performs aCONVEXHULL

operation on the existing border of the scenario and the
projection point of the new RTS signature onto the RTS
parameter space. For a 2 or 3-dimensional RTS parameter
space an incremental convex hull algorithm has the complex-
ity O(n log n) [9], wheren is the final number of processed
points, which here equals to the scenario size,N/S. The
convex hull of a polygon has the expected number ofv =
O(log n) vertices and many of them may lie very close
to each other. To limit the number of vertices in the hull
for faster run-time prediction, we modify the algorithm,
such that it calculates the distance between the points on
the hull and removes those that are closer thanL/vmax,
whereL is the perimeter of the hull, andvmax is a user
defined constraint of the maximum number of vertices in the
prediction polyhedra. For the application that we investigate
a reasonable value of this parameter could be 10 (see
Figure 5).

The functions OVERLAP and ADJUST BORDER apply
boolean set operations for intersection, difference and union
of two d-polytopes. For the cased = 2 and d = 3 these
operations can be done in O(vmax log vmax) time [2], giving
the total complexity of the algorithm:

O(N,S) = SO((N/S) logN/S) + (3/2)S(S − 1)O(1) + SO(1)

O(N) = O(N logN) (5)

Recall that this scenario identification algorithm is run only
in the design phase of the embedded system. The run-time
prediction of the next scenario is equivalent to a point loca-
tion problem in the polyhedral partitioning of the parameter
space. The time complexity of the point location problem is
O(log vtot), wherevtot = S · vmax is the total number of
vertices in the partitioning. The required memory space is
O(vtot log vtot). To compare, an MDD ford parameters with
l distinct values hasld states and a query time of O(d · l),
wherel ≫ v.

For d > 3, i.e., for systems with more than 3 parameters,
the complexity of convex hull, boolean set operations and
the point location algorithm, increases exponentially ind
[2], similar to MDD. It remains an open research area to find

GENERATESCENARIOSET(SET rtsSignatures, INT S)
1 SCENARIO solutions← ∅
2 SORTBYCOST(rtsSignatures)
3 wcSignature← rtsSignature(1)
4 currentScenario← NEWSCENARIO(wcSignature)
5 MAX SCENARIOSIZE := N/S
6 for signature in rtsSignatures do
7 if (currentScenario.size < MAX SCENARIOSIZE) then
8 currentScenario.ADDSIGNATURE(signature)
9 else

10 for scenario in solutions do
11 overlap← OVERLAP(scenario, currentScenario)
12 if (overlap 6= ∅) then
13 ADJUSTBORDER(currentScenario, overlap)
14 end if
15 end for
16 solutions.INSERT(currentScenario)
17 currentScenario← NEWSCENARIO(signature)
18 end if
19 end for
20 return solutions

NEWSCENARIO(RTSSIGNATURE signature)
SCENARIO new
new.size← 1
new.cost← signature.cost
new.paramRegion← signature.paramV alues
return new

ADDSIGNATURE(RTSSIGNATURE signature)
thisScenario.size← thisScenario.size+ 1
thisScenario.paramRegion←

CONVEXHULL(thisScenario.paramRegion,
signature.paramV alues)

return
Fig. 3: Scenario identification algorithm

an efficient representation of polytopes in higher dimensions
that will decrease the complexity of the algorithms operating
on them. The complexity does not increase exponentially
when the number of possible parameter values increase,
however, the way it does for MDD. Thus, our algorithm
is efficient for the systems with upto three important data-
variables that determine the data-dependent behaviour of the
system and have a significant number possible values.

4.3 Refining system scenarios
The functionADDSIGNATURE in Figure 3 produces convex

scenario projections in the RTS parameter space. An exam-
ple of convex scenarios is shown on Figure 5. However, in
some situations concave scenario projections, representing
a geometrically tighter envelop of a set of points, are
preferrable. This is the case when: a) the inherent correlation
between the RTS parameter values and the corresponding
costs has a concave shape, b) the system scenarios overlap
in the RTS parameter space and complete migration of
the signatures to the higher cost system scenarios results
in considerable reduction of run-time gain. An example of
concave scenarios is presented in Figure 6.

