
Hazem Migdady

Department of Computer Science

Southern Illinois University, Carbondale IL

Abstract- Feed forward artificial Neural Networks with

backpropagation learning algorithm are of the efficient

classification and pattern recognition tools that are robust to

noise and can learn the target function of many learning

tasks. Even though it still suffer of the long training time

which limits its efficiency especially over online tasks and

high dimensional datasets it is still desirable. In the context

of improving neural network efficiency, it is useful to apply

features selection principles that can reduce the number of

neural network inputs which in turn reduces the required

training time and enhances its generalization capability to

end up with a neural network based classifier that perfectly

matches the selected features set with good classification

accuracy.

Keywords: Neural Networks, Features Selection,

Classification, Machine Learning, Random Probes.

1. Introduction

EED forward artificial Neural Networks with the

backpropagation learning algorithm are efficient tools in

learning tasks that involve classification and pattern

recognition. Neural networks are robust to noise and have the

ability to converge to the target function to be learned by

approximating the values of the desired target functions. [1]

In his definition for neural networks, Negnevitsky believes

that:

“[Neural Network] is a model of reasoning based on the

human brain. Thus, a neural network is considered as a

highly complex, nonlinear, and parallel information

processing system” [2]

Even though multilayer feed forward neural networks with

backpropagation learning algorithm are computationally

expensive due to long training times, they are still desirable

since they can converge over many learning tasks. Thus,

many efforts have been done to improve backpropagation

neural networks performance and increasing its efficiency,

especially its generalization and classification ability.

A critical factor that affects neural networks performance

is the number of its inputs. Experiments from previous works

have shown that an abundance of a neural network inputs

(i.e. features) often results in overfitting and poor

generalization for the classifier, while if less inputs than

Norman Carver

Department of Computer Science

Southern Illinois University, Carbondale IL

necessary are used this limits the efficiency and capability to

converge to the target function. Features can be categorized
as: 1) relevant features and 2) irrelevant features which may

be contained in any dataset.

Relevant features are those affect the underlying structure

of the data and provide enough information about the target,

while irrelevant features do not. [3]

In reference [4] the authors defined relevant and irrelevant

features using the conditional probability. Under the

assumption that the feature values are discrete, is a random

variable of features [, …] then a pattern vector =

[, …] is a realization of . Hence feature is surely

irrelevant iff for all subset of features including :

 (|
) (|

) (|)

 is a subset of excluding feature ,
 is a subset of

 and is the target which is a random variable taking

values . This definition implies that feature does not

affect the value of the target variable (i.e. is independent

of), hence is irrelevant to .

In this paper, we introduce a novel method that applies

features selection concepts and sieves the original candidate

features in a dataset to explore its intrinsic dimensionality

and to remove irrelevant features. This improves neural

network performance by recognizing and keeping relevant

features, which enhances the generalization capability of the

classifier and saves resources in any future data gathering.

2. Related Work

A number of approaches and techniques have been

proposed to overcome the curse of high dimensional datasets

(i.e. dataset with a large amount of features) that limits the

efficiency of a multilayer feed forward neural network. A

dataset with a large number of features implies that the

neural network receives a large number of inputs, which in

turn increases the required training time and computations,

especially in fully connected networks.

Features selection methods can be categorized mainly onto

two categories: 1) Filters and 2) Wrappers. Filters are

techniques that select features without taking into account the

optimization of a learning machine topology and its

performance (i.e. preprocessing, predictor independent step –

Using Random Probes for Neural Networks Based

Features Selection

F

model free techniques). On the other hand, wrappers involve

the process of predictor optimization as a correlated step to

the features selection process. Thus, even though they are

computationally more intensive, they have the advantage of

avoiding the problem that the selected features subset with

filters may not match the selected predictor perfectly, which

may result in poor performance of a classifier. In the case of

wrappers, a learning machine performance is utilized to

evaluate features subsets according to their predictive power.

