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Abstract- Feed forward artificial Neural Networks with 

backpropagation learning algorithm are of the efficient 

classification and pattern recognition tools that are robust to 

noise and can learn the target function of many learning 

tasks. Even though it still suffer of the long training time 

which limits its efficiency especially over online tasks and 

high dimensional datasets it is still desirable. In the context 

of improving neural network efficiency, it is useful to apply 

features selection principles that can reduce the number of 

neural network inputs which in turn reduces the required 

training time and enhances its generalization capability to 

end up with a neural network based classifier that perfectly 

matches the selected features set with good classification 

accuracy.  
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1. Introduction 

EED forward artificial Neural Networks with the 

backpropagation learning algorithm are efficient tools in 

learning tasks that involve classification and pattern 

recognition. Neural networks are robust to noise and have the 

ability to converge to the target function to be learned by 

approximating the values of the desired target functions. [1] 

In his definition for neural networks, Negnevitsky believes 

that: 

“[Neural Network] is a model of reasoning based on the 

human brain. Thus, a neural network is considered as a 

highly complex, nonlinear, and parallel information 

processing system” [2] 

Even though multilayer feed forward neural networks with 

backpropagation learning algorithm are computationally 

expensive due to long training times, they are still desirable 

since they can converge over many learning tasks. Thus, 

many efforts have been done to improve backpropagation 

neural networks performance and increasing its efficiency, 

especially its generalization and classification ability.    

A critical factor that affects neural networks performance 

is the number of its inputs. Experiments from previous works 

have shown that an abundance of a neural network inputs 

(i.e. features) often results in overfitting and poor 

generalization for the classifier, while if less inputs than 
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necessary are used this limits the efficiency and capability to 

converge to the target function. Features can be categorized 
as: 1) relevant features and 2) irrelevant features which may 

be contained in any dataset. 

Relevant features are those affect the underlying structure 

of the data and provide enough information about the target, 

while irrelevant features do not. [3] 

In reference [4] the authors defined relevant and irrelevant 

features using the conditional probability. Under the 

assumption that the feature values are discrete,   is a random 

variable of features [  ,    …   ] then a pattern vector   = 

[  ,    …   ] is a realization of  . Hence feature    is surely 

irrelevant iff for all subset of features     including    : 

 (    | 
  )   (  | 

  ) ( |   ) 

    is a subset of   excluding feature   ,  
   is a subset of 

    and   is the target which is a random variable taking 

values  . This definition implies that feature    does not 

affect the value of the target variable   (i.e.   is independent 

of   ), hence    is irrelevant to  .    

In this paper, we introduce a novel method that applies 

features selection concepts and sieves the original candidate 

features in a dataset to explore its intrinsic dimensionality 

and to remove irrelevant features. This improves neural 

network performance by recognizing and keeping relevant 

features, which enhances the generalization capability of the 

classifier and saves resources in any future data gathering. 

 

2. Related Work 

A number of approaches and techniques have been 

proposed to overcome the curse of high dimensional datasets 

(i.e. dataset with a large amount of features) that limits the 

efficiency of a multilayer feed forward neural network. A 

dataset with a large number of features implies that the 

neural network receives a large number of inputs, which in 

turn increases the required training time and computations, 

especially in fully connected networks.   

Features selection methods can be categorized mainly onto 

two categories: 1) Filters and 2) Wrappers. Filters are 

techniques that select features without taking into account the 

optimization of a learning machine topology and its 

performance (i.e. preprocessing, predictor independent step – 
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model free techniques). On the other hand, wrappers involve 

the process of predictor optimization as a correlated step to 

the features selection process. Thus, even though they are 

computationally more intensive, they have the advantage of 

avoiding the problem that the selected features subset with 

filters may not match the selected predictor perfectly, which 

may result in poor performance of a classifier. In the case of 

wrappers, a learning machine performance is utilized to 

evaluate features subsets according to their predictive power. 

[4] 

In their approach, Heuristic for Variable Selection (HVS), 

Yacoub and Bennani [5] suggested a feed forward neural 

network based wrapper that tries to reduce the number of 

input features according to network weights behavior during 

training process. At each training session, the input feature 

with the lowest weights will be pruned. Even though HVS is 

simple and easy in the sense that it does not involve 

complicated calculus and it has good results in comparison 

with other methods, it requires a number of training sessions 

equal to the number of irrelevant and redundant features to 

be pruned, which might be large. This can limit HVS 

performance by increasing the required search time, taking 

into account that the search depends on the classifier 

performance.  