A concave scenario projection reduces the overlap and
can potentially improve the run-time gain. However, large

overhead may incur since algorithms processing concave
polyhedra are much more complex. A possible solution is to
split the concave projection into a set of convex polyhedra at
design-time and apply convex hull algorithms. The separate
polyhedra require still additional storage and processingtime
that should be kept low. To achieve that, a restriction must
be made on the number of reflex anglesvr in the concave
projection, and also a careful consideration of the cost trade-
offs is required. The refinement step is performed before
the OVERLAP andADJUST BORDERfunctions in Figure 3 and
currently includes only a geometric refinement of the border
by manual selection of additional vertices. The cost tradeoff
considerations are the goals of our future work.

It should be noted that scenario overlaps may also be
produced by variables affecting the costs, but not selected
as RTS parameters, or by nondeterministic properties of
the underlying platform, resulting in different costs for the
same RTS parameters. Such overlaps indicate either a faulty
RTS parameter selection or the use of hardware components
unsutable for scenario-based design.

5. Experiments and Conclusions
We have evaluated our scenario identification algorithm on

two versions of the Lyapunov exponent calculator described
in Section 2. Energy numbers in Section 2 are obtained using
the CoolBio DSP platform, presented in [1], and have been
extracted through layout back-annotated power simulations.
In our case we use the high performance mode, running the
DSP on 1.1V. For this voltage we reach 80MHz speed which
is required for this application in the worst-case condition.

In this section we present results for execution time
optimization using system scenarios. The improved execu-
tion time can be exploited for reconfiguration in several
ways. DVFS can be applied, possibly in combination with
rescheduling to allow other tasks to run in the idle time. On
run-time reconfigurable multi-processor platforms, remap-
ping of tasks is possible to achieve an overall optimized
execution.

We have run tests on three different setups, displayed in
Table 1. Throughout the tests we have varied: a) the version
of the application, i.e. different settings for the Lyapunov
exponent calculation, b) the platform, on which the execution
time was measured, and c) the input database for application
profiling. This results in different characteristics whichrepre-
sent distinct benchmarks to test our algorithm performance.
Figures 5 and 6 show the results of the experiments. Prior
to scenario identification, an RTS parameter selection step,
similar to [4], was performed, and two internal application
variables with the greatest impact on the execution time were
identified - Falsecountand Seqlength. The same variables
were identified in both application versions and they have
upto a few thousands of distinct values. They were selected
as RTS parameters, giving a two-dimensional RTS parameter
space for our scenario identification algorithm.

Table 1: Experimental setup.
No Application version Platform Database

I, settings: CoolBio 6 hrs continuous
1 nsize=2048, dimm=7, DSP EEG w/seizures

evolv=12, idist=20, tau=4

II, settings: CoolBio 6 hrs continuous
2 nsize=1000, dimm=4, DSP EEG w/seizures

evolv=6, idist=12, tau=4

I, settings: General 200 EEG samples
3 nsize=2048, dimm=7, purpose from epileptogenic

evolv=12, idist=20, tau=4 zone, no seizures

The results of the first two experiments are presented on
Figure 5. Here both application versions are investigated on
the potential target embedded platform, CoolBio DSP. A
profiling of the application with a 6 hrs continuous EEG
recording shows that there is a clear correlation between
the RTS parameters and the execution workload (in clock
cycles), and our scenario identification algorithm produces a
set of non-overlapping system scenarios. The two application
versions have different size of the RTS parameter domain,
but the identified system scenarios appear to be very similar,
approximately a scaled version of each other. A relatively
small number of 5 to 20 system scenarios is generated as
preferred by users in scenario-based systems.

5 10 15 20
0

1

2

x 10
13

Number of scenarios

N
u

m
b

e
r

o
f
c
lo

c
k
 c

y
c
le

s

Scenario−based design 1
Scenario−based design 2

GAIN

Ideal workload adaptive designs

Worst−case−based designs

1

2

2

1

Fig. 4: Total execution time of the largest Lyapunov exponent
calculation (versions I and II) with different number of
system scenarios in the 6 hours continuous EEG recording.

