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Abstract- Quality of data residing in a database gets 
degraded and leads to misinterpretation due to a multitude of 
factors. In some cases this results in duplicate records that 
needs to be merged into a single entity. In doing so, one 
aspect requirring attention is the way in which string 
attributes are to be compared. Even though there are different 
methods in the literature that address the issue of 
approximate string matching, they all fall short in terms of 
accuracy when encountered with words from the Sinhalese 
language written in English. In this paper, it is intended to 
propose the development of an improved phonetic matching 
algorithm, which improved the accuracy of approximate 
string matching remarkably. This algorithm outperforms the 
phonetic matching algorithms available in the literature when 
applied on datasets containing Sinhalese names and words 
written in English. In addition, it demonstrates a 
computational time comparable with phonetic matching 
algorithms available in the literature.  
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Mining, Algorithm Design and Development, Clustering 

1. Introduction 
 Quality of data residing in a database gets degraded and 
leads to misinterpretation of information due to a multitude of 
factors. Such factors vary from poor database design (update 
anomalies due to lack of normalization), lack of standards for 
recording database fields (person name and address) to typing 
mistakes (lexicographical errors, character transpositions). 
Data of such poor quality could result in many damages being 
caused, for example in a business application, sending wrong 
products and invoices to the same customer, sending products 
or bills to wrong addresses, inability to locate customers, etc. 
In such a case it is important to identify duplicates and merge 
them into a single entity, i.e. identify whether two entities are 
approximately the same. In the scientific community this 
process is known as record linkage [12]. 
 A more formal definition of record linkage can be given as 
the task of identifying records corresponding to the same 
entity from one or more data sources. Real world entities of 
interest include individuals, families, organizations, 
geographic regions, etc while applications of record linkage 
are in areas such as marketing, customer relationship 
management (CRM), law enforcement, fraud detection, 
epidemiological studies and government administration [13]. 
 Methods used to tackle record linkage problems fall into two 
broad categories: One commonly used method is deterministic 
models in which sets of often very complex rules or 

production systems are used to classify pairs of records as 
links (i.e. relating to the same entity). The other is the 
probabilistic model in which statistical or probabilistic 
methods are used to classify record pairs. In recent years, 
rapid developments of computational statistics have enabled 
researchers to move from classical probabilistic methods to 
newer and advanced approaches using maximum entropy, 
machine-learning techniques such as Artificial Neural 
Networks (ANN) and Phonetic matching [13]. Moreover, 
recent developments in the science of record linkage 
emphasize on approximate string matching more than any 
other aspect [3], [15].  

The rationale behind focusing attention on approximate 
string matching is mainly driven by the fact that information 
about real world entities is most often represented as a 
collection of string attributes. The enabling technology that 
breathes life into duplicate identification of string attributes is 
phonetic matching. In order to perform this matching 
operation, there are different phonetic matching algorithms 
available in the literature. They provide a simple and time-
tested mechanism for phonetic string matching. Although the 
simplicity of the design and implementation encourage such 
an approach in order to develop record linkage applications, 
limitations of the same are quite significant. The most 
highlighted drawback of phonetic matching algorithms 
available in the literature is its limited scope and low accuracy 
when encountered with words from the Sinhalese language 
written in English. This is probably due to the fact that 
phonetic matching algorithms such as Soundex, NYSIIS and 
Metaphone are developed for English words and it has 
language components, for example arrangement of vowels 
and consonants different from Sinhalese language. Therefore, 
the requirement arises for a modified version of phonetic 
matching algorithms to suit Sinhalese words and names. The 
intension of this paper is to present the development of an 
improved version of Soundex algorithm to suit Sinhalese 
names and words. 

We begin by briefly describing the problem domain and the 
necessary background on phonetic matching algorithms. Then 
we describe the proposed algorithm followed by the 
experimental setup and the results. Finally, we bring into 
focus a real world application where the improved algorithm 
can be directly applied in order to increase performance and 
accuracy. 