Another method described in [3] contains two phases, a 

filter phase followed by a wrapper phase. The filter phase 

sieves features using a genetic algorithms technique. The 

second phase starts as a wrapper by presenting the selected 

features from the first phase as inputs to a feed forward 

neural network, in order to recognize and remove redundant 

features according to that network’s performance. This 

method removes features by filtering without taking into 

account the performance of the produced classifier, since the 

fitness function in the genetic algorithm evaluates features 

according to cost and inconsistency measures which are not 

critically related to the classifier performance. Moreover this 

method consumes a large amount of neural network training 

even though it is not necessary to retrain the network after 

each reduction. The authors tried to overcome the problem of 

training the neural network over the entire set of features by 

using genetic algorithms, but genetic algorithms also involve 

a large amount of computation.  

It is possible to note that most of the methods which aim 

to improve neural network performance are based on the 

weights behavior during the training process of the network. 

The main limitation for a neural network is its training cost 

over the entire features in a dataset especially over those with 

high dimension. Thus, some methods try to reduce the 

number of features in a separate step before presenting data 

to the neural network, as in [3]. Even though such an 

approach saves time, it has risks removing some features that 

may have a critical effect of improving classifier 

performance in combination with other features.  

Another method that follows the same strategy was 

proposed in [6]. This method is a filter method that starts by 

ranking all features using Gram-Schmidt orthogonalization 

technique. [7] After that, a threshold is ranked and inserted in 

that list. This threshold acts as a boundary between relevant 

and irrelevant features. All features that are ranked lower 

than that threshold will be discarded since they are 

considered irrelevant features. After that, the selected 

features are presented to a fully connected feed forward 

neural network to be trained. In this approach the classifier is 

not involved in the features selection process which reflects 

on its performance since the selected features are not 

necessarily will match the classifier perfectly even though 

the classifier will converge over them. 

An approach uses the sensitivity analysis for features 

selection was explained in [8]. The main objective of the 

sensitivity analysis is to find the saliency of each feature 

individually. Except the feature under consideration all 

features are assigned the mean of their values while training 

the neural network over the current feature. This process is 

repeated for all features. Then a random phantom feature is 

used to compare the saliency of all features to its saliency, 

thus each feature with saliency less than the phantom’s one 

will be discarded. This method suffers of the massive 

computations since it trains the neural network to find the 

saliency for all features, which implies a number of trainings 

that equal to the number of features.         

    In his approach, Zhang suggested an evolutionary 

combination between neural network and genetic algorithm. 

This method performs the features selection process and the 

network optimization simultaneously to produce a neural 

network based classifier. [9] Actually the main disadvantage 

here is the large amount of computations to end up with the 

classifier.  

     

3. Problem Definition 

Multilayer feed forward neural networks are robust to 

noise learning machines that perform classification and 

pattern recognition tasks. Previous experiments, mentioned 

in section II, showed that the performance of a neural 

network over a dataset is affected by that data set features. 

How many features and which features should be presented 

to the neural network are two critical factors affecting the 

performance. Since irrelevant features have negative effect 

on a neural network’s classification and generalization 

ability, removing such features will increase accuracy and 

efficiency, saves resources, and critically reduce the required 

training time. Several approaches have been proposed to 

sieve and select a set of features that match a neural network 

based classifier, as mentioned in the previous section. Some 

of those approaches combine the process of features selection 

and neural network topology optimization together 

(wrappers) while some of them do not. Even though such 



 
 
 
combination comes at price by increasing the required 

amount of computations, it produces more efficient and 

effective classifiers. Some of the methods that try to 

overcome the problem of using neural networks over high 

dimensional datasets require a long training time, while most 

of them need a large amount of computations. The methods 

which avoid the long training time perform the entire 

features selection process or, at least part of it, independently 

of the neural network optimization, which in turn exacerbates 

the problem of matching features with learning machine. 

 

3.1  BFSW: Binary Features Selection Wrapper 

The proposed method is considered as a wrapper method 

since it involves both the features selection process and 

neural network optimization process. 

