
Prototyping SMS Services for Medical Prescription
Adherence

A. Ejnioui1, M. Morjaret2, and C. E. Otero1

1Information Technology, University of South Florida Lakeland, Lakeland, Florida, USA
2Computer Science and Networks, ESISAR, Valence, France

Abstract – Barriers to medication adherence among patients
have been shown to have significant impact on service quality
and cost in the healthcare system. To minimize this impact,
many in the healthcare industry are highly interested in
supporting prescription adherence among patients. They
believe that information technology in general, and mobile
technology in particular, can help in developing medical
practices that can be highly conducive to high rates of
prescription adherence by enhancing communication between
patients and healthcare providers. To this end, a number of
pharmacy management benefit companies plan to adopt SMS
communication to reach their customers given the wider
acceptance of SMS messaging among mobile phone users.
However, most of these pharmacies are reluctant to purchase
service agreements from SMS aggregators without a complete
understanding of user, service and business requirements
related to SMS messaging. Hence, many are in dire needs for
prototypes of SMS servers that can help them define and refine
these requirements before committing to costly agreements
with SMS aggregators. This paper describes such a prototype
for a pharmacy benefit management company located in the
southeast of the United States.

Keywords: Mobile technology, Prescription adherence, Short
message service, SMS aggregator, Pharmacy Services.

1 Introduction
Adherence is defined as the extent to which patients take
medications as prescribed by their healthcare providers. A
2001 survey showed that although 62% of physician office
visits generate a prescription, these prescriptions are not
always adhered to [1, 2]. Poor adherence tends to be serious
among patients who suffer from chronic diseases since these
diseases require long-term treatments (e.g., HIV infections,
hypertension, asthma, diabetes, heart disease and psychiatric
illness). This is even more critical considering that 75% of all
health expenditures in 2000 went to care for individuals with
chronic illnesses although these individuals represent only
45% of Americans [3, 4]. In fact, non-adherence to
prescribed medication is responsible for 10% of hospital
admissions and 25% of nursing home admissions. It is
estimated that the healthcare system in the U.S. incurs a cost
of $300 billion annually due to non-adherence to essential
medications. Patient surveys about non-adherence reveal an
array of barriers to adherence such as costs of drugs,

forgetfulness (e.g., it is practically difficult for a patient to
remember to take medication several times a day), lack of
clarity in the purpose of treatment, perceived lack of
medication effect, debilitating side effects (e.g., for some
professionals such as doctors, lawyers, professors and writers,
the side effect of taking anticonvulsant drugs can interfere
severely with abstract thinking), complicated regiment, lack
of clarity in administration instructions, physical difficulty in
handling medication (e.g., opening containers, handling small
tablets), and unattractive formulation (e.g., unpleasant taste).
According to the World Health Organization, increasing the
effectiveness of adherence interventions may have a far
greater impact on the health of world populations that any
improvement in specific medical treatments [5]. For
healthcare providers such as hospitals and insurance
companies, strong adherence can lead to improved
performance, which in turn can generate financial incentives
for these providers. Providers can use improved performance
as a metric to determine whether their services meet the
expectation of their customers or not. Today, most people
own a cell phone. It is conceivable to design mobile
applications with user-friendly interfaces to help interested
users in restoring their good health. Considering the current
advantages of mobile technology and its communication
facilities, it is clear that this technology can be exploited to
help people learn to live healthy. In addition, it can be used
effectively to personalize the therapy offered to a given
individual considering his/her needs. To do so, a mobile
application can be readily conceived as a medication
adherence management tool on the go for the patient.

2 Prescription Adherence in Managing
Pharmacy Benefits

For pharmacies, strong adherence can lead to a volume
increase in prescriptions refills as well as access to patients
who were otherwise invisible to drug manufacturers for
marketing promotions. Of special note is the importance of
employers and pharmacies in augmenting adherence if both
stakeholders collaborate in designing smart pharmacy
benefits. These benefits can increase prescription use without
impacting overall drug expenditures in the healthcare system.
Most pharmacy benefit management companies prefer to use
Short Message Service (SMS) messaging to communicate
with their customers considering its simplicity and wider
acceptance [6]. However, these companies lack a suitable

infrastructure of information technology to do so. They can
solicit the services provided by SMS aggregators by
negotiating a cost-effective service level agreement with these
aggregators that meets the requirements of SMS
communication between the pharmacy and its customers.
Worse yet, most pharmacies do not know what requirements
must be taken in consideration to insure a successful message
service with their customers. These requirements can be
related to user interaction with the service, characteristics of
the message service, and requirements related to business
criteria as shown in Table 1.