2. Problem Domain 
In many matching situations, it is not possible to compare 

two strings exactly (character-by-character) because of 



 Retain the first letter of the string 
 Remove all occurrences of the following letters, unless it is the 

first letter: a, e, h, i, o, u, w, y 
 Assign numbers to the remaining letters (after the first) as follows: 

o b, f, p, v = 1 
o c, g, j, k, q, s, x, z = 2 
o d, t = 3 
o l = 4 
o m, n = 5 
o r = 6 

 Remove all pairs of digits which occur beside each other from the 
string that resulted after the previous step 

 Return the first four characters, right-padding with zeroes if there 
are fewer than four 

typographical errors. Dealing with typographical errors via 
approximate string comparison has been a major research area 
in computer science [1]. In record linkage, one needs to have a 
function that represents approximate agreement, with 
agreement being represented by 1 and degrees of partial 
agreement being represented by numbers between 0 and 1[2]. 
Having such methods is crucial for correct and accurate 
matching. For instance, in a major census application for 
measuring undercount, more than 25% of matches would not 
have been found via exact character-by-character matching 
[3]. Therefore, a mechanism to perform approximate string 
matching for datasets with typographical errors is essential in 
order to achieve high accuracy. The domain of the problem at 
hand primarily falls under the disciplines of phonetic 
matching, approximate string comparisons and algorithm 
development. However, implementing the solution requires 
in-depth study into several other domains of science and 
technology such as text retrieval, information retrieval, 
phonemes, etc. 

Phonetic matching is used to evaluate the similarity of 
pronunciation of pairs of strings, independent of the characters 
used in their spelling. Queries to sets of strings, in particular 
databases of names, are often resolved by phonetic matching 
techniques. For example, when querying a lexicon, only the 
sound of a string may be known, and in addition, collections 
of names or words frequently contain spelling, typographical, 
and homonymic errors making it difficult, if not impossible, 
to perform one-to-one matching of strings. Thus, the 
requirement arises for a practical phonetic matching 
technique. Not only must the algorithm provide reliable 
judgment of similarity, but must also permit rapid evaluation 
of queries on a large data set: for example, lexicons of text 
databases can have vocabularies in excess of one million 
words [7].  
 In the literature there are several algorithms for phonetic 
matching, such as Soundex [6] and the more recent Phonix [4, 
5]. These algorithms, which are based on the assumption that 
the alphabet can be partitioned into sets of sound alike 
characters are cheap to evaluate but do not perform well when 
encountered with words from the Sinhalese language. In 
general, the sound of a word can be described by a sequence 
of phonemes, which are the basic sounds available for 
vocalization [7]. A string of phonemes is the pronunciation of 
the word it represents, or for brevity, it represents sound, as 
distinct from the word's spelling, or string of letters. The set 
of phonemes is an international, language-independent 
standard [8]. A precise phonetic matching algorithm would 
regard two strings as identical if their sounds were identical, 
regardless of their actual spelling. It would recognize the 
similarity of kw and qu and of x and ecks. However, for 
Sinhalese, and indeed for most languages, phonemes 
correspond to neither individual letters nor syllables. In 
general it is not possible therefore, to partition a string or a 
sequence of letters into substrings that correspond to 
phonemes; nor is there any possibility of denoting phonemes 
in terms of sequences of individual letters [14]. In light of the 
above facts, it is not surprising that phonetic matching 
algorithms available in the literature do not perform well 

against Sinhalese words and names. Individual letters of 
Sinhalese words represented in English do not represent 
phonemes and many letters have very different sounds in 
different contexts [14]. Our aim in this research is to discover 
whether a modified approach to phonetic matching using 
Soundex might yield better performance, whether phonetic 
matching together with other algorithms and resources could 
produce accurate and better results. 

3. Phonetic Matching Algorithms  
 Phonetic matching algorithms focus on the pronunciation 
of the words instead of the spellings to identify matches. 
Under phonetic matching, the most profound and time-tested 
algorithms are Soundex, NYSIIS and Phonix algorithms. A 
brief description of Soudex will be provided in the following 
section. 