BFSW tries to find a fully connected feed forward neural 

network over the lowest possible number of features in a 

dataset with good classification accuracy. As figure 1 

illustrates, BFSW starts by training the neural network over 

the entire candidate features in the dataset to produce a 

decreasing ordered features ranked list. After that, the same 

network will be trained over random probes, to generate a 

threshold that separates relevant from irrelevant features. 

 

 

Fig. 1 

The General Process of BFSW 

3.2  Relevance Index 

Although BFSW combines and performs the process of 

features selection and neural network optimization 

simultaneously, it avoids the complicated calculus, the long 

training time, and the massive amount of computations that 

appear in the methods those have been mentioned earlier. 

BFSW exploits the weights behavior of the neural network 

during the training session over the candidate features. Those 

weights can be understood as indicators of the importance of 

a specific feature and its contribution to the target output. 

Note that this is true if all features are normalized into the 

same range. Thus, after training the neural network over the 

entire dataset, it is possible to calculate the relevance index 

of each feature. A feature’s relevance index    is “relevance 

quantitative assessment of a candidate feature and the target 

output”. [10]    is calculated according to a feature’s final 

weights which connect it to the output layer through the 

hidden layer, when that neural network converges, as 

equation 1 shows [13]: 

    ∑∑|      |

      

                                    ( ) 

H, O denote the hidden and the output layers respectively. 

While   is a node (i.e. feature) in the input layer. The inner 

term is the product of the weights from input unit   to hidden 

unit  , and from hidden unit   to output unit o. The sum of the 

absolute values of those products over all connections –in the 

network- from unit   to unit   is the relevance index of 

feature   that shows its contribution and importance to the 

output.  

   In BFSW, to calculate the relevance index of all features 

in a dataset, we need to train the neural network over the 

entire set of features only once, which saves training time.      

After calculating the relevance index of all features, a 

decreasing ordered ranked list of the features is produced. 

Features with high relevance indices of that list (i.e. highly 

informative about the target) are considered as relevant 

features, while those with low relevance indices (i.e. poorly 

informative about the target) are considered as irrelevant. 

The problem is that there is not a specific boundary that 

separates relevant features from irrelevant features in that 

list. Thus, it is necessary to find a suitable threshold that 

separates those two parts from each other. That’s 

accomplished using random probes. 

    

3.3  Random Probe Threshold 

One of the techniques that can be used to calculate a 

threshold is the random probes technique. This technique 

was first suggested in [11]. Random probes are irrelevant 

features could be generated by shuffling the candidate 

features vectors in the matrix of training data. [12] This 

shuffling is done by keeping the targets as they are and 

randomly swapping candidate features vectors. This results 

in irrelevant features vectors for the targets. This process 

keeps the features patterns as they are while producing 

inconsistency with the target values in comparison with the 

original dataset. After generating the probes, they will be 

presented to the same neural network that was used in 

ranking the candidate features. When the classifier converges 

over the probes, the relevance indices for all probes will be 

calculated using equation 1 exactly as what was done then 

with the candidate features.  

The random probe threshold will be generated from the 

relevance indices of the probes. The random probe threshold 

is the average of all random probes relevance indices, and it 

is calculated by using equation 2: 

    ((∑  
   

)   ⁄ )                                       ( ) 



 
 
 
   is the probe threshold,   is an input node in the input 

layer I, while    is the relevance index of random probe   
which is equivalent to    in equation 1 after applying that 

equation over the final weights of the random probes instead 

of the candidate features. What equation 2 does, is 

calculating the average of the probes relevance indices over 

the total number of the candidate input features which is 

denoted as n, and thus producing the random probe threshold 

  .  
Since a neural network is robust to noise and adaptive in 

nature, it will converge over the probes even though they are 

irrelevant features. Hence the random probe threshold will 

appear somewhere in the candidate features ranked list. This 

probe is used as a boundary that separates relevant features 

of the decreasing ordered ranked list from irrelevant features. 

Thus all features with relevance indices greater than the 

probe threshold will be kept, while those with lower 

relevance indices will be discarded. As illustrated in figure 1, 

after producing the set of the selected features (i.e. relevant 

features) the network structure will be optimized and 

retrained once again over the selected features. The 

performance of the new classifier over the selected features 

will be compared to the performance of the previous one. 

This process is repeated till the stopping criterion is satisfied. 

The stopping criterion of this method is based on the 

classifier’s performance over unobserved examples, which is 

assessed after each training session, directly after classifier 

structure optimization and the training of the new classifier. 