Table 1. SMS service requirements.
Category Requirement

User • Number of messages per hour or day
• Appropriate delivery time of messages (before

midnight)
• User responsiveness to messages
• Sequence of messages in prescription

adherence scripts
• Suitability of interaction with prescription

script messages
Service • Message sending (batch, number of retries,

queuing, etc.…)
• Retrieving messages
• Checking delivery of message status
• Error and exception handling
• Logging and tracking
• Service configurability
• Data storage (messages, customers, message

traffic, etc.…)
Business • Number of short codes

• Provisioning of short codes
• Type of network connections to the SMS

gateway
• Transactions per day
• Transactions per second
• Message content

In the absence of well-defined requirements, a pharmacy
benefit management company might make its best effort to
purchase a service package with an aggregator only to realize
later that the purchased package does not satisfy the
requirements of its SMS communication with its customers.
There is always a risk of over- or under-shopping for these
service packages. Hence, it becomes reasonable for such a
company to develop a prototype of an SMS service in order to
define and refine these requirements. Such a prototype can be
used as an exploratory tool for developing requirements that
can be used as guidelines to purchase the most suitable
service package from an aggregator. In this context, a
pharmacy benefit management company located in Florida,
USA decided to build an SMS server prototype to generate
such requirements. This paper describes the architecture and
design of the prototype of this SMS server.

3 SMS Service Architecture
Although the pharmacy benefit management company
mentioned above did not have a complete understanding of
requirements in each category, it opted to base the design of
the message server on the following requirements:
• Self-Containment: The message server must contain all

the computing resources it needs to separate its
responsibilities from those of the software applications
of the company.

• Logging: This capability is needed to keep track of
various events taking place between the software
applications and the message server. The purpose of
this tracking is to help the company determine the most
important user, service and business requirements.

• Error Handling: This capability is need to record all
errors and exceptions between the SMS gateway server
of the network service provider and the software
applications of the company. Recording these errors
can provide a rich perspective on the reliability of the
service offered by the network service provider.

• Configurability: This capability allows the benefit
management company to manage the message service
in different ways in order to explore requirements that
are not clearly understood in normal operating
conditions of the message server.

Based on these initial requirements, the architecture of the
message server has been developed and refined over several
iterations to include the following components as shown in
Figure 1:
• Front Interface: This interface provides methods that

can be called by the software applications of the
pharmacy benefit management company to perform
tasks related to communication with its customers via
SMS messages.

• Message Database: This database is a persistent store
sued to record sent messages, received messages, errors
and exceptions generated during SMS message
exchange between the software applications and
customer cell phone.

• Message Server: This server is a process that runs
continuously to record all the events related to SMS
communication between the software applications the
customers such as sending message, retrieving reply
messages and checking the delivery status of sent
messages.

• Data Access Layer: This layer consists of dynamic
libraries responsible for passing data from and to the
message database on behalf of the front interface,
the message server and the back interface.

• Back Interface: This interface provides methods to the
message server for sending messages, retrieving
messages, and checking the delivery status of sent
message via the application programming interface
(API) of the SMS gateway of the network service
provider [7].

Figure 1. Architecture of the message server.

Figure 2. Class mapping on the architecture of the message server.