The last experiment is run on a nondeterministic general-
purpose desktop PC to demonstrate the scenario refinement
step. Figure 6 presents the results. The top left subfigure
shows the overlapping convex scenario projections produced
by function ADDSIGNATURE on this nondeterministic plat-
form. The remaining subfigures show the projection of each
scenario separately along with its respective RTS point
distribution. Concave refinement is performed on scenarios
2-5 in order to reduce the overlaps between the scenar-
ios before the functionsOVERLAP and ADJUSTBORDER are

applied. Although a much smaller database is used for
this experiment, the real scenario borders from Figure 5
can be discerned in the point distributions of Figure 6.
The distortion in the scenario borders is caused by the
noise from the nondeterministic platform. The dashed line
indicates the convex hull of each scenario. It is determined
by the extreme points in the distribution and causes strong
overlap between the scenarios. In fact, the overlap is so
big, that after application ofOVERLAP and ADJUSTBORDER

functions some of the scenarios would disappear totally. The
solid line is the concave hull of the scenarios and comes
significantly closer to the real scenario borders, reducing
the overlap between them. If the point distributions here
were the inherent point distributions for this application(i.e.
not caused by the platform noise), the identified concave
scenarios would improve the execution time of this system
scenario-based design.

Figure 4 compares execution workload for running the
system with and without system scenarios for the first two
experiments. It also shows the execution workload of the
theoretically optimal workload-adaptive design which is not
realizable in practice. The results are presented for both
application versions. Between 61% and 72% gain can be
achieved with 5 to 20 system scenarios. With 5 system
scenarios the total execution workload of the systems is still
situated well above the theoretically best solution - 58%
for system 1 and 67% for system 2. When the number
of scenarios is increased, however, the total execution time
of both systems reduces towards the theoretical limit and
becomes at 20 scenarios less than 13% and 15% above
the theoretically best solution for system 1 and system 2
respectively.

The results presented here demonstrate the feasibility of
the proposed technique and show that it is possible to
reach near optimal execution time with a limited number
of scenarios. Future work includes optimization of scenario
borders to realize a trade-off between overestimation and
run-time prediction / switching complexity.

References
[1] M. Ashouei et al., “A voltage-scalable biomedical signalprocessor

running ecg using 13pj/cycle at 1mhz and 0.4v,” inProc. ISSCC’11,
2011, pp. 332–334.

[2] M. J. Atallah and M. Blanton, Eds.,Algorithms and theory of com-
putation handbook: special topics and techniques, 2nd ed., NY, USA:
Chapman & Hall/CRC, 2010.

[3] B. Geelen., “Low-power, Wavelet-based Applications inDynamic
Environments”, PhD thesis, Katholieke Universiteit Leuven, Leuven,
Belgium, Dec. 2008.

[4] S. V. Gheorghita, T. Basten, and H. Corporaal., “Scenario selection
and prediction for dvs-aware scheduling of multimedia applications”,
J. Signal Process. Syst., vol. 50, pp. 137–161, Feb. 2008.

[5] S. V. Gheorghita et al., “System-scenario-based design of dynamic
embedded systems”,ACM Trans. Des. Autom. Electron. Syst., vol.14,
paper 3, pp. 1–45, Jan. 2009.

[6] S. V. Gheorghita, S. Stuijk, T. Basten, and H. Corporaal,“Automatic
scenario detection for improved wcet estimation”, inProc. DAC’05,
2005, pp. 101–104.

0 500 1000 1500 2048
0

500

1000

1500

2048

1
2

3
4

5

Seqlength

F
al

se
co

un
t

5 scenarios

S1: 29540
S2: 58757
S3: 87995
S4: 117132
S5: 304242

0 500 1000 1500 2048
0

500

1000

1500

2048

1 2 3 4 5 6 7 8 9

10

Seqlength

F
al

se
co

un
t

10 scenarios

S1: 14935
S2: 29540
S3: 44142
S4: 58757
S5: 73392
S6: 87997
S7: 102573
S8: 117152
S9: 133935
S10: 304242

0 500 1000 1500 2048
0

500

1000

1500

2048

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
18

19

20

Seqlength

F
al

se
co

un
t

20 scenarios

S1: 7680
S2: 15248
S3: 22361
S4: 29870
S5: 37019
S6: 44442
S7: 51611
S8: 59057
S9: 66236
S10: 73676
S11: 80882
S12: 88274
S13: 95443
S14: 102847
S15: 110012
S16: 117425
S17: 124615
S18: 134371
S19: 156984
S20: 304242