Thus, as long as the model performance increases (i.e. gets 

better) in comparison with the performance of the model 

from the previous training, the process of network training 

and features reduction goes on. When the classifier 

performance decreases, the process terminates and the NN 

classifier with the best performance is chosen.  

BFSW takes the structure optimization of a neural network 

into consideration during the process. At each training 

session the number of the units in the hidden layer should be 

twice the number of input units in the input layer, while the 

number of input units is always equivalent to the number of 

the selected features at that training session (i.e. each input 

unit receives only one input feature). Figure 2 illustrates the 

general representation of the hypotheses in the hypothesis 

space which contains every possible neural network based 

classifier. 

The proposed method is not as straightforward as it seems. 

Actually an important question arises, which is: what if the 

new classifier (after features selection and structure 

optimization) does not have a better performance than that of 

the previous one? The answer to this question has a critical 

effect on the overall performance of this method. Till now, 

such a case forms the stopping criterion of the process as 

mentioned earlier. However we believe that it is not wise to 

terminate the process at that point, because such an approach 

does not guarantee that the classifier from the previous 

training session is the best possible one that could be 

produced by BFSW, better classifiers could be produced. 

Thus, we will use a features selection heuristic to circumvent 

this issue which is: “individually irrelevant features may 

become relevant when used in combination”. [4] 

 

 
Fig. 2 

Neural Network Based Classifier 

According to such assumption the proposed method 

should not terminate just because the new classifier has not 

better performance than that of the previous one. What we 

need to do is to control the stopping criterion to assure that 

the produced classifier is the best possible one that could be 

produced by BFSW, taking into account that this method 

does not perform a comprehensive search through the 

hypothesis space. It is possible to achieve this by making the 

method more dynamic and directing the search process to 

reach better solutions. 

BFSW tries to find good classifier by applying the “Best 

First” search technique which can “back-track to more 

promising previous subset of features and continue the 

search from there when the path being explored begins to 

look less promising”. [15] Every hypothesis in the hypothesis 

space, as it is illustrated in figure 2, is a fully connected feed 

forward neural network in which the number of the hidden 

units is always twice the number of input units which are 

equivalent to the number of candidate features at the current 

training session. The hypothesis space is relying on a very 

useful ordering structure, which is: a Specific-to-General 

ordering of hypotheses. The most specific hypothesis (i.e. the 

null hypothesis) is that receives the entire set of candidate 

features as inputs. 

The search process starts by enumerating the most specific 

hypothesis. Then and according to its performance the search 

direction is directed to those hypotheses which may have 

better classification accuracy.  

Assume that the n-classifier (i.e. the produced classifier at 

training session n) has a better performance than that for 

n+1-classifier. At that point the current stopping criterion 

would be satisfied, which implies that the process should 

terminate and the best classifier is the n
th

 classifier. Since the 

discarded features at session n caused the performance of the 



 
 
 
produced classifiers to decrease, applying the “Best First” 

search technique is considered as a reasonable choice 

because it has the ability to back-track to explore more 

promising subsets. Since the classifier performance is 

decreased after discarding a specific set of features, the 

search process should be applied as described earlier to sieve 

features in the discarded features set at training session n and 

manipulate it as all features sets have been manipulated in 

the previous training sessions. Thus, the discarded features 

set at training session (n) will be divided into two parts 

according to its corresponding probe threshold that is 

generated by its corresponding discarded probes set (taking 

into account that the random probe threshold at any training 

session divides the probes list into two parts as well as it 

does with the candidate features set). Hence, the upper part 

of that list will be chosen and appended to the originally 

selected one to form together the extended selected features 

set. If the classifier performance over the extended selected 

features set outperforms that of the previous classifier (i.e. 

classifier produced at training session n), then the process 

proceeds over the selected features set as explained before. 

Otherwise the extension and the search process should be 

applied over the discarded features set once again. This 

process goes on while the discarded features set contains 

more than one feature and the performance of the produced 

classifier is still decreasing, at that situation the process 

terminates and the classifier with the highest performance is 

eventually chosen among all produced classifiers. 

Even though the search strategy here does not enumerate 

every possible hypothesis in the hypothesis space either 

directly or indirectly, it is efficient since it avoids the 

exhaustive search which consumes long time, and eventually 

produces an efficient classifier. 

