
SPARCL: An Improved Approach for Matching Sinhalese
Words and Names in Record Clustering and Linkage

Gayan Prasad Hettiarachchi, Dilhari Attygalle
Department of Statistics, University of Colombo

Colombo-07, Sri Lanka

Abstract- Quality of data residing in a database gets
degraded and leads to misinterpretation due to a multitude of
factors. In some cases this results in duplicate records that
needs to be merged into a single entity. In doing so, one
aspect requirring attention is the way in which string
attributes are to be compared. Even though there are different
methods in the literature that address the issue of
approximate string matching, they all fall short in terms of
accuracy when encountered with words from the Sinhalese
language written in English. In this paper, it is intended to
propose the development of an improved phonetic matching
algorithm, which improved the accuracy of approximate
string matching remarkably. This algorithm outperforms the
phonetic matching algorithms available in the literature when
applied on datasets containing Sinhalese names and words
written in English. In addition, it demonstrates a
computational time comparable with phonetic matching
algorithms available in the literature.

Keywords- Record Linkage, Phonetic Matching, Data
Mining, Algorithm Design and Development, Clustering

1. Introduction
 Quality of data residing in a database gets degraded and
leads to misinterpretation of information due to a multitude of
factors. Such factors vary from poor database design (update
anomalies due to lack of normalization), lack of standards for
recording database fields (person name and address) to typing
mistakes (lexicographical errors, character transpositions).
Data of such poor quality could result in many damages being
caused, for example in a business application, sending wrong
products and invoices to the same customer, sending products
or bills to wrong addresses, inability to locate customers, etc.
In such a case it is important to identify duplicates and merge
them into a single entity, i.e. identify whether two entities are
approximately the same. In the scientific community this
process is known as record linkage [12].
 A more formal definition of record linkage can be given as
the task of identifying records corresponding to the same
entity from one or more data sources. Real world entities of
interest include individuals, families, organizations,
geographic regions, etc while applications of record linkage
are in areas such as marketing, customer relationship
management (CRM), law enforcement, fraud detection,
epidemiological studies and government administration [13].
 Methods used to tackle record linkage problems fall into two
broad categories: One commonly used method is deterministic
models in which sets of often very complex rules or

production systems are used to classify pairs of records as
links (i.e. relating to the same entity). The other is the
probabilistic model in which statistical or probabilistic
methods are used to classify record pairs. In recent years,
rapid developments of computational statistics have enabled
researchers to move from classical probabilistic methods to
newer and advanced approaches using maximum entropy,
machine-learning techniques such as Artificial Neural
Networks (ANN) and Phonetic matching [13]. Moreover,
recent developments in the science of record linkage
emphasize on approximate string matching more than any
other aspect [3], [15].

The rationale behind focusing attention on approximate
string matching is mainly driven by the fact that information
about real world entities is most often represented as a
collection of string attributes. The enabling technology that
breathes life into duplicate identification of string attributes is
phonetic matching. In order to perform this matching
operation, there are different phonetic matching algorithms
available in the literature. They provide a simple and time-
tested mechanism for phonetic string matching. Although the
simplicity of the design and implementation encourage such
an approach in order to develop record linkage applications,
limitations of the same are quite significant. The most
highlighted drawback of phonetic matching algorithms
available in the literature is its limited scope and low accuracy
when encountered with words from the Sinhalese language
written in English. This is probably due to the fact that
phonetic matching algorithms such as Soundex, NYSIIS and
Metaphone are developed for English words and it has
language components, for example arrangement of vowels
and consonants different from Sinhalese language. Therefore,
the requirement arises for a modified version of phonetic
matching algorithms to suit Sinhalese words and names. The
intension of this paper is to present the development of an
improved version of Soundex algorithm to suit Sinhalese
names and words.

