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ABSTRACT
Hardware acceleration using FPGAs has shown orders of
magnitude reduction in runtime of computationally-intensive
applications in comparison to traditional stand-alone com-
puters [1]. This is possible because on an FPGA many com-
putations can be performed at the same time in a truly-
parallel fashion. However, parallel computation at a hard-
ware level requires a great deal of expertise, which limits the
adoption of FPGA-based acceleration platforms.

A recent interest to enable software programmers to use
GPUs for general-purpose computing has spawned an in-
terest in developing languages for this purpose. OpenCL
is one such language that enables a programmer to specify
parallelism at a high level and put together an application
that can take advantage of low-level hardware acceleration.

In this paper, we present a framework to support OpenCL
compilation to FPGAs. We begin with two case studies that
show how an OpenCL compilation could be done by hand
to motivate our work. We discuss how these case studies
influenced the inception of an OpenCL compiler for FPGAs.
We then present the compilation flow and the results on a set
of benchmarks that show the effectiveness of our automated
compiler. We compare our work to prior art and show that
using OpenCL as a system design language enables large
scale design of high-performance computing applications.

1. INTRODUCTION
Modern FPGAs are some of the largest and most complex
integrated circuits, and have become a defacto solution for
many high-performance applications, such a network packet
processing. They have also been successfully used to acceler-
ate computation (medical imaging [1, 2], molecular dynam-
ics [3]) in comparison to workstation computers.

Starting in the early 1990s through the present day, there
has been an increasing interest in high-level synthesis (HLS),
because describing a circuit at a high level can take a 10th

of the lines of code as compared to an equivalent Verilog or
VHDL description [4]. If HLS tools could produce a good
circuit, then they would significantly improve productivity,

and allow designers to test their circuits at a higher level of
abstraction, making the process much faster.

Traditional HLS tools implement a circuit from a software-
like language, such as C. For a program, they implement
a circuit in a single-instruction single-data (SISD) fashion,
comprising a datapath that performs computation and a
control circuit that schedules the flow of computation. Some
parallelism is achieved through scheduling independent in-
structions at the same clock cycle. This approach, however,
does not provide the best possible use of an FPGA. First,
an FPGA can be a very large device, and it is possible many
such circuits can simultaneously process data, increasing the
overall throughput of a design. Second, pipelining is not ex-
plicit in programming languages such as C, and thus it is not
always possible to generate a circuit that has a comparable
performance to a hand-coded Verilog/VHDL design.

Recently, a new computing paradigm called OpenCL (Open
Computing Language) [5] has emerged that is suitable for
adoption as an FPGA design entry method and addresses
the two aforementioned problems associated with HLS. In
OpenCL computation is performed using a combination of
a host and kernels, where the host is responsible for I/O
and setup tasks, and kernels perform computation on inde-
pendent inputs. Because of the explicit declaration of the
kernel, and the fact that each set of elements processed are
known to be independent, each kernel can be implemented as
a high-performance hardware circuit. Based on the amount
of space available on an FPGA, the kernel may be replicated
to improve performance of the application.

In this paper, we first prototype two applications to deter-
mine how to build an automated compiler to efficiently syn-
thesize applications from an OpenCL description into a com-
plete system on an FPGA. After analyzing the results from
case studies, we proceeded with the description of the ar-
chitecture of the compiler, highlight some of its key features
and present the results we obtained by using the compiler
on a few key benchmark applications that we implemented
on an Altera Stratix-IV based board (DE4).

2. BACKGROUND
In this section, we provide some basic background about
OpenCL and our target platform, the DE4 board.

2.1 OpenCL Primer
OpenCL is a language, and a computing paradigm, to enable
acceleration of parallel computing, targeting a wide variety
of platforms [5]. OpenCL was developed to standardize the



Figure 1: DE4 Research Board

method of parallel computation using GPGPUs, for which
proprietary languages such as CUDA already existed.

An OpenCL application comprises a host and kernels. The
host, is responsible for processing I/O requests and setting
up data for parallel processing. When the host is ready to
process data, it can launch a kernel, which represents a unit
of computation to be performed. A kernel executes com-
putation by loading data from global memory as specified
by the host, processing it, and then storing the results back
into global memory so that they can be read by the host.
In OpenCL terminology a kernel and the data it is execut-
ing on comprise a thread. Results are computed for a group
of threads at a time. Threads may be grouped into work
groups, which allow data to be shared between the threads
in a work group; however, no constraints are placed on the
order of execution of threads in a work group and they are
thus required to be independent.

2.2 DE4
The DE4 FPGA board, manufactured by Terasic Technolo-
gies, features an Altera Stratix IV 230/530 GX device. It
provides two DDR2 memory SO-DIMM slots, four GigE eth-
ernet ports, four SATA connections, a PCIe header, three
USB ports, SD Card slot, and other peripherals. Figure 1
shows a photograph of the board.

3. INITAL CASE STUDIES
The first step towards an OpenCL-to-FPGA compiler was
to study two benchmarks that could be implemented in
OpenCL. These benchmarks are Black-Scholes option pric-
ing and a Bloom filter. In both cases, we implemented each
application using a host/kernel model, to generate a circuit
in the OpenCL style. We found that in each case we were
able to steer the final implementation towards a pipeline-
oriented design, replicating the kernel hardware several times
to achieve high performance.

