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Abstract— Rule 110, a member of Wolfram’s class IV and
Chua’s hyper Bernoulli-shift rules, has been proved to be
capable of supporting varieties of mobile self-localizations
referred as gliders. This paper is devoted to a careful study
for glider B̄ of rule 110 from the viewpoint of symbolic
dynamics. A transitive subsystem is revealed based on ex-
isting glider B̄, and its complex dynamics such as having
positive topological entropy and density of periodic points
are proved. These results therefore suggest that rule 110 is
chaotic in the sense of both Li-Yorke and Devaney.
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1. Introduction
Cellular automata (CA) are a class of spatially and tempo-

rally discrete, deterministic mathematical systems character-
ized by local interactions and an inherently parallel form of
evolution, and able to produce complex dynamical phenom-
ena by means of designing simple local rules [1]. The study
of topological dynamics of CA began with Hedlund in 1969,
who viewed one-dimensional CA (1-D CA) in the context of
symbolic dynamics as endomorphisms of the shift dynamical
system [2], where the main results are the characterizations
of surjective and open CA. In 1970, Conway proposed his
now-famous “Game of Life” [3], which received widespread
interests among researchers in different fields. In the early
1980’s, Wolfram introduced space-time representations of
1-D CA and informally classified them into four classes
by using dynamical concepts like periodicity, stability and
chaos [4, 5]. In 2002, he introduced his monumental work
A New Kind of Science [6]. Based on this work, Chua et
al. provided a nonlinear dynamics perspective to Wolfram’s
empirical observations via the concepts like characteristic
function, forward time-τ map, basin tree diagram and Isle-
of-Eden digraph [7-10].

Rule 110 in Stephen Wolfram’s system of identification
[6] has been an object of special attention due to the
structures or gliders which have been observed in evolution
space from random initial conditions. A list of gliders is
presented in [12]. Wolfram established the conjecture that
rule 110 could perform universal computation [13]. Lindgren
and Nordahl around 1992 studied the transitional role of
rule 110 and its relation with class IV rules sitting between
Wolfram’s classes II and III [14]. In 1999, Cook gave a brief

introduction about the complex activity of gliders [12], and
made a comparison between rule 110 and “Game of Life”,
finding some similarities and suggesting to call it as left
life. Further, he demonstrated that rule 110 is universal via
simulating a novel cyclic tag system (CTS) [12, 15] with
well-defined blocks of gliders by means of collisions.

Gratefully, the research of CA has drawn more and more
scientists’ attention in the last 20 years. Many concepts
of topological dynamics have been used to describe and
classify them [11, 16-19]. The dynamical properties of some
robust Bernoulli-shift rules with distinct parameters have
been studied in the bi-infinite symbolic sequence space [20-
22]. Based on Chua’s classes, Bernoulli-shift pattern for rule
110 changes with length, and Bernoulli-shift dynamics of
some gliders parameters are relatively large, so it’s difficult
to investigate their invariant subsystems according to refer-
ences before. And some gliders with small parameters may
not have chaotic subsystems. Thus, this work extends the
investigation of Bernoulli-shift dynamics of glider B̄ of rule
110, and reveals its complex dynamics under the framework
of bi-infinite symbolic sequence space.

The rest of the paper is organized as follows: Section 2
presents the basic concepts of 1-D CA, symbolic dynamics
and glider. Section 3 identifies the subsystem of glider B̄,
and shows the chaotic dynamics of the subsystem. It is
indeed remarkably that rule 110 is topologically transitive,
possesses positive topological entropy and has a dense
periodic set. Therefore, it is chaotic in the sense of both Li-
Yorke and Devaney. Finally, Section 4 highlights the main
results of this work.

2. Symbolic Dynamics and Glider
2.1 Symbolic sequence space and CA

Let S = {0, 1}, and Σ2 = {x = (· · · , x−1,
∗
x0, x1, · · · )|xi

∈ S, i ∈ Z} with distance “d”: d(x, y) =

sup
{

ρ(xi,yi)
2|i|

| i ∈ Z
}

, where

ρ(xi, yi) =

{
1 if xi ̸= yi

0 xi = yi
(1)

It is known that Σ2 is a compact, perfect, and totally
disconnected metric space.

If x ∈ Σ2 and I = [i, j] is an interval of integers, put
x[i,j] = (xi, xi+1, · · · , xj) (i < j), x[i,j) = (xi, · · · , xj−1).



Table 1: Truth table of local function of rule 110

(xi−1, xi, xi+1) f̂110(xi−1, xi, xi+1)
(0, 0, 0) 0
(0, 0, 1) 1
(0, 1, 0) 1
(0, 1, 1) 1
(1, 0, 0) 0
(1, 0, 1) 1
(1, 1, 0) 1
(1, 1, 1) 0

Let x(−∞,i] = (· · · , xi−1, xi) and x[j,+∞) = (xj , xj+1, · · · )
denote the left and right half infinite sequence, respectively.
For a finite sequence a = (a0, · · · , an−1), if there exists an
m ∈ Z such that xm+k = ak (k = 0, 1, · · · , n− 1), then a
is said to be a subsequence of x, denoted by a ≺ x. The left-
shift map σL and right-shift map σR are defined by ∀x ∈ Σ2,
[σL(x)]i = xi+1 and [σR(x)]i = xi−1, respectively, where
[σL(x)]i ([σR(x)]i) stands for the i-th element of σL(x)
(σR(x)).