We begin by briefly describing the problem domain and the
necessary background on phonetic matching algorithms. Then
we describe the proposed algorithm followed by the
experimental setup and the results. Finally, we bring into
focus a real world application where the improved algorithm
can be directly applied in order to increase performance and
accuracy.

2. Problem Domain
In many matching situations, it is not possible to compare

two strings exactly (character-by-character) because of

 Retain the first letter of the string
 Remove all occurrences of the following letters, unless it is the

first letter: a, e, h, i, o, u, w, y
 Assign numbers to the remaining letters (after the first) as follows:

o b, f, p, v = 1
o c, g, j, k, q, s, x, z = 2
o d, t = 3
o l = 4
o m, n = 5
o r = 6

 Remove all pairs of digits which occur beside each other from the
string that resulted after the previous step

 Return the first four characters, right-padding with zeroes if there
are fewer than four

typographical errors. Dealing with typographical errors via
approximate string comparison has been a major research area
in computer science [1]. In record linkage, one needs to have a
function that represents approximate agreement, with
agreement being represented by 1 and degrees of partial
agreement being represented by numbers between 0 and 1[2].
Having such methods is crucial for correct and accurate
matching. For instance, in a major census application for
measuring undercount, more than 25% of matches would not
have been found via exact character-by-character matching
[3]. Therefore, a mechanism to perform approximate string
matching for datasets with typographical errors is essential in
order to achieve high accuracy. The domain of the problem at
hand primarily falls under the disciplines of phonetic
matching, approximate string comparisons and algorithm
development. However, implementing the solution requires
in-depth study into several other domains of science and
technology such as text retrieval, information retrieval,
phonemes, etc.

Phonetic matching is used to evaluate the similarity of
pronunciation of pairs of strings, independent of the characters
used in their spelling. Queries to sets of strings, in particular
databases of names, are often resolved by phonetic matching
techniques. For example, when querying a lexicon, only the
sound of a string may be known, and in addition, collections
of names or words frequently contain spelling, typographical,
and homonymic errors making it difficult, if not impossible,
to perform one-to-one matching of strings. Thus, the
requirement arises for a practical phonetic matching
technique. Not only must the algorithm provide reliable
judgment of similarity, but must also permit rapid evaluation
of queries on a large data set: for example, lexicons of text
databases can have vocabularies in excess of one million
words [7].
 In the literature there are several algorithms for phonetic
matching, such as Soundex [6] and the more recent Phonix [4,
5]. These algorithms, which are based on the assumption that
the alphabet can be partitioned into sets of sound alike
characters are cheap to evaluate but do not perform well when
encountered with words from the Sinhalese language. In
general, the sound of a word can be described by a sequence
of phonemes, which are the basic sounds available for
vocalization [7]. A string of phonemes is the pronunciation of
the word it represents, or for brevity, it represents sound, as
distinct from the word's spelling, or string of letters. The set
of phonemes is an international, language-independent
standard [8]. A precise phonetic matching algorithm would
regard two strings as identical if their sounds were identical,
regardless of their actual spelling. It would recognize the
similarity of kw and qu and of x and ecks. However, for
Sinhalese, and indeed for most languages, phonemes
correspond to neither individual letters nor syllables. In
general it is not possible therefore, to partition a string or a
sequence of letters into substrings that correspond to
phonemes; nor is there any possibility of denoting phonemes
in terms of sequences of individual letters [14]. In light of the
above facts, it is not surprising that phonetic matching
algorithms available in the literature do not perform well

against Sinhalese words and names. Individual letters of
Sinhalese words represented in English do not represent
phonemes and many letters have very different sounds in
different contexts [14]. Our aim in this research is to discover
whether a modified approach to phonetic matching using
Soundex might yield better performance, whether phonetic
matching together with other algorithms and resources could
produce accurate and better results.

3. Phonetic Matching Algorithms
 Phonetic matching algorithms focus on the pronunciation
of the words instead of the spellings to identify matches.
Under phonetic matching, the most profound and time-tested
algorithms are Soundex, NYSIIS and Phonix algorithms. A
brief description of Soudex will be provided in the following
section.