We implemented each design to have a Nios II processor [6]
to run the host program and interact with kernels, two
DDR2-800 memory controllers to store data, and a set of
hardware accelerators that implement the kernels in OpenCL.
The host program communicates with the kernels using memory-
mapped I/O to set up each kernel, launch it, and monitor its
progress. The kernels run independently of the host, load-
ing and storing data in memory using dedicated memory-

mapped master interfaces and local memory buffers for tem-
porary data storage.

3.1 Black-Scholes Option Pricing
Black-Scholes equations are used for modeling pricing of
European-style options. The equations computed in this
model are as follows:

d1 =
log S

X
+ T

(
R + 0.5V 2

)
V T 0.5

d2 =d1 − V T 0.5

call =SN (d1) −N (d2)Xe−RT

put =Xe−RT (1 −N (d2)) − S (1 −N (d1))

(1)

where R is the riskless rate of return, V is stock volatility,
T represents option years, X represents a strike price and
S the current price. The N function is an approximation
of a cumulative normal distribution. The outputs call and
put, represent the call and put prices. Usually, the above
computation is performed for a set of options and a fixed
volatility and rate of return, which requires an input of three
floating-point numbers per computation.

In the OpenCL paradigm, a thread is responsible for produc-
ing one or more results. Each thread loads inputs X, S and
T from memory and computes the call and put values that
are then stored in the corresponding location in memory.

On a GPU, the threads are executed in a SIMD fashion
on a multiprocessor. A similar level of parallelism can be
achieved on an FPGA by using pipelining. A pipelined
design allows a long and intensive computation to be per-
formed over a series of clock cycles. During each clock cycle,
a new set of data can be accepted for computation. Thus,
if a computation pipeline has a depth of 200 cycles, results
will be produced at every clock cycle after some latency.

3.1.1 An Efficient Pipelined Computation Engine
Building a hardware implementation of this kernel begins
with a data-flow graph (DFG). The DFG consists of three
parts. The first part performs computation of inputs to a
cumulative normal distribution (CND) function approxima-
tion, the second part is the CND function itself, and the
final part computes the call and put values. Each part of
the computation produces data at each clock cycle, allowing
the hardware to produce a new result at every clock cycle.
To demonstrate how this is accomplished, we show the im-
plementation of the first part in Figures 2 and 3.

Figure 2 shows the DFG, where circles represent single-
precision floating point operations, implemented using hard-
ware cores. The latency of each block varies, as it takes a
different number of clock cycles to multiply, invert, or take
a square root of a number. To balance the latencies on each
path, we insert shift registers as shown in Figure 3. The
resulting latency of this computational block is 53 clock cy-
cles. When each part of the computation is similarly im-
plemented, we put them together to create an engine that
given a set of inputs produces a result 161 clock cycles later.

3.1.2 Memory Access
To attain a high performance from the above kernel imple-
mentation we need to sustain data throughput to and from



Converting Computation to HDL
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Figure 2: DFG for the first part of the computation
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Figure 3: DFG with latency-balancing shift registers

memory. For this kernel, the data consists of three floating-
point numbers as input, and two floating-point numbers as
output. To facilitate the required memory bandwidth we
use two separate high-speed memories (DDR2-800).

A DDR2-800 is a high-speed memory device that can be
accessed via a DDR2 memory controller. The controller is
capable of high-speed transfers of data in a burst fashion.
It exchanges data with the external memory at a clock rate
of 400 MHz, 64-bits at each edge of the clock. On the side
of the FPGA, the controller facilitates a synchronous in-
terface clocked at a rate of 200 MHz, providing 256-bits of
data at the positive edge of the clock. To read and write
data through this interface, a kernel needs to access data in
256-bit blocks at each edge of the clock. This is done by
combining inputs and outputs into groups, such that each
256-bit read comprises several sets of inputs X, S, and T.
Similarly, outputs are grouped together such that a single
256-bit write stores several call and put results.

To facilitate fast access to memory, we created bit-width
adapting buffers for the kernel. The input buffer takes in
256-bit wide data and stores it in an array of eight 96-bit by
n buffers, as shown in Figure 4.

3.2 Bloom Filter
In networking applications, Bloom filters [7] are used to scan
the payload of a packet to help determine if a packet should
be dropped or kept. For example, a packet router may wish
to determine if a message it is about to forward contains
unwanted data. If so, a packet can be dropped, protecting
the destination computer from a potential hazard.

Bloom filters scan the payload of a packet by looking for
signatures of interest. While a usual search could be slow,
Bloom filters employ hash tables, where each signature is
hashed using several hash functions. This allows the filter to
compute a hash value for the data as it arrives, and perform
a quick hash lookup to determine if a signature is of interest.
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Figure 5: High-Level Diagram of a Bloom Filter

A high-level diagram of a Bloom filter is shown in Figure 5.
In this design, a packet is first loaded into a buffer. The
packet data is then sent through two parallel hash compu-
tation functions. Once each hash value is computed, a hash
lookup is performed. If both values at addresses specified
by the hash values are 1, then a Bloom filter reports it has
found a signature of interest. To achieve a high throughput
for this design, it may be necessary to replicate local memory
that stores the hash values, as indicated in the figure.

This type of a search can be efficiently implemented on an
FPGA. A recent paper [8] showed an implementation of
such a filter that can sustain a throughput of approximately
3.2 Gbps. Implementation by Suresh et al. [9] provided a
throughput of 18.6 Gbps on an FPGA.

Our filter is designed to scan the payload of a packet, ex-
pected to contain simple text. The text is parsed and words
are identified and compared against a dictionary of approx-
imately 150000 words. The result of the Bloom filter, is a
pair of values that indicate how many words in every packet
are spelled correctly and how many are not.