4 SMS Server Implementation
The architecture shown in Figure 1 was used to derive a
class hierarchy for implementing the components seen in the

architecture. This hierarchy was implemented using C# on
.NET [8]. Figure 2 shows the classes of the message server.

getStatus
getResponse

createMessage

SMS
Gateway

SM
S

G
at

ew
ay

 A
PI

Back
Interface

Payload
Processor

Message
Server

Database

USFP Message Server

sendSms
checkDelivery
retrieveSms

cancelMessage
updateMessage

Front
Interface

!"##$%&"

'#()*+,)-.)/"0

1
"
23
43
5"
&
-"
+

$
)5
)+

!"#$%&'(&$%)*+,'$%'&-.
6%-#"

!"#$%$&'()**

+,-.-/0%1).2'3*
7 + 89:1++;3"-+*"#5)<

7 + 85(,3+=8>1+,2(-"33

7 + ?@!A8B+;4*C+5"35+3524&/C+,D(&"+EC+F<

7 + @35)G#43D+&"H+I"33)/"

7 + 6J?6@KA8B+;4*C+FL<

7 + =1$J9@A8B+;4*C+F<

B@9+A"5D(*3
7 + 89J9=8+;4*C+F<

7 + M@81:?8@+;4*C+FL<

J**454(&)#+A"5D(*
7 + 6(&N/+;FL<

J**454(&)#+45"I3O

PL++6(&N4/Q2)54(&+N(2+HD"&+I"33)/"3+)2"+3"&5+(Q5L

7 + 3D(Q#*+4&454)##%+G"+G)3"*+(&+5D"+3)I"+35)&*)2*3+Q3"*+N(2+(Q5G(Q&*+-)##3+

H45D+R4,-(*"

SL++A(2"+H(2.T*43-Q334(&+&""*"*+N(2+D(H+5(+D)&*#"+Q&3(#4-45"*+5"U5+I"33)/"3

VL++>4&)#4R)54(&+(N+5D"+W$+N(2I)5

85(2"+G%+W$+)&*+

2"N"2"&-"+Q,*)5"3+G%+

W$

A
"
5D
(
*
3

6
(
&
52
(
##"
2+
J
1
W

9Q&&"#4&/+

!4&*(H3+

8"2X4-"

8A
8+
B
)5
"
H
)%
+J
1
W

8A8+

B)5"H)%

/"58I3$"#4X"2%85)5Q3

8"&*8I3

/"5M"-"4X"*8I3

Message
Server

Pharmacy Claims
Medical Data

Pharmacy Adherence
System

Te
xt

M
es

sa
ge

s

getException

Data Access Layer

sendSms

getReceivedSms

getSmsDeliveryStatus

Back Interface

Front Interface

createMessage()
cancelMessage()
updateMessage()
getStatus()
getResponse()
getException()
writeLog()

WCFMessageServerDAL
(.dll)

sendMessage()
checkMessageStatus()
retrieveMessage()
generateUnsolicitedId()

MessageServerDAL (Part 1)
(.dll)

checkStatus()

MessageServerDAL
Thread

MessageServer

onStart()
onStop()

WCFMessageServer
MessageServer

USFPMessageServer

createMessage()
cancelMessage()
updateMessage()
getStatus()
getResponse()
getException()

WCFMessageServerDAL
WCFMessageServer

sendSms()
checkDelivery()
retrieveSms()

MessageServerDAL (Part 2)
(.dll)

Disk

Persistent Store

CheckMessagReceivedExist
CheckMessageToSendDelivered
CheckMessageToSendExist
CreateMessageReceived
CreateMessageToSend
EraseMessageReceived
EraseMessageToSend
GetException
GetMessageResponse
GetMessageStatus
GetMessageToCheckDeliveryStatus
GetMessageToSend
UpdateMessageToSendATTId
UpdateMessageToSendContent
UpdateMessageToSendDeliveryStatus
UpdateMessageToSendDeliveryStatusATTId
WriteLog

Stored Procedures

Data Access Layer

Startup Parameter
File

The Front Interface
The front interface consists of the WCFMessageServer and
MessageServer classes. Table 2 summarizes the methods of
these two classes.

The Message Server
The message server consists of the MessageServer class.
This class spawns a thread responsible for calling
repetitively the sendMessage, checkMessageDelivery and
retrieveMessage methods in the MessageServerDAL class.
These repetitive calls are performed as long as the number
of transactions does not exceeded the maximum number of
transactions allowed per day by the network service
provider. Most network service providers impose limits on
the number of transactions completed between a company
server and their own SMS gateways based on the service
level agreement purchased by the company in need of SMS
services. It is meant by a transaction any call to the SMS
gateway server of the network service provider.