3.1 Soundex Algorithm
 Soundex is a phonetic algorithm for indexing names by
sound as pronounced in English. The goal is for names with
the same pronunciation to be encoded to the same
representation so that they can be matched despite minor
differences in spelling [6]. Improvements to Soundex are the
basis for many modern phonetic algorithms [9]. The Soundex
code for a name consists of a letter followed by three
numbers: the letter is the first letter of the name, and the
numbers encode the remaining consonants. Similar sounding
consonants share the same number, for example, B, F, P and
V are all encoded as 1.	 Figure 1 illustrates the Soundex
algorithm with respect to the different steps it contains.

4. SPARCL: The Proposed Algorithm

As described earlier in the paper the original Soundex
algorithm does not perform well when encountered with
words and names from Sinhalese language. This is due to the
fact that Soundex, Metaphone and other algorithms were
originally designed for words from English language and in
addition, Individual letters of Sinhalese words represented in
English do not represent phonemes and many letters have very
different sounds in different contexts. Therefore, the rationale
behind the development of the proposed algorithm is to make

Figure 1: Soundex Algorithm

 Retain the first letter of the string
 Remove all occurrences of the following letters, unless it is the

first letter: a, e, h, i, o, u, w, y
 Assign numbers to the remaining letters (after the first) as

follows:
o b, f, p, v = 1
o c, g, j, k, z = 2
o d -> j if in -dge-, -dgy- or -dgi-
o q -> k
o s -> x (sh) if before "h" or in -sio- or -sia-
o s otherwise
o s -> x
o t -> x (sh) if -tia- or -tio-
o t -> o (th) if before "h"
o t -> t otherwise
o l = 4
o m, n = 5
o r = 6
o x -> ks
o z -> s

 Remove all pairs of digits which occur beside each other from
the string that resulted after the previous step

 Return the first four characters, right-padding with zeroes if there
are fewer than four

use of the concept of phonemes and consonants from
Sinhalese language to increase the accuracy of Soundex for
matching Sinhalese names and words represented in English.
In doing this, the Soundex algorithm given in Figure 1 had to
be modified to represent consonants and phonemes from
Sinhalese language. The name SPARCL stands for Sinhalese
Phonetic Algorithm for Record Clustering and Linkage.
Figure 2 illustrates the modified version of the Soundex
algorithm. In addition, the modified algorithm was combined
with a string similarity measure that takes into account the
primitive number of operations that is required to transform
one string to another. This addition, surprisingly, increased the
accuracy of the algorithm significantly.

The new addition was facilitated by the Levenstein distance
algorithm [9], which compares strings according to spelling
alone with no reference to phonetic relationships [10].
 One important finding is that distance measures on its own
perform better than the original Soundex algorithm when
applied on Sinhalese names and words. Despite the accuracy
gain, distance measures alone are, however, unable to identify
strings with similar sound yet dissimilar spelling such as file
and phial or “Nihal” and “Neil”. It is the existence of such
pairs that motivates the need for a combination of distance
measures and a good phonetic matching algorithm.

One way to implement distance algorithms is to measure
the closeness in terms of the number of primitive operations
necessary to convert the string into an exact match. To be
more precise, let P be a pattern string and T a text string over
the same alphabet. The Levenstein distance between P and T
is the smallest number of changes sufficient to transform a
substring of T into P, where the changes may be:

Substitution - two corresponding characters may differ:
Rathnapure Rathnapura.
Insertion - we may add a character to T that is in P:
Ratnapura Rathnapura.
Deletion - we may delete from T a character that is not in P:
Ratthnapura Rathnapura.