[4]

In their approach, Heuristic for Variable Selection (HVS),

Yacoub and Bennani [5] suggested a feed forward neural

network based wrapper that tries to reduce the number of

input features according to network weights behavior during

training process. At each training session, the input feature

with the lowest weights will be pruned. Even though HVS is

simple and easy in the sense that it does not involve

complicated calculus and it has good results in comparison

with other methods, it requires a number of training sessions

equal to the number of irrelevant and redundant features to

be pruned, which might be large. This can limit HVS

performance by increasing the required search time, taking

into account that the search depends on the classifier

performance.

Another method described in [3] contains two phases, a

filter phase followed by a wrapper phase. The filter phase

sieves features using a genetic algorithms technique. The

second phase starts as a wrapper by presenting the selected

features from the first phase as inputs to a feed forward

neural network, in order to recognize and remove redundant

features according to that network’s performance. This

method removes features by filtering without taking into

account the performance of the produced classifier, since the

fitness function in the genetic algorithm evaluates features

according to cost and inconsistency measures which are not

critically related to the classifier performance. Moreover this

method consumes a large amount of neural network training

even though it is not necessary to retrain the network after

each reduction. The authors tried to overcome the problem of

training the neural network over the entire set of features by

using genetic algorithms, but genetic algorithms also involve

a large amount of computation.

It is possible to note that most of the methods which aim

to improve neural network performance are based on the

weights behavior during the training process of the network.

The main limitation for a neural network is its training cost

over the entire features in a dataset especially over those with

high dimension. Thus, some methods try to reduce the

number of features in a separate step before presenting data

to the neural network, as in [3]. Even though such an

approach saves time, it has risks removing some features that

may have a critical effect of improving classifier

performance in combination with other features.

Another method that follows the same strategy was

proposed in [6]. This method is a filter method that starts by

ranking all features using Gram-Schmidt orthogonalization

technique. [7] After that, a threshold is ranked and inserted in

that list. This threshold acts as a boundary between relevant

and irrelevant features. All features that are ranked lower

than that threshold will be discarded since they are

considered irrelevant features. After that, the selected

features are presented to a fully connected feed forward

neural network to be trained. In this approach the classifier is

not involved in the features selection process which reflects

on its performance since the selected features are not

necessarily will match the classifier perfectly even though

the classifier will converge over them.

An approach uses the sensitivity analysis for features

selection was explained in [8]. The main objective of the

sensitivity analysis is to find the saliency of each feature

individually. Except the feature under consideration all

features are assigned the mean of their values while training

the neural network over the current feature. This process is

repeated for all features. Then a random phantom feature is

used to compare the saliency of all features to its saliency,

thus each feature with saliency less than the phantom’s one

will be discarded. This method suffers of the massive

computations since it trains the neural network to find the

saliency for all features, which implies a number of trainings

that equal to the number of features.

 In his approach, Zhang suggested an evolutionary

combination between neural network and genetic algorithm.

This method performs the features selection process and the

network optimization simultaneously to produce a neural

network based classifier. [9] Actually the main disadvantage

here is the large amount of computations to end up with the

classifier.

3. Problem Definition

Multilayer feed forward neural networks are robust to

noise learning machines that perform classification and

pattern recognition tasks. Previous experiments, mentioned

in section II, showed that the performance of a neural

network over a dataset is affected by that data set features.

How many features and which features should be presented

to the neural network are two critical factors affecting the

performance. Since irrelevant features have negative effect

on a neural network’s classification and generalization

ability, removing such features will increase accuracy and

efficiency, saves resources, and critically reduce the required

training time. Several approaches have been proposed to

sieve and select a set of features that match a neural network

based classifier, as mentioned in the previous section. Some

of those approaches combine the process of features selection

and neural network topology optimization together

(wrappers) while some of them do not. Even though such

combination comes at price by increasing the required

amount of computations, it produces more efficient and

effective classifiers. Some of the methods that try to

overcome the problem of using neural networks over high

dimensional datasets require a long training time, while most

of them need a large amount of computations. The methods

which avoid the long training time perform the entire

features selection process or, at least part of it, independently

of the neural network optimization, which in turn exacerbates

the problem of matching features with learning machine.