3.1 Soundex Algorithm 
 Soundex is a phonetic algorithm for indexing names by 
sound as pronounced in English. The goal is for names with 
the same pronunciation to be encoded to the same 
representation so that they can be matched despite minor 
differences in spelling [6]. Improvements to Soundex are the 
basis for many modern phonetic algorithms [9]. The Soundex 
code for a name consists of a letter followed by three 
numbers: the letter is the first letter of the name, and the 
numbers encode the remaining consonants. Similar sounding 
consonants share the same number, for example, B, F, P and 
V are all encoded as 1.	 Figure 1 illustrates the Soundex 
algorithm with respect to the different steps it contains. 

4. SPARCL: The Proposed Algorithm 

As described earlier in the paper the original Soundex 
algorithm does not perform well when encountered with 
words and names from Sinhalese language. This is due to the 
fact that Soundex, Metaphone and other algorithms were 
originally designed for words from English language and in 
addition, Individual letters of Sinhalese words represented in 
English do not represent phonemes and many letters have very 
different sounds in different contexts. Therefore, the rationale 
behind the development of the proposed algorithm is to make 

Figure 1: Soundex Algorithm  



 Retain the first letter of the string 
 Remove all occurrences of the following letters, unless it is the 

first letter: a, e, h, i, o, u, w, y 
 Assign numbers to the remaining letters (after the first) as 

follows: 
o b, f, p, v = 1 
o c, g, j, k, z = 2 
o d -> j   if in -dge-, -dgy- or -dgi- 
o q -> k 
o s -> x   (sh) if before "h" or in -sio- or -sia- 
o s   otherwise 
o s -> x 
o t -> x   (sh) if -tia- or -tio- 
o t -> o   (th) if before "h" 
o t -> t    otherwise 
o l = 4 
o m, n = 5 
o r = 6 
o x -> ks 
o z -> s 

 Remove all pairs of digits which occur beside each other from 
the string that resulted after the previous step 

 Return the first four characters, right-padding with zeroes if there 
are fewer than four 

use of the concept of phonemes and consonants from 
Sinhalese language to increase the accuracy of Soundex for 
matching Sinhalese names and words represented in English. 
In doing this, the Soundex algorithm given in Figure 1 had to 
be modified to represent consonants and phonemes from 
Sinhalese language. The name SPARCL stands for Sinhalese 
Phonetic Algorithm for Record Clustering and Linkage. 
Figure 2 illustrates the modified version of the Soundex 
algorithm. In addition, the modified algorithm was combined 
with a string similarity measure that takes into account the 
primitive number of operations that is required to transform 
one string to another. This addition, surprisingly, increased the 
accuracy of the algorithm significantly. 

The new addition was facilitated by the Levenstein distance 
algorithm [9], which compares strings according to spelling 
alone with no reference to phonetic relationships [10].  
 One important finding is that distance measures on its own 
perform better than the original Soundex algorithm when 
applied on Sinhalese names and words. Despite the accuracy 
gain, distance measures alone are, however, unable to identify 
strings with similar sound yet dissimilar spelling such as file 
and phial or “Nihal” and “Neil”. It is the existence of such 
pairs that motivates the need for a combination of distance 
measures and a good phonetic matching algorithm. 

One way to implement distance algorithms is to measure 
the closeness in terms of the number of primitive operations 
necessary to convert the string into an exact match. To be 
more precise, let P be a pattern string and T a text string over 
the same alphabet. The Levenstein distance between P and T 
is the smallest number of changes sufficient to transform a 
substring of T into P, where the changes may be: 

Substitution - two corresponding characters may differ: 
Rathnapure         Rathnapura. 
Insertion - we may add a character to T that is in P:  
Ratnapura           Rathnapura. 
Deletion - we may delete from T a character that is not in P: 
Ratthnapura          Rathnapura. 

The algorithm is implemented using a dynamic 
programming approach that calculates the number of edits D 
between every possible left-sided substring of each of the two 
words a and b. D(ai, bj), for example, is the edit distance 
between the first i letters of the word a and the first j letters of 
the word b. The dynamic programming calculation is 
recursive, where CI, CM, and CD, are the costs of insertion, 
substitution, and deletion respectively. In the simplest case, 
the costs of insertion, deletion, and substitution are all unit 
costs, and the cost of a match is zero. That is, CI(x) = CD(x) = 
1 for all x and CM(x,y) = 0 if x = y, 1 otherwise. 
 