The algorithm is implemented using a dynamic
programming approach that calculates the number of edits D
between every possible left-sided substring of each of the two
words a and b. D(ai, bj), for example, is the edit distance
between the first i letters of the word a and the first j letters of
the word b. The dynamic programming calculation is
recursive, where CI, CM, and CD, are the costs of insertion,
substitution, and deletion respectively. In the simplest case,
the costs of insertion, deletion, and substitution are all unit
costs, and the cost of a match is zero. That is, CI(x) = CD(x) =
1 for all x and CM(x,y) = 0 if x = y, 1 otherwise.

Results of the experiments carried out on the combined
approach will be presented in the next section. It is

worthwhile discussing even though it has not been
implemented yet, another possible extension that could
further improve the accuracy of the proposed algorithm. It is
clear that there is no exact algorithm for deriving the likely
sound of a string. However, a statistical approach can be
adopted to realize this purpose. In the literature there are table
books that provide phonemes, phoneme strings and spellings
that include the corresponding sounds, but these sources do
not provide statistics of the likelihood of correspondence [11].
An alternative approach is to use a software dictionary that
provides the spellings and pronunciation of words. The
sounds or the pronunciation given in the dictionary provides
an alternative approach to phonetic matching. The purpose of
phonetic matching can be directly substituted by this method.
Adopting this approach, together with distance measures can
provide accuracy comparable to the modified approach.

5. Implementation
The implementation of the SPARCL algorithm was carried

out in C# programming language under Microsoft Visual
Stdio.NET development environment.

The code of the algorithm is organized to optimize the
matching process by avoiding unnecessary execution of
loops, recursion and redundant comparison of strings. In
addition, the code conforms to a comprehensive coding
standard enforcing best practices and avoiding pitfalls. The
Graphical User Interface (GUI) provides functionality to
select any word list stored at a particular location. In addition,
functionality is provided to easily apply the SPARCL
algorithm on a lexicon and test the accuracy and
computational time of the process. The outputs provide the
similar pairs of words and names as identified by the
algorithm. Furthermore, Soundex algorithm and the
Levenstein distance algorithm can also be applied on the
specified lexicon in order to carry out a performance

Figure 2: Proposed SPARCL Algorithm

(1)

comparison between the three algorithms. Figure 3 illustrates
the outputs obtained by executing the three algorithms on a
dataset containing 200 Sinhalese names. Further explanation
of the outputs will be provided in section 6.

6. Empirical Evaluation
We now describe our empirical evaluation of the SPARCL

algorithms’ accuracy and computation time. The datasets that
have been used for evaluating SPARCL are described below.

6.1. Datasets
For measuring the accuracy of the SPARCL algorithm we

used a dataset containing 200 Sri Lankan surnames. All
entries were distinct except for 20 similar surnames with
typographical errors, which were deliberately incorporated
into the dataset. In addition, a different dataset with 10000
entries were created to compare the computational time of the
proposed SPARCL algorithm against the original Soundex
algorithm. In addition to comparing the improved algorithm
with the original Soundex algorithm, it was compared with
the Levenstein distance algorithm.

6.2. Experimental Setup
The accuracy of the SPARCL algorithm was compared with

the original Soundex algorithm as well as the Levenstein
distance algorithm. This was accomplished using the dataset
containing 200 Sri Lankan surnames. Each word in the dataset
was compared with the rest of the words only once and any
similar pair of words was counted as a match.

Similarly, for testing the computation time of the SPARCL
algorithm a dataset of 10000 words was utilized. Each time
the SPARCL algorithm was executed on a subset of the
dataset. Similarly, the original Soundex algorithm and the
Levenstein distance algorithm was executed on the same
subset and the computation time or the running time of the
algorithms were measured in milliseconds. The obtained
results will be discussed in the following sections.