3.2.1 Bloom Filter Core
Pseudo-code for the Bloom filter is given in Figure 6. In this
kernel, we process each packet one character at a time. For
every character in a packet, we detect if it is a separator.
If it is not, then we update the hash 1 and hash 2 values
as per the else clause, updating the length of the word cur-
rently being processed. Once a separator is detected, we
perform a lookup into a hash table, updating the hit and
miss registers. This approach matches the high-level design
presented in Figure 5.

In this kernel, the hash lookup is performed at the end of
every word and hence can be executed in parallel with the
rest of the kernel. However, it has to be able to stall the
pipeline when the perform hash lookup function is executing



kernel void bloom filter(read only int *d lookup,
unsigned int *d result, unsigned char *d packet mem,
int *d packet size, unsigned int packet count) {

for(packet id = 0; packet id < packet count; packet id++) {
int packet length = d packet size[packet id];
unsigned int offset = 1024*packet id;
unsigned int hash 1 = 0, hash 2 = 0, miss = 0, hit = 0;
short int length = 0;
for (index = 0; index < packet length; index++) {

unsigned char packet ch = d packet mem[offset+index];
char is end word= is separator(packet ch);
int temp hash 1 = update hash 1(hash 1, packet ch);
int temp hash 2 = update hash 2(hash 2, packet ch);
if ((is end word) && (this word length > 0))

perform hash lookup(d lookup,
hash 1 % 2500000, hash 2 % 2500000,
&hit, &miss);

hash 1 = (is end word) ? 0 : temp hash 1;
hash 2 = (is end word) ? 0 : temp hash 2;
length = (is end word) ? 0 : length+1;

}
d result[packet id] = (miss << 16) | hit;

}
}

Figure 6: Bloom Filter kernel

and another lookup is required. Such an implementation
allows a lookup to be concurrent with the processing of the
next word, increasing the throughput of the circuit.

3.2.2 Shared Hash Table(s)
A key aspect of performance in this design is the hash ta-
ble lookup. The lookup takes several cycles, which makes it
possible for another word to be processed before the lookup
is completed. In such a case, it is important to design
the lookup circuitry with minimal latency. Also, to enable
higher throughput, we need to be able to share the hash
table between a set of kernels.

We implemented a 2.5Mbit multi-ported shared hash table
using dual-ported on-chip memory. To create more than two
ports for the hash table, we divided it into five segments,
each implemented as a dual-ported memory with 16384 32-
bit words. Each segment can simultaneously read data from
two distinct memory locations, making a total of 10 ports
on the hash table available for simultaneous access.

4. STUDY ANALYSIS
In this section, we discuss the performance results we ob-
tained in our case study of two example benchmarks, in an
effort to determine the key aspects that we will need to ad-
dress when creating an OpenCL-to-FPGA compiler.

4.1 Area and Performance
We implemented each of the case studies on an Altera DE4
board, comprising an Altera Stratix IV 230GX device and
two DDR2 memory interfaces. In each case, we began with
an OpenCL description of an application, manually created
a DFG for each kernel, and coded each kernel hardware mod-
ule in Verilog HDL. We created a system comprising many
instances of hardware kernels on which threads could be ex-
ecuted, as well as a Nios II processor to run the host pro-
gram. Table 1 presents the clock frequency, logic utilization
and throughput results for each circuit in our case study.

The Black-Scholes option pricing circuit comprised four ac-
celerators, where floating-point cores were set for minimum
latency. To obtain the throughput results, we ran the sys-
tem at a clock rate of 150 MHz, allowing each instance of

Table 1: Performance and Area Results
Name Freq. Utilization Throughput

(MHz) (%)
Black-Scholes 150 76 885.6 M results/s
Bloom Filter 150 46 25.559 Gbps

the accelerator to produce two results (call and put) per cy-
cle. To exchange data with the external DDR2 memory, we
connected each pair of accelerators to a single DDR2 mem-
ory controller. Because of the limited memory bandwidth in
comparison to the required number of load and store opera-
tion, four accelerators fully utilized the memory bandwidth
when producing 885.6 million results per second.

To implement the bloom filter, we instantiated 48 kernels
to process packets in parallel. Each kernel was connected
to DDR2-800 memory to load data packets, and used local
on-chip memory for intermediate data storage. The system
was clocked at a rate of 150MHz and occupied 46% of the
available device resources. The resulting throughput of the
circuit was 25.6 Gbps.

4.2 Observations from Case Studies
The initial case studies yielded both compelling results as
well as a number of interesting challenges that need to be
overcome when developing an OpenCL-to-FPGA compiler.
We summarize the key results in three categories: memory
access, pipelining, and hardware replication.

4.2.1 Memory Access
The first challenge we encountered was one of effectively
utilizing the available memory bandwidth. This was par-
ticularly an issue with the Black-Scholes case study, as the
kernel itself was able to process a lot of data very quickly.
To address this challenge we introduced buffers to store in-
put and output data. While these buffers were not explicitly
defined in OpenCL, they could be inferred. With the help
of input and output buffers we were able to group memory
transfers into sizable batches, such that the kernel could be
kept occupied 100% of the time.

One of the less obvious tasks from the point of view of the
programmer was to ensure that the memory interface, in our
case DDR2-800 memory, and the kernel hardware needed to
have matching bus widths. This is something a usual high-
level language programmer does not need to think about, as
the underlying architecture does not change. In our case,
the process of synthesizing a circuit from scratch requires
such details to be handled. To overcome such obstacles, our
compiler will have to take care of low-level implementation
details, while being mindful of the external memory it is
interfacing with.