3.1 BFSW: Binary Features Selection Wrapper

The proposed method is considered as a wrapper method

since it involves both the features selection process and

neural network optimization process.

BFSW tries to find a fully connected feed forward neural

network over the lowest possible number of features in a

dataset with good classification accuracy. As figure 1

illustrates, BFSW starts by training the neural network over

the entire candidate features in the dataset to produce a

decreasing ordered features ranked list. After that, the same

network will be trained over random probes, to generate a

threshold that separates relevant from irrelevant features.

Fig. 1

The General Process of BFSW

3.2 Relevance Index

Although BFSW combines and performs the process of

features selection and neural network optimization

simultaneously, it avoids the complicated calculus, the long

training time, and the massive amount of computations that

appear in the methods those have been mentioned earlier.

BFSW exploits the weights behavior of the neural network

during the training session over the candidate features. Those

weights can be understood as indicators of the importance of

a specific feature and its contribution to the target output.

Note that this is true if all features are normalized into the

same range. Thus, after training the neural network over the

entire dataset, it is possible to calculate the relevance index

of each feature. A feature’s relevance index is “relevance

quantitative assessment of a candidate feature and the target

output”. [10] is calculated according to a feature’s final

weights which connect it to the output layer through the

hidden layer, when that neural network converges, as

equation 1 shows [13]:

 ∑∑| |

 ()

H, O denote the hidden and the output layers respectively.

While is a node (i.e. feature) in the input layer. The inner

term is the product of the weights from input unit to hidden

unit , and from hidden unit to output unit o. The sum of the

absolute values of those products over all connections –in the

network- from unit to unit is the relevance index of

feature that shows its contribution and importance to the

output.

 In BFSW, to calculate the relevance index of all features

in a dataset, we need to train the neural network over the

entire set of features only once, which saves training time.

After calculating the relevance index of all features, a

decreasing ordered ranked list of the features is produced.

Features with high relevance indices of that list (i.e. highly

informative about the target) are considered as relevant

features, while those with low relevance indices (i.e. poorly

informative about the target) are considered as irrelevant.

The problem is that there is not a specific boundary that

separates relevant features from irrelevant features in that

list. Thus, it is necessary to find a suitable threshold that

separates those two parts from each other. That’s

accomplished using random probes.

3.3 Random Probe Threshold

One of the techniques that can be used to calculate a

threshold is the random probes technique. This technique

was first suggested in [11]. Random probes are irrelevant

features could be generated by shuffling the candidate

features vectors in the matrix of training data. [12] This

shuffling is done by keeping the targets as they are and

randomly swapping candidate features vectors. This results

in irrelevant features vectors for the targets. This process

keeps the features patterns as they are while producing

inconsistency with the target values in comparison with the

original dataset. After generating the probes, they will be

presented to the same neural network that was used in

ranking the candidate features. When the classifier converges

over the probes, the relevance indices for all probes will be

calculated using equation 1 exactly as what was done then

with the candidate features.

The random probe threshold will be generated from the

relevance indices of the probes. The random probe threshold

is the average of all random probes relevance indices, and it

is calculated by using equation 2:

 ((∑

) ⁄) ()

 is the probe threshold, is an input node in the input

layer I, while is the relevance index of random probe
which is equivalent to in equation 1 after applying that

equation over the final weights of the random probes instead

of the candidate features. What equation 2 does, is

calculating the average of the probes relevance indices over

the total number of the candidate input features which is

denoted as n, and thus producing the random probe threshold

 .
Since a neural network is robust to noise and adaptive in

nature, it will converge over the probes even though they are

irrelevant features. Hence the random probe threshold will

appear somewhere in the candidate features ranked list. This

probe is used as a boundary that separates relevant features

of the decreasing ordered ranked list from irrelevant features.