6.3. Accuracy
The SPARCL algorithm produced the same set of similar

word pairs that are actually present in the dataset. As
described above under section 6.1, we deliberately
incorporated 20 pairs of similar words with typographical
mistakes. The SPARCL algorithm exactly produced the same

20 pairs of words as matches. Original Soundex algorithm on
the other hand, produced 68 incorrect pairs in addition to 17
correct pairs. Similarly, the Levenstein algorithm produced 12
incorrect pairs in addition, to 16 correct pairs. Therefore,
SPARCL algorithm demonstrates an accuracy of 100% and an
error rate of 0%. (We note that this 100% accuracy was
obtained for a dataset with 200 records). Soundex algorithm
demonstrates an accuracy of 85%. However, this high
accuracy rate is highly compromised by the fact that it
produces another additional 68 incorrect matches. Similarly,
Levenstein distance algorithm demonstrates an accuracy of
80% with additional 12 incorrect matches. It is clear from the
results that Levenstein algorithm alone performs better than
the original Soundex algorithm when encountered with
Sinhalese words. However, SPARCL, which combines a
modified version of Soundex and Levenstein distance
algorithms to suit Sinhalese names and words, outperforms
the other two methods by quite a margin.

6.4. Computational Time

We measured the computation time for all three algorithms
separately using a dataset of 10000 names. The algorithms
were run on Windows XP using a 1.66 GHz Intel Centrino
Duo machine with 512 MB of RAM. Different subsets of the
dataset were created ranging from 200 entries to 10000
entries. For all subsets, computation times were within an
order of magnitude of each other for all three algorithms.
Original Soundex algorithm is faster than both the proposed
algorithm and the Levenstein distance algorithm. However,
the proposed approach and the original Soundex produced
comparable results with respect to computational time. Even
though, Soundex demonstrates a small performance edge over
the proposed algorithm, it is highly compromised by the huge
reduction in accuracy when encountered with words from
Sinhalese language. The computational times for each of the
subsets are given in Table 1. Figure 4 illustrates a graphical
representation of the computational times of the three
algorithms in the same chart.

One area where duplication is quite evident and record
linkage proves to be quite useful is with regard to newspaper
articles. We consider such articles related to human right
violations. Articles related to the same incident are published
in various newspapers on different days in various ways. Also
the same incident is reported and discussed in the same
newspaper continuously for several days. This leads to the
problem of duplication which can in turn lead to other large
scale problems at the national and international level. This
type of duplication can reveal an incorrect image about the
country’s situation to local as well as international
communities.

Such duplication can lead to an over estimation of the
violations taken place in a country and could be even more
severe when there are ethnic issues or a civil war going on in a
country like Sri Lanka. Record linkage can help alleviate
these problems to a great extent. A dataset of human right
violations would generally consist of attributes such as victim
name, location, incident type, perpetrator, etc. These attributes
are often represented as character strings. In order to perform

Figure 3: Outputs Obtained by the Algorithms

SPARCL

SPARCL

record linkage on these attributes we can make use of
phonetic matching. Since these attributes contain names and
words from Sinhalese language, the original Soundex
algorithm as mentioned earlier is unable to provide the
required level of accuracy.

However, according to results given in section 6, the
proposed SPARCL algorithm can provide the required
foundation to achieve high level of accuracy. In addition, the
use of SPARCL algorithm for this purpose will not result in a
huge performance loss due to the fact that it demonstrates a
comparable computation time with the original Soundex
algorithm.

Apart from the aforementioned purpose, the SPARCL
algorithm can also be used in the development of a generic
framework for record classification and linkage. The
SPARCL algorithm will lie in the center of the framework
providing the backbone for duplicate identification of string
attributes. In addition, the framework can provide additional
functionality such as clustering, blocking, weighting
attributes, selection of blocking variables, prediction of
missing attribute values, etc required by a general record
linkage program. The development of the framework is under
working progress.

7. Conclusion
This paper proposes a modified phonetic matching

algorithm as an alternative to both Soundex algorithm and the
Levenstein distance algorithm for comparing names and
words from Sinhalese language written in English.
Experiments show that SPARCL produce better results in
terms of accuracy than the other two approaches. In terms of
performance, both SPARCL algorithm and Soundex
algorithm show similar computational times on a number of
datasets. However, Levenstein distance algorithm shows very
low performance relative to the other two approaches.