The key lesson we learnt here was that our compiler will have
to be able to generate efficient memory interface architecture
to external RAM on a per application basis. This will be a
key consideration for many applications.

4.2.2 Pipelining
The second challenge dealt with using pipelining to imple-
ment high-performance hardware for kernels. While in the
case of the Black-Scholes, this can be done easily (by hand
or in an automated tool), implementing a Bloom filter as a
pipelined circuits was more difficult.



To implement a Bloom filter as a pipelined circuit, we had to
break the kernel up into two parts: the hash computation,
and the hash lookup, each of which could run independently.
The hash computation was responsible for processing packet
data, one character at a time, and computing a hash value
for every word in the packet. When a word was found, the
hash lookup was executed. At the same time another set
of characters were being processed and a hash value was
computed for them. If the computation of a hash value
for the next word completed before the hash lookup, it was
necessary for the hash lookup to stall hash computation,
until the lookup was completed.

The key lesson we learnt was that a pipelined architecture for
many kernels is possible, especially in an OpenCL context
where explicit parallelism is defined. The pipeline would
have to allow sections of the circuit to stall when a long
memory access is required and thus a flexible design will be
required. This is particularly important when dealing with
loop constructs where it is possible for the loop to be only
able to handle a limited number of threads simulteneously.

4.2.3 Hardware Replication
The third challenge in the implementation of both designs
was the level of hardware replication needed to achieve high
throughput. While in the case of Black-Scholes an entire
kernel was replicated, in the case of the Bloom filter it turned
out that a major bottleneck was the hash table.

We noted earlier that the hash table had to be replicated to
achieve high throughput, allowing only half of the kernels
(24) to use each hash table. One way to define such repli-
cation in OpenCL is to provide a kernel with several hash
tables as inputs. A better approach would be to be able
to model a kernel to be able to detect such problems, and
replicate resources shared by kernel instances.

The lesson we learnt here was that some level of control
over the architecture of the system needs to be provided, to
allow the designer to analyze the performance results and
then affect the architecture of the kernel hardware to im-
prove throughput. While the ultimate goal is to be able to
automatically determine the correct level of replication re-
quired for an application, a reasonable first approach is to
allow user some control over the compiler output.

5. OPENCL-TO-FPGA COMPILER
In this section we present the compiler we devised based on
the lessons we learnt from initial case studies.

Figure 7 presents the flow of our compilation framework,
based on an LLVM compiler infrastructure [10]. The input
is an OpenCL application comprising a set of kernels (.cl
files) and a host program (.c file). The kernels are compiled
into a hardware circuit, starting with a C-language parser
thath produces an intermediate representation for each ker-
nel. The intermediate representation (LLVM IR) is in the
form of instructions and dependencies between them. This
representation is then optimized to target an FPGA plat-
form. An optimized LLVM IR is then converted into a
Control-Data Flow Graph (CDFG), which can be optimized
to improve area and performance of the system, prior to
RTL generation that produces Verilog HDL for a kernel.

The compiled kernels are instantiated in a system with in-
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Figure 7: OpenCL-to-FPGA framework.

terfaces to the host and off-chip memory. The host inter-
face allows the host program to access each kernel to specify
workspace parameters and kernel arguments. The off-chip
memory serves as global memory for an OpenCL kernel.
This memory can also be accessed via the host interface, al-
lowing the host program to set data for kernels to process
and retrieve computation results. The complete system can
then be synthesized, placed and routed on an FPGA using
Altera Complete Design Suite (ACDS) [11].

Finally, we compile the host program using a C/C++ com-
piler. There are two elements in the compilation of the host
program. One is the Altera OpenCL (ACL) Host Library,
which implements OpenCL function calls that allow the host
program to exchange information with kernels on an FPGA.
The second is the Auto-Discovery module which allows a
host program to detect the types of kernels on an FPGA.
The Auto-Discovery module is embedded in the system by
the kernel compiler, and stores the information pertaining
to the kernels in a given design.

6. IMPLEMENTATION DETAILS
Our framework comprises a Kernel Compiler, the ACL Host
Library, and System integration. The Kernel Compiler im-
plements OpenCL kernel functionality as a circuit described
in Verilog HDL and produces a description of the generated
circuit for the host program in a form of an Auto-Discovery
module. The C compiler then takes that description as well
as the ACL Host Library and compiles the host program.
The host executable as well as the Verilog HDL are then
put together using a System Integration tool (Qsys) and
compiled using ACDS [11].

6.1 ACL Host Library
The Altera OpenCL (ACL) host library implements most of
the Platform and Runtime APIs of the OpenCL 1.0 speci-
fication [5]. The Platform APIs allow the host program to
discover the FPGA accelerator device and manage execution
contexts. The Runtime APIs are used to manage command
queues, memory and program objects, and to discover pre-
compiled kernels and invoke them.