Thus all features with relevance indices greater than the

probe threshold will be kept, while those with lower

relevance indices will be discarded. As illustrated in figure 1,

after producing the set of the selected features (i.e. relevant

features) the network structure will be optimized and

retrained once again over the selected features. The

performance of the new classifier over the selected features

will be compared to the performance of the previous one.

This process is repeated till the stopping criterion is satisfied.

The stopping criterion of this method is based on the

classifier’s performance over unobserved examples, which is

assessed after each training session, directly after classifier

structure optimization and the training of the new classifier.

Thus, as long as the model performance increases (i.e. gets

better) in comparison with the performance of the model

from the previous training, the process of network training

and features reduction goes on. When the classifier

performance decreases, the process terminates and the NN

classifier with the best performance is chosen.

BFSW takes the structure optimization of a neural network

into consideration during the process. At each training

session the number of the units in the hidden layer should be

twice the number of input units in the input layer, while the

number of input units is always equivalent to the number of

the selected features at that training session (i.e. each input

unit receives only one input feature). Figure 2 illustrates the

general representation of the hypotheses in the hypothesis

space which contains every possible neural network based

classifier.

The proposed method is not as straightforward as it seems.

Actually an important question arises, which is: what if the

new classifier (after features selection and structure

optimization) does not have a better performance than that of

the previous one? The answer to this question has a critical

effect on the overall performance of this method. Till now,

such a case forms the stopping criterion of the process as

mentioned earlier. However we believe that it is not wise to

terminate the process at that point, because such an approach

does not guarantee that the classifier from the previous

training session is the best possible one that could be

produced by BFSW, better classifiers could be produced.

Thus, we will use a features selection heuristic to circumvent

this issue which is: “individually irrelevant features may

become relevant when used in combination”. [4]

Fig. 2

Neural Network Based Classifier

According to such assumption the proposed method

should not terminate just because the new classifier has not

better performance than that of the previous one. What we

need to do is to control the stopping criterion to assure that

the produced classifier is the best possible one that could be

produced by BFSW, taking into account that this method

does not perform a comprehensive search through the

hypothesis space. It is possible to achieve this by making the

method more dynamic and directing the search process to

reach better solutions.

BFSW tries to find good classifier by applying the “Best

First” search technique which can “back-track to more

promising previous subset of features and continue the

search from there when the path being explored begins to

look less promising”. [15] Every hypothesis in the hypothesis

space, as it is illustrated in figure 2, is a fully connected feed

forward neural network in which the number of the hidden

units is always twice the number of input units which are

equivalent to the number of candidate features at the current

training session. The hypothesis space is relying on a very

useful ordering structure, which is: a Specific-to-General

ordering of hypotheses. The most specific hypothesis (i.e. the

null hypothesis) is that receives the entire set of candidate

features as inputs.

The search process starts by enumerating the most specific

hypothesis. Then and according to its performance the search

direction is directed to those hypotheses which may have

better classification accuracy.

Assume that the n-classifier (i.e. the produced classifier at

training session n) has a better performance than that for

n+1-classifier. At that point the current stopping criterion

would be satisfied, which implies that the process should

terminate and the best classifier is the n
th

 classifier. Since the

discarded features at session n caused the performance of the

produced classifiers to decrease, applying the “Best First”

search technique is considered as a reasonable choice

because it has the ability to back-track to explore more

promising subsets. Since the classifier performance is

decreased after discarding a specific set of features, the

search process should be applied as described earlier to sieve

features in the discarded features set at training session n and

manipulate it as all features sets have been manipulated in

the previous training sessions. Thus, the discarded features

set at training session (n) will be divided into two parts

according to its corresponding probe threshold that is

generated by its corresponding discarded probes set (taking

into account that the random probe threshold at any training

session divides the probes list into two parts as well as it

does with the candidate features set). Hence, the upper part

of that list will be chosen and appended to the originally

selected one to form together the extended selected features

set. If the classifier performance over the extended selected

features set outperforms that of the previous classifier (i.e.

classifier produced at training session n), then the process

proceeds over the selected features set as explained before.