 Directions for future research include refining the
algorithm to make use of the pronunciations provided in an
online or offline dictionary to perform phonetic matching. In
addition, the proposed SPARCL algorithm can be applied to a
myriad of real world problems including the development of a
framework for record classification and linkage.

References
[1] Hall, P. A. V., and Dowling, G. R. (1980), "Approximate
String Comparison," Computing Surveys, 12, 381-402.

[2] Winkler, W. E. (1995), "Matching and Record Linkage,"
in B. G. Cox et al. (ed.) Business Survey Methods, New York:
J. Wiley, 355-384.

Verykios (2007), "Duplicate Record Detection: A Survey" ,
IEEE Transactions on Knowledge and Data Engineering 19
(1): pp. 1–16

[4] T.N. Gadd. (1988), `Fisching fore werds': Phonetic
retrieval of written text in information systems. Program:
automated library and information systems, 22(3):222-237.

[5] T.N. Gadd. (1990), PHONIX: The algorithm. Program:
automated library and information systems, 24(4):363

[6] P.A.V. Hall, G.R. Dowling (1980), Approximate string
matching. Computing Surveys, 12(4):381{402, 1980.

[7] A.C. Gimson and A. Cruttenden (1994), Gimson's
Pronounciation of English. Edward Arnold, London, _fth
edition.

Computational time in milliseconds
Number of

Words SPARCL
algorithm

Original
Soundex

algorithm

Levenstein
distance

algorithm
200 105.8 94.6 127.8
500 613.3 587.1 807.1
1000 2506.8 2371.5 3241
2000 9634.5 9570 13255.5
3000 21668.5 21560 29942.8
4000 39001.9 38866.5 54619.8
5000 61864.6 61384.2 89290.2
6000 89166.4 87390.9 129449.9
7000 121870 121321.9 172661.9
8000 160682 159197.5 224700
9000 205752.8 207589.3 292965.4
10000 253989.5 255694.7 362773.3

Table 1: Comparison of Computational Times

Figure 4: Comparison of Computational Times: Both
SPARCL and Soundex algorithms show comparable
results with respect to computational time. Therefore,
lines corresponding to these two algorithms are almost
overlapped in Figure 4.

[8] (2007), The principles of the International Phonetic
Association. Phonetics Department, University College,
London, UK.

[9] J. Zobel and P. Dart. (1995), Finding approximate matches
in large lexicons. Software Practice and Experience,
25(3):331.

[10] K. Kukich. (1992), Techniques for automatically
correcting words in text. Computing Surveys, 24(4):377.

[11] Nielsen, Sandro (2008), "The effect of lexicographical
information costs on dictionary making and use", in Lexikos
(AFRILEX-reeks/series 18), pp.170–189

[12] G. Salton and M.J. McGill. Introduction to Modern
Information Retrieval. McGraw-Hill, New York, 1983.

[13] Alvey, W. and Jamerson, B. (eds.) (1997), Record
Linkage Techniques -- 1997 (Proceedings of An International
Record Linkage Workshop and Exposition, March 20-
21,1997, in Arlington VA), Washington, DC: Federal
Committee on Statistical Methodology.

[14] Dulip Herath, Kumudu Gamage, Anuradha Malalasekara,
Research Report on Sinhala Lexicon. [Online]. Available:
http://www.panl10n.net/english/final%20reports/pdf%20files/
Sri%20Lanka/SRI01.pdf
[Accessed: Apr, 29, 2008]

[15] Rohan Baxtor, Peter Christen, Tim Churches (2003), A
Comparison of Fast Blocking Methods for Record Linkage,
Workshop on Data Cleaning, Record Linkage and Object
Consolidation, 9th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, Washington DC