The ACL Library comprises two layers: a platform inde-
pendent layer that performs device independent processing,
and a hardware abstraction layer that adapts to platform
specifics. The platform independent layer provides the user-
visible OpenCL API functions and performs generic book-
keeping and scheduling. The hardware abstraction layer pro-



kernel void triangle( global int *x, global int *y) {
int i, t = get global id(0), sum=0;
for (i=0; i < t; i++) sum += x[i];
y[id] = sum;

}
Figure 8: Example OpenCL Kernel Program

For.end

%t = call @get_global_id(0)
%cmp12 = icmp sgt %T, 0
br %cmp12, label %for.body, label %for.end

Entry

%i = phi [0, %entry], [%i.next, %for.body]
%sum_so_far = phi [0, %entry], [%add, %for.body]
%arrayidx = getelementptr %x, %i
%tmp4 = load %arrayidx
%add = add %tmp4, %sum_so_far
%i.next = add %i, 1
%exitcond = icmp eq %i.next, %t
br %exitcond, label %for.end, label %for.body

For.body

%sum = phi [0, %entry], [%add, %for.body]
%ptr_y = getelementptr %y, %t
store %sum, %ptr_y
ret void

Figure 9: Intermediate Representation Example

vides low-level services to the platform independent layer.
These services include: device and kernel discovery, raw
memory allocation, memory transfers, kernel launch and
completion. In particular, all communication between the
host and the kernels goes through this layer.

6.2 Kernel Compiler
To compile OpenCL kernels into a hardware circuit, we ex-
tended the LLVM Open-Source compiler [10] to target an
FPGA platform as shown in Figure 7. The LLVM compiler
represents a program as a sequence of instructions, such as
load, add, subtract, store. Each instruction has associated
inputs and produces a resulting value that can be used in
computation downstream. A group of instructions in a con-
tiguous sequence constitutes a basic block. At the end of
a basic block there is always a terminal instruction that
either ends the program or redirects execution to another
basic block. The compiler uses this representation to create
a hardware implementation of each basic block, which are
then put together to form the complete kernel circuit.

The above abstraction allows us to implement a kernel from
basic block modules. Each basic block module comprises an
input and an output interface with which it talks to other
basic blocks. In the cases of a first and a last basic block,
their interfaces have to be exposed at the top level, forming
primary inputs and outputs of a kernel module.

6.2.1 C-Language Front-End
The first step in the conversion of a high-level description
to a hardware circuit is to produce an intermediate repre-
sentation (IR). To illustrate the IR, consider a program in
Figure 8. In this example, each thread reads its ID using
the get global id(0) function and stores it in variable t. It
then sums up all elements of array x beginning at the first
and ending at t-1. Finally, the result is stored in array y.

%i = phi [0, %entry], [%i.next, %for.body]
%sum_so_far = phi [0, %entry], [%add, %for.body]
%arrayidx = getelementptr %x, %i
%tmp4 = load i32* %arrayidx
%add = add %tmp4, %sum_so_far
%i.next = add %i, 1
%exitcond = icmp eq %i.next, %t
br %exitcond, label %for.end, label %for.body

For.body

Merge [1,2]

Branch [8]

[3]

[4]

[6]

[7]

[5]

Figure 10: Basic Block Module

C-Language front-end parses a kernel description and cre-
ates an LLVM Intermediate Representation (IR), which is
based on static single assignment [12]. It comprises basic
blocks connected by control-flow edges as shown in Figure 9.
The first basic block, Entry, performs initialization for the
kernel and ends with a branch instruction that decides if
a thread should bypass the loop. The second basic block
represents the loop body and the last basic block stores the
result to memory. To determine the data each basic block
consumes and produces, we perform Live Variable Analysis.

6.2.2 Live Variable Analysis
Live Variable Analysis identifies variables consumed and pro-
duced by each basic block. In our example, the Entry ba-
sic block contains only kernel arguments as input variables
(x, y). At the output of the basic block, variables sum, t
and i are also created. This tells us that each thread pro-
duces these values when it completes execution in this basic
block. The For.body basic block includes all kernel argu-
ments as well as the three arguments produced by the first
basic block. It then produces y, t, i.next and add as output
live variables. Notice that i.next and add effectively replace
i and sum when the basic block loops back to itself, allowing
the loop to function correctly. Finally, the last basic block
has input live variables y, t and add, while no variables are
live after the return instruction.

6.2.3 CDFG Generation
Once each basic block is analyzed, we create a Control-Data
Flow Graph (CDFG) to represent the operations inside it.
Each basic block module takes inputs either from kernel ar-
guments or another basic block, based on the results of Live
Variable Analysis. Each basic block then processes the data
according to the instructions contained within it and pro-
duces output that can be read by other basic blocks.

A basic block module, shown in Figure 10, consists of three
types of nodes. The first node is the merge node, which is
responsible for aggregating data from previously executed
basic blocks. This ensures that for each thread, its id as
well as all other live variables are valid when the execution
of the basic block begins. In addition, in cases such as loops,
the merge node facilitates phi instructions that take inputs
from predecessor basic blocks and select the appropriate one
for computation within the basic block, based on which pre-
decessor basic block the thread arrived from.

Operational nodes represent instructions that a basic block
needs to execute, such as load, store, or add. They are



linked by edges to other nodes to show where their inputs
come from and where their outputs are used. Each opera-
tional node can be independently stalled when the successor
node is unable to accept data, or not all inputs of the suc-
cessor node are ready. This resembles the idea of elastic cir-
cuits [13, 14], however our implementation is much smaller
and simpler because each operation has fixed latency. In
particular, in [14] a convergence of data flow from two op-
erations feeding a single one required 2 FFs and 15 gates,
where communication between elastic nodes requires four
signals. In [13], the approach is simpler with two signals
in each direction and a total of 4 gates in what they refer
to as a join operation. In our implementation we use two
signals and two gates. The valid signal into a node is an
AND gate of its data sources (called ready). The stall to
each predecessor node is computed as !ready+stall out. The
fanout splitting, or fork, logic in our implementation is also
distinct from [13, 14]. In our case, each output of a node
has an associated register called consumed that indicates if
a specific successor already consumed the data being pro-
duced. If so, the register is set to 1. When all consumed
register are, or are about to be set to 1, the functional unit
producing a value is unstalled (its stall in is cleared).