The Data Access Layer
The data access layer consists of the
WCFMessageServerDAL and the first part of the
MessageServerDAL classes. Table 3 summarizes the
methods of these two classes.

The Message Database
The message database consists of the following tables:

• Table of messages to send: This table contains
records of the messages that need to be sent to the
SMS gateway.

• Table of received messages: This table contains
records of received messages. These messages are
reply messages sent by customers are replies to
messages sent by the pharmacy benefit management
company.

• Message table: This table contains records of
messages generated for events that took place while
the message server is in operation. These events can
be errors, exception or log entries recording specific
tasks completed by one of the classes in the message
server.

In addition to these tables, this database stores a number of
procedures shown in Figure 2.

The Startup Parameter File
When the message server starts, it needs to upload several
parameters for proper functionality. These parameters are:

• Database connection settings: These are the settings
necessary for the server to establish the connection
with the database. They consist of the location path of
the database and its security settings.

• Short code: This is the code assigned by the network
service provider to the customer. This code is used to

address SMS messages coming to or leaving from the
servers of the pharmacy benefit management
company.

• Endpoint send address: This is the URL address to
which messages must be sent as required in the SMS
gateway API.

• Endpoint receive address: This is the URL address to
which message must be received as required in the
SMS gateway API.

• Number of transactions per day: This number is fixed
by the network service provider based on the service
level agreement purchased by the pharmacy benefit
management company.

• Number of transactions per second: This number is
fixed by the network service provider based on the
service level agreement purchased by the pharmacy
benefit management company

• Transaction counter: This is a software counter
generally initialized to 0 unless specified otherwise at
startup time.

These parameters are stored in a file that is used by the
message server during startup to load these parameters.

5 SMS Communication via the Message
Server

Communication between the pharmacy benefit management
company and its customers intended to enforce prescription
adherence mostly of scripted dialogs between the company
and its customers. The dialog below illustrates a simple
adherence communication session between the pharmacy
and a customer named DuPont.

Sending A Reminder Message To The Customer
In the first step, the pharmacy sends a message to Mr.
DuPont to remind him to take his medication as shown in
Figure 3. Before the message is forwarded to the SMS
gateway, it is inserted in the tables of messages to send in
the database. Figure 4 shows that the first entry is the entry
of this message in the table. This entry shows that this
message has reached the cell phone of Mr. DuPont since its
delivery status has been automatically updated to
‘DeliveredToTerminal’.

Receiving A Reply From The Customer
After customer DuPont receives the reminder message, he
replies affirmatively by sending a “Yes, I did.” reply
message as shown in Figure 5. As soon as the message
server receives a this reply, the reply is immediately inserted
in the table of received messages as shown in Figure 6. The
reply is passed back to the software applications of the
pharmacy.

Sending An Acknowledgement To The Customer
When the pharmacy receives the reply message, its script
dictates that it sends an acknowledgment to the customer as

Table 2. Front interface classes and methods.
Class Method Description

USFPMessageServer
onStart It starts the Windows service.
onStop It stops the Windows service.

WCFMessageServer

createMessage It calls the createMessage method in the WCFMessageServerDAL class by
passing a message object.

cancelMessage It calls the cancelMessage method in the WCFMesssageServerDAL class by
passing a message id.

updateMessage It calls the udpateMessage method in the WCFMessageServerDAL class by
passing a message object.

getStatus It calls the getStatus method in the WCFMessageServerDAL class by passing
a message id.

getResponse It calls the getReponse method in the WCFMessageServerDAL class by
passing a message id.

getException It calls the getException method in the WCFMessageServerDAL class by
passing a start and end dates.

Table 3. Classes and methods of the data access layer and back interface.