 
 
 
 
 

Results of the experiments carried out on the combined 
approach will be presented in the next section. It is 

worthwhile discussing even though it has not been 
implemented yet, another possible extension that could 
further improve the accuracy of the proposed algorithm. It is 
clear that there is no exact algorithm for deriving the likely 
sound of a string. However, a statistical approach can be 
adopted to realize this purpose. In the literature there are table 
books that provide phonemes, phoneme strings and spellings 
that include the corresponding sounds, but these sources do 
not provide statistics of the likelihood of correspondence [11].  
An alternative approach is to use a software dictionary that 
provides the spellings and pronunciation of words. The 
sounds or the pronunciation given in the dictionary provides 
an alternative approach to phonetic matching. The purpose of 
phonetic matching can be directly substituted by this method. 
Adopting this approach, together with distance measures can 
provide accuracy comparable to the modified approach.  

5. Implementation 
The implementation of the SPARCL algorithm was carried 

out in C# programming language under Microsoft Visual 
Stdio.NET development environment.  

The code of the algorithm is organized to optimize the 
matching process by avoiding unnecessary execution of 
loops, recursion and redundant comparison of strings. In 
addition, the code conforms to a comprehensive coding 
standard enforcing best practices and avoiding pitfalls. The 
Graphical User Interface (GUI) provides functionality to 
select any word list stored at a particular location. In addition, 
functionality is provided to easily apply the SPARCL 
algorithm on a lexicon and test the accuracy and 
computational time of the process. The outputs provide the 
similar pairs of words and names as identified by the 
algorithm. Furthermore, Soundex algorithm and the 
Levenstein distance algorithm can also be applied on the 
specified lexicon in order to carry out a performance 

Figure 2: Proposed SPARCL Algorithm  
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comparison between the three algorithms. Figure 3 illustrates 
the outputs obtained by executing the three algorithms on a 
dataset containing 200 Sinhalese names. Further explanation 
of the outputs will be provided in section 6.  

 

6. Empirical Evaluation 
We now describe our empirical evaluation of the SPARCL 

algorithms’ accuracy and computation time. The datasets that 
have been used for evaluating SPARCL are described below. 

6.1. Datasets 
For measuring the accuracy of the SPARCL algorithm we 

used a dataset containing 200 Sri Lankan surnames. All 
entries were distinct except for 20 similar surnames with 
typographical errors, which were deliberately incorporated 
into the dataset. In addition, a different dataset with 10000 
entries were created to compare the computational time of the 
proposed SPARCL algorithm against the original Soundex 
algorithm. In addition to comparing the improved algorithm 
with the original Soundex algorithm, it was compared with 
the Levenstein distance algorithm.  

6.2. Experimental Setup 
The accuracy of the SPARCL algorithm was compared with 

the original Soundex algorithm as well as the Levenstein 
distance algorithm. This was accomplished using the dataset 
containing 200 Sri Lankan surnames. Each word in the dataset 
was compared with the rest of the words only once and any 
similar pair of words was counted as a match.   

Similarly, for testing the computation time of the SPARCL 
algorithm a dataset of 10000 words was utilized. Each time 
the SPARCL algorithm was executed on a subset of the 
dataset. Similarly, the original Soundex algorithm and the 
Levenstein distance algorithm was executed on the same 
subset and the computation time or the running time of the 
algorithms were measured in milliseconds. The obtained 
results will be discussed in the following sections. 

6.3. Accuracy 
The SPARCL algorithm produced the same set of similar 

word pairs that are actually present in the dataset. As 
described above under section 6.1, we deliberately 
incorporated 20 pairs of similar words with typographical 
mistakes. The SPARCL algorithm exactly produced the same 

20 pairs of words as matches. Original Soundex algorithm on 
the other hand, produced 68 incorrect pairs in addition to 17 
correct pairs. Similarly, the Levenstein algorithm produced 12 
incorrect pairs in addition, to 16 correct pairs.  Therefore, 
SPARCL algorithm demonstrates an accuracy of 100% and an 
error rate of 0%. (We note that this 100% accuracy was 
obtained for a dataset with 200 records). Soundex algorithm 
demonstrates an accuracy of 85%. However, this high 
accuracy rate is highly compromised by the fact that it 
produces another additional 68 incorrect matches. Similarly, 
Levenstein distance algorithm demonstrates an accuracy of 
80% with additional 12 incorrect matches.  It is clear from the 
results that Levenstein algorithm alone performs better than 
the original Soundex algorithm when encountered with 
Sinhalese words. However, SPARCL, which combines a 
modified version of Soundex and Levenstein distance 
algorithms to suit Sinhalese names and words, outperforms 
the other two methods by quite a margin.  