Otherwise the extension and the search process should be

applied over the discarded features set once again. This

process goes on while the discarded features set contains

more than one feature and the performance of the produced

classifier is still decreasing, at that situation the process

terminates and the classifier with the highest performance is

eventually chosen among all produced classifiers.

Even though the search strategy here does not enumerate

every possible hypothesis in the hypothesis space either

directly or indirectly, it is efficient since it avoids the

exhaustive search which consumes long time, and eventually

produces an efficient classifier.

4. Implementation and Results

BFSW was implemented and some preliminary

experiments ran in order to assess the effectiveness of this

combination. The classifier is a multilayer feed forward

neural network in which the number of the units in the input

layer is equivalent to the number of the candidate features at

the current training session, while the units’ number in the

hidden layer is always twice the number of units in the input

layer. The classifier is trained over the candidate features, the

random probes, and the selected features using

backpropagation learning algorithm and the same weights

initial values those were used at the first training session.

Actually, the neural network is trained over the random

probes only once (at the first training session) and the

produced relevance indices are used during the rest of the

training sessions without any need to retrain the network

over them once again.

The training and testing processes were performed over

the SPECT Heart and Breast Cancer datasets, real problems.

[14] Figure 3 shows the results of the BFSW implementation

over those datasets.

Figure 3 illustrates that the entire candidate features are 31

for the Breast Cancer and 22 for the SPECT Heart. In both

datasets BFSW was able to recognize irrelevant and

redundant features and make a decision to rule them out

while keeping the most informative (i.e. relevant) features by

using the random probe threshold and the classifier weights

as relevance indices. It is possible to note that the number of

features was roughly reduced from 22 to 9 and 31 to 7, for

SPECT Heart and Breast Cancer respectively while the

classifier overall classification accuracy was improved. The

classification accuracy increased after features selection

process.

(a)

(b)

Fig 3:

Implementation Results over SPECT Heart and Breast Cancer Datasets

For SPECT Heart the classification accuracy improved to

0.73 over 9 features instead of 0.7 over 22 features, and it

was also improved for the Breast Cancer to be 0.97 over 7

features instead of 0.96 over a set of 31 features. Even

though the classification accuracy was slightly increased, it is

better to have 0.97 or 0.73 of classification accuracy over a

small set of features than having lower or even the same

classification accuracy over the entire set of features. During

the implementation we noticed that BFSW consumed only

one training session to converge to global maxima over the

SPECT Heart, while for Breast Cancer it consumed two

training sessions. This variation appears because each data

set has its own characteristics, patterns, and correlations

which affect the performance of BFSW and make it vary

over different datasets. Moreover BFSW is considered as a

random technique, since it is based on neural networks which

are initialized randomly and the random probes which are

generated randomly. Such factors interpret the variation of

the BFSW over different datasets.

An important advantage of this method is the

simplification of random probes usage. As said before,

random probes approach was first suggested in [11]. The

major aim of this approach is to reduce the number of the

candidate features independently of the learning machine,

thus it is considered as a filter approach. In order to make

sure that the selected features, after applying random probes,

are sufficient to perform the learning task, the decision of

discarding features is supported by a statistical test. More

details about traditional usage of random probes are available

in [4]. BFSW used the random probes in a different and

simple way since it makes the decision of evaluating and

discarding features directly related to the learning machine

performance which in turn helps to avoid the required

statistical tests. Random probes are normally used with the

Gram-Schmidt technique which was first suggested in [7].

BFSW replaced Gram-Schmidt with the neural network and

used its weights as relevance indices for the candidate

features. This way makes the relevance indices more

informative about the effect and the importance of each

candidate feature.