Class Method Description

WCFMessageServerDAL

createMessage It calls the CreateMessageToSend stored procedure to insert each
message in a batch of messages if the message does not already exist in the
table of messages to send in the database.

cancelMessage It calls the EreaseMessageToSend stored procedure to remove the
message from the table of messages to send and
EraseMessageReceived stored procedures to remove the message
from the table of received messages.

updateMessage It calls the UpdateMessageToSendContent stored procedure to
update the message contents in the table of messages to send in the database.

getStatus It calls the getStatus stored procedure to obtain the status of a sent
message from the table of message to send in the database.

getResponse It calls the getMessageResponse stored procedure to extract the reply
messages from the table of received messages.

getException It calls the GetException stored procedure to extract exceptions between
two timestamps from the table of exceptions.

writeLog It class the WriteLog stored procedure to write relevant information to the
messages table about an event taking place while the message server is in
operation.

MessageServerDAL
(Part 1)

sendMessage It extracts the messages that need to be sent from the table of messages to
send and calls the sendSms method in the MessageServerDAL class.

checkMessageStatus It calls the checkDelivery method in the MessageServerDAL class
for each message whose status needs to be checked from the table of
message to send.

retrieveMessage It calls the retrieveSms method in the MessageServerDAL class to
retrieve reply messages from the SMS gateway.

MessageServerDAL
(Part 2)

sendSMs It creates a connection to the SMS gateway and calls the sendSms method
in the SMS gateway API in order to send a batch of messages.

checkDelivery It creates a connection to the SMS gateway and calls the
getSmsDeliveryStatus method in the SMS gateway API in order to
check the delivery status of a batch of sent messages.

retrieveSms It creates a connection to the SMS gateway and calls the
getReceivedSms method in the SMS gateway API in order to retrieve a
batch of reply messages.

shown in Figure 7. Before the message is forwarded to the
SMS gateway, it is inserted in the tables of messages to send.
Figure 8 shows that the second entry is the entry of this
acknowledgement message. This entry shows that this
message has reached the cell phone of Mr. DuPont since its

delivery status has been automatically updated to
‘DeliveredToTerminal’

Figure 3. Reminder

message to Mr. DuPont.

Figure 4. Contents of the table of messages to send.

Figure 5. Rely message

from Mr. DuPont.

Figure 6. Contents of the table of received messages.

Figure 7. Acknowledgement
message from the pharmacy.

Fig. 8. Contents of the table of message to send.

6 Conclusion
This paper presented the prototype architecture and
implementation of an SMS server intended to help a
pharmacy benefit management company to define its SMS
service requirements. These requirements can be used to
shop for a service level agreement from an SMS aggregator
that is highly suitable to the needs of the benefit management
company.

7 References
[1] D. K. Cherry, C. W. Burt, D. A. Woodwell, “National

Ambulatory Medical Care Survey,” Advanced Data from Vital
Statistics, no. 358, 2005, pp. 1-40.

[2] Boston Consulting Group and Harris Interactive, “The Hidden
Epidemic: Finding a Cure for Unfilled Prescriptions and Missed
Doses,” December 2003, available at
http://www.bcg.com/publications/files/TheHiddenEpidemic_Rp
t_HCDec03.pdf.

[3] G. Anderson, J. Krickman, “Changing The Chronic Care
System to Meet People’s Needs,” Health Affairs, vol. 20, no. 6,
2001, pp. 146-160.

[4] C. Hoffman, D. Rice, H.-Y. Sung, “Persons with Chronic
Conditions: Their Prevalence and Costs,” Journal of American
Medical Association, vol. 276, no. 18, 1996, pp. 1473-1479.

[5] World Health Organization, “Adherence to Long-Term
Therapies: Evidence for Action,” 2003, available at
http://www.who.int/chronic_conditions/en/adherence_report.pdf
.

[6] Y. Mao, Y. Zhang, S. Zhai, “Mobile Phone Text Messaging for
Pharmaceutical Care in a Hospital in China,” Journal of
Telemedecine and Telecare, vol. 14, no. 8, 2008, pp. 410-414.

[7] AT&T Network Services, Network Services API Developer
Guide, AT&T, 2010.

[8] Microsoft, “Introduction to Windows Service Applications,”
Microsoft Developer Network, 2005, available at
http://msdn.microsoft.com/enus/library/d56de412(VS.80).asp.