 
6.4. Computational Time 

We measured the computation time for all three algorithms 
separately using a dataset of 10000 names. The algorithms 
were run on Windows XP using a 1.66 GHz Intel Centrino 
Duo machine with 512 MB of RAM. Different subsets of the 
dataset were created ranging from 200 entries to 10000 
entries. For all subsets, computation times were within an 
order of magnitude of each other for all three algorithms. 
Original Soundex algorithm is faster than both the proposed 
algorithm and the Levenstein distance algorithm. However, 
the proposed approach and the original Soundex produced 
comparable results with respect to computational time. Even 
though, Soundex demonstrates a small performance edge over 
the proposed algorithm, it is highly compromised by the huge 
reduction in accuracy when encountered with words from 
Sinhalese language. The computational times for each of the 
subsets are given in Table 1. Figure 4 illustrates a graphical 
representation of the computational times of the three 
algorithms in the same chart. 

One area where duplication is quite evident and record 
linkage proves to be quite useful is with regard to newspaper 
articles. We consider such articles related to human right 
violations. Articles related to the same incident are published 
in various newspapers on different days in various ways. Also 
the same incident is reported and discussed in the same 
newspaper continuously for several days. This leads to the 
problem of duplication which can in turn lead to other large 
scale problems at the national and international level. This 
type of duplication can reveal an incorrect image about the 
country’s situation to local as well as international 
communities.  

Such duplication can lead to an over estimation of the 
violations taken place in a country and could be even more 
severe when there are ethnic issues or a civil war going on in a 
country like Sri Lanka. Record linkage can help alleviate 
these problems to a great extent. A dataset of human right 
violations would generally consist of attributes such as victim 
name, location, incident type, perpetrator, etc. These attributes 
are often represented as character strings. In order to perform 

Figure 3: Outputs Obtained by the Algorithms  
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record linkage on these attributes we can make use of 
phonetic matching. Since these attributes contain names and 
words from Sinhalese language, the original Soundex 
algorithm as mentioned earlier is unable to provide the 
required level of accuracy.  

However, according to results given in section 6, the 
proposed SPARCL algorithm can provide the required 
foundation to achieve high level of accuracy. In addition, the 
use of SPARCL algorithm for this purpose will not result in a 
huge performance loss due to the fact that it demonstrates a 
comparable computation time with the original Soundex 
algorithm. 

Apart from the aforementioned purpose, the SPARCL 
algorithm can also be used in the development of a generic 
framework for record classification and linkage. The 
SPARCL algorithm will lie in the center of the framework 
providing the backbone for duplicate identification of string 
attributes. In addition, the framework can provide additional 
functionality such as clustering, blocking, weighting 
attributes, selection of blocking variables, prediction of 
missing attribute values, etc required by a general record 
linkage program. The development of the framework is under 
working progress. 

7. Conclusion   
This paper proposes a modified phonetic matching 

algorithm as an alternative to both Soundex algorithm and the 
Levenstein distance algorithm for comparing names and 
words from Sinhalese language written in English. 
Experiments show that SPARCL produce better results in 
terms of accuracy than the other two approaches. In terms of 
performance, both SPARCL algorithm and Soundex 
algorithm show similar computational times on a number of 
datasets. However, Levenstein distance algorithm shows very 
low performance relative to the other two approaches. 

 Directions for future research include refining the 
algorithm to make use of the pronunciations provided in an 
online or offline dictionary to perform phonetic matching. In 
addition, the proposed SPARCL algorithm can be applied to a 
myriad of real world problems including the development of a 
framework for record classification and linkage. 
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