5. Conclusion and Future Work

To sum up, the proposed method is a wrapper method that

aims to find sufficient features subset that is convenient to

match a neural network based classifier by searching a

hypothesis space which has a naturally occurring Specific-to-

General ordering structure. The search process is

implemented under the following assumption: “the solution

exists in the hypothesis space”. The major aim of BFSW is to

simplify and speed up the search process to reach the

required hypothesis in the hypothesis space, by applying an

efficient search technique than those used in some of the

currently existing methods. This method is a novel one since

it uses random probes in a wrapper technique and combines

it directly with the learning machine. In BFSW the neural

network topology is taken into consideration and it is

optimized at each training session. The preliminary results of

BFSW are promised results and showed the possibility and

the efficiency of combining random probes with neural

networks. In the future work, we are to implement BFSW

with more challenging datasets and compare its results with

the currently existing methods.

6. References

[1] T. Mitchell, Machine learning. Singapore: McGRAW-HILL, 1997.

[2] M. Negnevitsky, Artificial intelligence: a guide to intelligent systems.

Britain: Addison-Wesley, 2005.
[3] H. Yuan, S. Tseng, W. Gangshan, and Z. Fuyan, “A two-phase feature

selection method using both filter and wrapper,” IEEE International
Conference, vol. 2, 1999, pp. 132 – 136.

[4] I. Guyon, M. Nikravesh, S. Gunn, and L. A. Zadeh, Feature extraction –

foundations and applications. Berlin Heidelberg New York: Springer
2006.

[5] M. Yacoub and Y. Bennani, “HVS: a heuristic for variable selection in

multilayer artificial neural network classifier,” Artificial Neural
Networks in Engineering, 1997, pp. 527-532.

[6] M. Stricker, F. Vichot, G. Dreyfus, and F. Wolinski, “Two-step feature

selection and neural network classification for the trec-8 routing,” in
Proc. of the Eight Text Retrieval Conf. 1999.

http://arxiv.org/ftp/cs/papers/0007/0007016.pdf

[7] S. Chen, A. Billings, and W. Luo, “Orthogonal least squares methods
and their application to non-linear system identification,” International

journal of control, vol. 5, 1986, pp. 1873-1896.

[8] M. J. Embrechts, F. Arciniegas, M. Ozdemir, C. M. Breneman, K.
Bennett, and L. Lockwood, “Bagging neural network sensitivity analysis

for feature reduction for in-silico drug design,” in IEEE International

Joint Conf., 2001, pp. 2478–2482.
[9] B. Zhang, “A Joint evolutionary method based on neural network for

feature selection,” in IEEE Second International Conf. on Intelligent

Computation Technology and Automation, 2009, pp. 7 – 10.
[10] H. Stoppiglia, G. Dreyfus, R. Dubois, and Y. Oussar, “Ranking a

random feature for variable and feature selection,” J. Mach. Learn.

Res., vol. 3, 2003, pp. 1399-1414.
http://remidubois.free.fr/publications/118.pdf

[11]H. Stoppiglia, “Methodes statistiques de selection de modeles

neuronaux, application financieres et bancaires,” PhD. Dissertation,
Universite Pierre et Marie Curie, Paris, 1997.

[12] J. Bi, K. P. Bennett, M. Embrechts, C. M. Breneman, and M. Song,

“Dimensionality reduction via sparse support vector machines,” Journal
of Machine Learning Research, vol. 3, 2003, pp. 1229-1243.

http://homepages.rpi.edu/~bennek/papers/bi03a.pdf

[13] P. Leray, and P. Gallinari, “Feature selection with neural networks,”
Behaviormetrika, vol. 26, 1999, pp.145–166.

[14] “Machine Learning Repository”, http://archive.ics.uci.edu/ml/

[15] M. A. Hall. “Correlation-based Feature Selection for Machine
 Learning.” PhD, The University of Waikato, Hamilton, NewZealand,

 1999.

http://arxiv.org/ftp/cs/papers/0007/0007016.pdf
http://remidubois.free.fr/publications/118.pdf
http://homepages.rpi.edu/~bennek/papers/bi03a.pdf
http://archive.ics.uci.edu/ml/