The last node in a basic block module is a branch node. It
decides which of the successor basic blocks a thread should
proceed to.

6.2.4 Loop Handling
Loops are handled at a basic block level. A simple example
of a loop is a basic block whose output is also an input to
it, such as shown in Figure 9. The loop itself presents a
problem in that it is entirely possible that a loop can stall.
To remedy the problem, we insert an additional stage of
registers into the merge node, that allows the pipeline to
have an additional spot into which data can be placed.

When loops comprise many basic blocks, it is possible that
stalling can occur when loop-back paths are unbalanced. In
such cases, we instantiate a loop limiter that allows only
specific number of threads to enter the loop. The number of
threads is equal to the length of the shortest path in a loop.

6.2.5 Scheduling
Once each basic block is represented as a CDFG, scheduling
is used to determine the clock cycles in which each operation
is performed; however, since no sharing of resources occurs,
the key contribution of scheduling is to sequence the oper-
ations into a pipeline where independent operations occur
in parallel. This is important because not all instructions
require the same number of clock cycles to complete. For
example, an AND operation may be purely combinational,
but a floating point addition may take eight cycles. Thus if
possible, we would like to schedule operations that add up to
8 cycles while the adder performs computation maximizing
the throughput of the hardware circuit, while reducing the
area at the same time. In some cases, it may be necessary
to insert pipeline balancing registers into the circuit because
one execution path is longer than another.

To solve the scheduling problem we apply SDC scheduling
algorithm [15]. The SDC scheduler uses a system of lin-
ear equations to schedule operations, while minimizing a
cost function. In the context of scheduling, each equation

represents a clock cycle relationship between connected op-
erations. For example, in implementing an equation f =
a ∗ b + c ∗ d, the scheduler has ensure that both multipli-
cations occur before addition. A secondary objective is the
reduction of area, and in particular the amount of pipeline
balancing registers required. To minimize the impact on
area, we minimize a cost function that reduces the number
of bits required by the pipeline.

6.2.6 Hardware Generation
To generate a hardware circuit for a kernel we build it out
of basic block modules. To achieve high performance, we
implement each module as a pipelined circuit, rather than
a finite state machine with datapath (FSMD). This is be-
cause a potentially large number of threads need to execute
using a kernel hardware, and their computation is largely
independent. Hence, the kernel hardware should be able to
execute many threads at once, rather than one at a time.

In a pipelined circuit, a new thread begins execution at
each clock cycle. Thus, a basic block with pipeline depth
of 100 executes 100 threads simultaneously. This is simi-
lar to replicating an FSMD circuit 100 times, except that
subsequent threads execute different operations. In our de-
sign, the valid in-stall out pairs are used as a handshaking
mechanism to synchronize subsequent operations.

Once each basic block is implemented, we put the basic
blocks together by linking the stall, valid and data signals
as specified by the control edge. We then generate a wrap-
per around a kernel to provide a standard interface to the
rest of the system. In our case, we implement all load and
store instructions as Avalon Memory-Mapped Master inter-
faces [16] that can access data from global or local memory.
In addition, the wrapper keeps track of kernel execution, is-
suing workitems into the pipelined circuit and signals when
the kernel has completed execution.

7. SYSTEM INTEGRATION
Once each kernel has been described as a hardware circuit,
we create a design comprising the kernels, memories and
an interface to the host platform, as shown in Figure 11.
We utilize a templated design, where sections that do not
change from one application to another remain locked down
on an FPGA. These sections include memory interfaces and
a host interface facilitated by a PCIe core. The sections that
change, shown at the bottom of the figure, are attached at
compile-time, synthesized placed and routed. This section
can include many kernels, possibly replicated several times,
where each kernel has a dedicated local memory segment
associated with it.

8. MEMORY ORGANIZATION
OpenCL defines three types of memory spaces: global, lo-
cal and private. The global memory space is designated for
access by all threads. Read and write operations to this
memory can be performed by any thread; however, OpenCL
does not guarantee memory consistency between an arbi-
trary pair of threads, thus one thread may execute fully
before the other one even begins running. Thus, this type
of memory is usually used to store data threads will require
for computation, as well as any results the threads produce.

In our implementation, the global memory space resides in
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Figure 11: System Integration Details

off-chip DDR2-800 memory. It has large capacity allow-
ing us to store data, but long access latency. Accesses to
this memory are coalesced when possible to increase mem-
ory throughput. In the compiler we can detect when access
to particular memory arrays are random or sequential and
take advantage of this. When an array is determined to
be accessed sequentially by consequtive threads, we create
a special read or write module that includes a large buffer
for burst transactions. This is very important, because if we
know that the next set of threads will request consecutive
data, we can request a large burst transaction the moment
the first tread requests data. As a result we incur a small
delay penalty loading/storing the data for the first thread,
and no latency on the subsequent threads.

When memory accesses are random we create a coalescing
unit that collects requests to see if the seemingly random
memory accesses address the same 256-bit word in memory.
If so, the requests are be coalesced into a single data transfer,
improving memory throughput.

Local memory is used by work groups to enable synchronized
exchange of data. To synchronize threads within a work-
group, barriers/memory fences are used to force threads to
wait on one another before proceeding further. This allows
complex algorithms that require collaboration of threads to
be implemented (ex. bitonic sort).