0 200 400 600 800 1000
0

100

200

300

400

500

600

700

800

900

1000

1
2

3
4

5

Seqlength

F
al

se
co

un
t

5 scenarios

S1: 10658
S2: 21170
S3: 31752
S4: 42338
S5: 117414

0 200 400 600 800 1000
0

100

200

300

400

500

600

700

800

900

1000

1 2 3 4 5 6 7 8 9

10

Seqlength

F
al

se
co

un
t

10 scenarios

S1: 5440
S2: 10662
S3: 15924
S4: 21176
S5: 26462
S6: 31754
S7: 37044
S8: 42342
S9: 47570
S10: 117414

0 100 200 300 400 500 600 700 800 900 1000
0

100

200

300

400

500

600

700

800

900

1000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
19

20

Seqlength

F
al

se
co

un
t

20 scenarios

S1: 2800
S2: 5440
S3: 8086
S4: 10666
S5: 13308
S6: 15950
S7: 18596
S8: 21242
S9: 23888
S10: 26534
S11: 29180
S12: 31832
S13: 34472
S14: 37120
S15: 39780
S16: 42426
S17: 45064
S18: 47700
S19: 53640
S20: 117414

Fig. 5: System scenarios for the application version I(left) and II(right). Numbers in the top left corners are the execution
times of scenarios in clock cycles

0 500 1000 1500 2000
0

500

1000

1500

2000

1
2

3
4

5

Seqlength

F
al

se
co

un
t

5 scenarios

S1: 66
S2: 131
S3: 197
S4: 261
S5: 1576

0 500 1000 1500
0

100

200

300

400

500

600

Seqlength

F
al

se
co

un
t

Scenario 3

0 50 100 150 200 250 300 350 400 450 500
0

20

40

60

80

100

120

140

160

180

Seqlength

F
al

se
co

un
t

Scenario 1

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

100

200

300

400

500

600

700

Seqlength

F
al

se
co

un
t

Scenario 4

0 100 200 300 400 500 600 700 800 900 1000
0

50

100

150

200

250

300

350

400

Seqlength

F
al

se
co

un
t

Scenario 2

200 400 600 800 1000 1200 1400 1600 1800 2000
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Seqlength

F
al

se
co

un
t

Scenario 5

Fig. 6: Overlapping convex scenario projections and their concave refinement. Numbers in the top left corner are the execution
times of scenario inµs.

[7] L. Iasemidis, “Seizure prediction and its applications”, Neurosurg. Clin.
N. Am., vol. 22, pp. 489–506, Oct. 2011.

[8] L. Iasemidis et al., “Long-term prospective on-line real-time seizure
prediction”, Clinical Neurophysiology, vol. 116, pp. 532–544, Mar.
2005.

[9] M. Kallay., “The complexity of incremental convex hull algorithms
in rd”, Information Processing Letters, vol. 19, paper 4, p. 197, Nov.
1984.

[10] Y. Liu and H. Zhu, “A survey of the research on power management
techniques for high-performance systems”,Softw. Pract. Exper., vol.
40, pp. 943–964, Oct. 2010.

[11] Z. Ma, “Interleaved Subtask Scheduling on Multiprocessor SoCs”,
PhD thesis, Katholieke Universiteit Leuven, Leuven, Belgium, Jan.
2006.

[12] S. Mamagkakis, D. Soudris, and F. Catthoor, “Middlewaredesign
optimization of wireless protocols based on the exploitation of dynamic
input patterns”, inProc. DATE’07, 2007, pp. 1–6.

[13] N. R. Miniskar et al., “Scenario based mapping of dynamic applica-

tions on mpsoc: A 3d graphics case study”, inProc. SAMOS’09, 2009,
pp. 48–57.

[14] D. Raskovic and D. Giessel,“Dynamic voltage and frequency scaling
for on-demand performance and availability of biomedical embedded
systems”,IEEE Trans. Inf. Technol. Biomed., vol. 13, pp.903–909, Nov
2009.

[15] M. Steine et al., “Proactive reconfiguration of wireless sensor net-
works”, in Proc. MSWiM’11, 2011, pp. 31–40.

[16] P. v. Stralen, “Scenario Based Design Space Exploration”, PhD thesis,
University of Amsterdam, Amsterdam, The Netherlands, Sep. 2009.

[17] D. Stroobandt and K. Bruneel, “How parameterizable run-time fpga-
reconfiguration can benefit adaptive embedded systems”, inProc.
ERSA’11, 2011, pp. 184–194.

[18] N. Zompakis et al., “Enabling efficient system configurations for
dynamic wireless baseband engines using system scenarios”,in Proc.
SIPS’11, 2011.