    

4. Implementation and Results 

BFSW was implemented and some preliminary 

experiments ran in order to assess the effectiveness of this 

combination. The classifier is a multilayer feed forward 

neural network in which the number of the units in the input 

layer is equivalent to the number of the candidate features at 

the current training session, while the units’ number in the 

hidden layer is always twice the number of units in the input 

layer. The classifier is trained over the candidate features, the 

random probes, and the selected features using 

backpropagation learning algorithm and the same weights 

initial values those were used at the first training session. 

Actually, the neural network is trained over the random 

probes only once (at the first training session) and the 

produced relevance indices are used during the rest of the 

training sessions without any need to retrain the network 

over them once again.     

The training and testing processes were performed over 

the SPECT Heart and Breast Cancer datasets, real problems. 

[14] Figure 3 shows the results of the BFSW implementation 

over those datasets. 

Figure 3 illustrates that the entire candidate features are 31 

for the Breast Cancer and 22 for the SPECT Heart. In both 

datasets BFSW was able to recognize irrelevant and 

redundant features and make a decision to rule them out 

while keeping the most informative (i.e. relevant) features by 

using the random probe threshold and the classifier weights 

as relevance indices. It is possible to note that the number of 

features was roughly reduced from 22 to 9 and 31 to 7, for 

SPECT Heart and Breast Cancer respectively while the 

classifier overall classification accuracy was improved. The 

classification accuracy increased after features selection 

process. 

 

(a) 

 
(b) 

 
Fig 3: 

Implementation Results over SPECT Heart and Breast Cancer Datasets                                                                                           

For SPECT Heart the classification accuracy improved to 

0.73 over 9 features instead of 0.7 over 22 features, and it 

was also improved for the Breast Cancer to be 0.97 over 7 

features instead of 0.96 over a set of 31 features. Even 

though the classification accuracy was slightly increased, it is 

better to have 0.97 or 0.73 of classification accuracy over a 

small set of features than having lower or even the same 

classification accuracy over the entire set of features. During 

the implementation we noticed that BFSW consumed only 

one training session to converge to global maxima over the 



 
 
 
SPECT Heart, while for Breast Cancer it consumed two 

training sessions. This variation appears because each data 

set has its own characteristics, patterns, and correlations 

which affect the performance of BFSW and make it vary 

over different datasets. Moreover BFSW is considered as a 

random technique, since it is based on neural networks which 

are initialized randomly and the random probes which are 

generated randomly. Such factors interpret the variation of 

the BFSW over different datasets. 

An important advantage of this method is the 

simplification of random probes usage. As said before, 

random probes approach was first suggested in [11]. The 

major aim of this approach is to reduce the number of the 

candidate features independently of the learning machine, 

thus it is considered as a filter approach. In order to make 

sure that the selected features, after applying random probes, 

are sufficient to perform the learning task, the decision of 

discarding features is supported by a statistical test. More 

details about traditional usage of random probes are available 

in [4]. BFSW used the random probes in a different and 

simple way since it makes the decision of evaluating and 

discarding features directly related to the learning machine 

performance which in turn helps to avoid the required 

statistical tests. Random probes are normally used with the 

Gram-Schmidt technique which was first suggested in [7]. 

BFSW replaced Gram-Schmidt with the neural network and 

used its weights as relevance indices for the candidate 

features. This way makes the relevance indices more 

informative about the effect and the importance of each 

candidate feature.  

 

5. Conclusion and Future Work 

To sum up, the proposed method is a wrapper method that 

aims to find sufficient features subset that is convenient to 

match a neural network based classifier by searching a 

hypothesis space which has a naturally occurring Specific-to-

General ordering structure. The search process is 

implemented under the following assumption: “the solution 

exists in the hypothesis space”. The major aim of BFSW is to 

simplify and speed up the search process to reach the 

required hypothesis in the hypothesis space, by applying an 

efficient search technique than those used in some of the 

currently existing methods. This method is a novel one since 

it uses random probes in a wrapper technique and combines 

it directly with the learning machine. In BFSW the neural 

network topology is taken into consideration and it is 

optimized at each training session. The preliminary results of 

BFSW are promised results and showed the possibility and 

the efficiency of combining random probes with neural 

networks. In the future work, we are to implement BFSW 

with more challenging datasets and compare its results with 

the currently existing methods. 
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