Local memory is implemented using on-chip memory. It has
short latency and multiple ports, allowing the kernel to ac-
cess it efficiently. To do this we create a shared memory
space for each load and store unit to any local memory. For
example, if a kernel uses an array which it reads and writes
a total of 4 times, then the compiler creates four memory
ports for local memory. The four ports are logical (not phys-
ical), and are then mapped into a set of dual-ported on-chip
memory modules. In a case where it is necessary to read
more data in one cycle than the dual-port memory can pro-
vide we split memory into banks to enable faster data access,
allowing for higher on-chip memory bandwidth.

Private memory is implemented with registers that store the
data on a per-thread basis, and are pipelined through the
kernel to ensure that each thread keeps the data it requires
as it proceeds with the execution through the kernel.

9. OPENCL-SPECIFIC FEATURES
OpenCL defines features to allow synchronization of threads,
such as barriers. In our framework, a barrier is a reordering
First-In First-Out (FIFO) buffer. The buffer contains dedi-
cated logic to force an entire workgroup to enter the FIFO
before the first element out of a workgroup is allowed to
exit. This ensures that all threads have stopped execution
at a predefined location and performed all data accesses as
required. This is essential, because with the exception of
barriers and memory fences the OpenCL paradigm does not
guarantee any ordering on thread execution. Thus, any data
dependencies between threads must be guarded by a barrier.

The presence of barriers can help in many applications, es-
pecially when reordering is made possible. This is because
a barrier that is followed by a global memory transation has
the property that the threads exiting the barrier are in or-
der. Thus, we can predict how they will access global mem-
ory and instantiate an appropriate memory access module
as described in the previous section.

Because we use on-chip memory for barriers and local mem-
ory, it places a constraint on how many workgroups can si-
multaneously occupy the same kernel hardware. To ensure
that this limitation is not violated, a workgroup limiter is
included inside of a kernel. It permits only a specific number
of workgroups to enter a kernel at any given time.

In addition to barriers, function calls to obtain global and
local IDs, and other work-item intrinsics are provided. In
our framework, these function calls are replaced by kernel
arguments, whose value is filled by the kernel wrapper as
each thread is issued.

10. EXPERIMENTAL RESULTS
To evaluate the quality of results produced by our OpenCL
compiler, we implemented several OpenCL applications on
a Terasic DE4 board, with the host program running on a
Windows XP64-based machine. Each application was com-
piled to generate both the host program and the kernels.
The kernels were synthesized, placed and routed using ACDS
12.0 and downloaded onto the DE4 board. We then ran the
host programs to obtain performance results, and use ACDS
12.0 report files to obtain fmax and area metrics.

10.1 Benchmark Applications
The applications we implemented are: Monte Carlo Black-
Scholes, matrix multiplication, finite differences, and par-
ticle simulation. The Monte Carlo Black-Scholes (MCBS)
simulation is an option pricing approximation. It computes
the same data as our initial case study, but it does so us-
ing a Monte-carlo approach. Each simulation in this bench-
mark requires a randomly distributed number generator, a
Mersenne Twister, as well as floating-point computations,
including exponent, logarithm and square root functions.
Matrix multiplication is an application that exhibits easy-
to-visualise parallelism. Finite differences (FD) is an ap-
plication used in Oil and Gas industries to analyze sensor
data and detect the presence of desired natural resources.
It requires a large amount of memory bandwidth to run
efficiently. Particle simulation is a demo distributed with
NVIDIA’s OpenCL package, that simulates collisions of par-
ticles in a cube. It is a broad test of language coverage.

The area and fmax measurements for each circuit are listed



in Table 2. The first column shows the circuit name, the sec-
ond column shows clock frequency of the kernel, and the re-
maining columns show the area of each application including
the memory and host interfaces. The circuit area is specified
in terms of ALMs, FFs, number of DSP blocks and memory
bits, as well as an overall logic utilization metric (%Util) on
an Altera Stratix IV-530 device. The PCIe and DDR2 inter-
faces are included in the resource utilization, and comprise
approximately 11% of resources. The throughput of each
application is summarized in the last column of Table 2.

10.2 Discussion
Each application had its unique challanges that we needed
to address to obtain high-quality results.

Monte Carlo Black Scholes simulation requires a Mersenne
Twister to implement the random number generator. De-
scribing it is easy in Verilog, but more challenging in a multi-
threaded environment, because each thread must obtain a
specific output value from a random number sequence and
in turn generate the next random number for a subsequent
simulation. While it implies a dependency between threads,
it is possible to break that dependency by using barriers.

To do this, we synchronize the data accesses such that each
workgroup accesses a subset of random numbers, while gen-
erating values for the next simulation. When a simulation
completes, all other threads enter a barrier and wait. Once
all threads enter a barrier, they are allowed to proceed fur-
ther and compute the next result. This prevents any race
conditions from occuring. To speed the process up, local
memory is used and as such each workgroup uses a dedi-
cated random number generator, which is initialized when
the workgroup enters a kernel.

When we compare the circuit generated by our compiler to
a hand-coded implementation [17], the compiler performed
very well. We achieved a throughput of 2.2 billion simu-
lations per second (Gsims/sec) in comparison to a hand-
crafted design that achieved a 1.8 Gsims/sec [17] using two
FPGAs. The difference in the number of FPGAs used can
be omitted here, because Stratix IV device is larger than the
Stratix III FPGAs used in [17]. It is expected that the cir-
cuit designed in [17] would fit successfully providing similar
performance to our compiler-generated design if the same
Stratix IV device was used.

The matrix multiplication application (1024x1024 floating
point) uses on-chip local memory to store a part of a row
and column in local memory. Each thread reads this data,
performs a multiply-and-add operation and keeps track of
the current sum. Once a thread finishes computing a matrix
entry, it stores the result in global memory. To account for
practical aspects of this application, we chose a sufficiently
large matrix size such that external memory storage was re-
quired and the effects of communication between the FPGA
and DDR2 memory were account for. A choice of 1024x1024
matrix size was sufficient as storing three 1024x1024 matri-
ces requires 12 MBs of memory, which exceeds the on-chip
memory capacity of the Stratix-IV device.

In this application, each thread is requires to access and
process the same information other threads use. For exam-
ple, when computing a column for a resulting matrix, each
thread needs to access the same row of the first input ma-

trix causing contention for memory access. To alleviate the
problem, we vectorize the kernel to allow each thread to si-
multaneously perform a computation for four matrix entries.
This increased our throughput by a factor of 4.

To utilize the high memory bandwidth, the inner loop is
unrolled to perform 64 floating-point multiplications and
addition simultaneously. This implementation permits a
maximum throughput of 89.6 GFLOPS and we achieve 88.4
GFLOPS with some losses due to communication with the
host. In comparison to [18], our compiler produces a faster
circuit (16ms [18] to compute 64x64 matrix multiplication).
A recent work using double-precision floating point on a Vir-
tex5 device showed a performance of 29.8 GFLOPs [19]. A
throughput of approximately 15.6, 15 and 8 GFLOPS was
also reported in [20], [21] and [22] respectively. Integer ma-
trix multiplication was implemented in [23], where 128 cores
filled a Xilinx Virtex5 device. Our implementation com-
prises a pipeline of 500 clock cycles, still leaving a significant
amount of the FPGA unused. This demonstrates that while
an FSM-based approach can produce a small circuit for a
single thread, over many threads a pipeline-based approach
is superior.

The Finite Differences application is similar in nature to ma-
trix multiplication in that the key operations happen in a
tight loop comprising floating-point multiplication and ad-
dition. However, the data access pattern is irregular, thus
lower bandwidth to global memory is achieved. Also, after
each iteration of the loop, more preprocessing is required
than in the case of matrix multiplication. While an FSM-
based HLS compiler would attempt to apply loop pipelining
in this case, it is not a necessary step in our flow. The key
reason for it is that the design is already pipelined, so while
each thread is takes several cycles to process the loop, several
threads are being processed through the same loop simulta-
neously. Because we have many threads reading data from
memory, we can detect when a series of threads accesses se-
quential memory locations and optimize memory accesses.
In a case of loop pipelining, we would be accessing data in
strides unless it was reordered in memory.

The final application is a particle simulation. The most time
consuming part of this application is collision detection. It
comprises several steps: partitioning, sorting and collision
computation. Partitioning divides the cube in which parti-
cles collide into smaller subcubes. Each particle in a sub-
cube is known to only be able to collide with particles within
the same subcube, or one of the 8 adjacent subcubes. The
particles are then sorted based on the subcube index they
belong to. Once sorted, the collision detection is engaged
independently for each subcube.

In this application, the constant exchange of data between
the host, the FPGA and the GPU slows down the processing.
The processing of a single frame on an FPGA takes only
9ms, while the remaining time is spent copying data from
the FPGA to the GPU for rendering.

11. CONCLUSION
In this paper we presented the prototyping and development
of an OpenCL-to-FPGA compiler. We showed through two
case studies that the OpenCL-to-FPGA flow is not only fea-
sible, but also effective in designing high-performance cir-
cuits. When discussing the initial case studies, we covered



Table 2: Circuit Summary and Application Throughput Results
Circuit Fmax ALUTs FFs DSPs Mem. Util Num. Throughput
Name (MHz) Mbits (%) copies
MCBS 192.2 175687 261716 988 6.56 71% 12 2181 MSims/sec

MatMult 175 204894 254880 1024 5.12 80% 1 88.4 GFLOPS
FD 163.5 125662 180321 108 5.05 55% 4 647.6 Mpoints/sec

Particles 179.2 168527 206137 444 7.39 69% 1 62 FPS

major lessons we learnt from this process that helped us
shape the architecture of the automated compiler. These
lessons were incoporated in the framework, which we imple-
mented and evaluated on a set of applications.

Our work shows OpenCL is well-suited to automatic gener-
ation of high-performance circuits for FPGAs. Our frame-
work generated circuits for the benchmark suite that provide
high throughput and has been shown to have a wide cov-
erage of the OpenCL language, including synchronization
using barriers, support for local memory, as well as floating-
point operations. In addition, the framework includes a host
library to communicate with kernels over PCIe interface. Fi-
nally, we have shown the ability to automatically implement
complex OpenCL applications that comprise not only an
FPGA-based computation engine, but also host processing
that interfaces with peripherals such as a GPU.

The circuits generated by our compiler are very different
from what a GPU-based implementation would look like.
While at the high-level, the system components are similar,
their architecture at the low level accounts for the difference.
While on GPUs each processing core performs operations in
a SIMD fashion, in our architecture each thread executes
a distinct operation on a distinct set of data. Thus in a
true sense, this kernel architecture is a multiple-instruction
multiple-data style design. This accounts for its size, and
also high performance.
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