By a theorem of Hedlund [2], a map f : Σ2 → Σ2 is a
CA iff it is continuous and commutes with σ, where σ is
left-shift map σL or right-shift map σR. Furthermore, if f is
a CA, then there exists a radius r ≥ 1 and a local function
f̂ : S2r+1 → S such that [f(x)]i = f̂(x[i−r,i+r]). If r = 1,
then f is an elementary CA (ECA). Any CA f defines a
dynamical system (Σ2, f). A subset X ⊆ Σ2 is f -invariant
if f(X) ⊆ X , and strongly f -invariant if f(X) = X . If
X is a closed and f -invariant, then (X, f) or simply X is
called a subsystem of (Σ2, f).

Each ECA rule can be expressed by a local function, the
logical truth table of rule 110’s local function f̂110 is shown
in Table 1. Obviously, the output binary sequence of the rule
is 01101110, its decimal number is N = 110.

2.2 Glider B̄

A glider is a compact group of non-quiescent states trav-
eling along CA lattice, and is a periodic structure moving in
time [15, 25-27]. From the viewpoint of symbolic dynamics,
a glider can be defined as the evolutionary orbit starting
from a special initial configuration in the bi-infinite sequence
space Σ2 [28].

It was known that the speed of glider B̄ of rule 110 is
−6/12, the lineal volume is 22, and the even number of pe-
riodic margin on the left (or right) border in the ether pattern
are 3 [26]. In symbolic sequence space, the ether pattern and
glider can be defined as the evolutionary orbit starting from a
special initial configuration [28]. The ether factor of the ether
patterns er (or el) is a = (1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0),
and one of glider factors of B̄ is b=(1, 1, 1, 1, 1, 1, 0,
0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0), i.e., an ether
pattern of rule 110 is the evolutionary orbit Orbf110(a

∗) =
{a∗, f110(a∗), f2

110(a
∗), · · · } and glider B̄ is the evolution-

ary orbit Orbf110(x̄) = {x̄, f110(x̄), f2
110(x̄), · · · } in the

CA lattice space, where a∗ = (· · · , a, a, a, · · · ) is a cyclic
configuration and x̄ = (· · · , a, a, a, b, a, a, a, · · · ). That the
speed of B̄ is −6/12 implies this glider shifts to left by 6 bits
in every 12 iterations under rule 110, i.e., f12

110(x̄) = σ6
L(x̄).

The ether pattern and glider B̄ are shown in Figure 1.

Fig. 1: Ether pattern and glider B̄ of rule 110.

3. Subsystem Derived From Glider B̄
3.1 Shift of finite type

Based on glider B̄, one can obtain a 25-
sequence set B = {q|q = x̄[i,i+24], ∀i ∈ Z}
from x̄ = (· · · , a, a, a, b, a, a, a, · · · ), where
a = (1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0) is the ether factor and
b = (1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0) is
a glider factor of B̄. More specifically, B =
{0000111100100110111110001, 0001001101111100010011011,
0001001101111110000111100, 0001111001001101111100010,
0010011011111000100110111, 0010011011111100001111001,
0011011111000100110111110, 0011011111000100110111111,
0011011111100001111001001, 0011110010011011111000100,
0100110111110001001101111, 0100110111111000011110010,
0110111110001001101111100, 0110111110001001101111110,
0110111111000011110010011, 0111100100110111110001001,
0111110001001101111100010, 0111110001001101111110000,
0111111000011110010011011, 1000011110010011011111000,
1000100110111110001001101, 1000100110111111000011110,
1001001101111100010011011, 1001101111100010011011111,
1001101111110000111100100, 1011111000100110111110001,
1011111000100110111111000, 1011111100001111001001101,
1100001111001001101111100, 1100010011011111000100110,
1100010011011111100001111, 1100100110111110001001101,
1101111100010011011111000, 1101111100010011011111100,
1101111110000111100100110, 1110000111100100110111110,
1110001001101111100010011, 1110001001101111110000111,
1110010011011111000100110, 1111000011110010011011111,
1111000100110111110001001, 1111000100110111111000011,
1111001001101111100010011, 1111100001111001001101111,
1111100010011011111000100, 1111100010011011111100001,
1111110000111100100110111}.



The decimal code set D(B) of B is D(B) =
{1986033, 2554011, 2554940, 3972066, 5108023, 5109881,
7309758, 7309759, 7324617, 7944132, 10216047, 10219762,
14619516, 14619518, 14649235, 15888265, 16292834, 16292848,
16530587, 17770232, 18054221, 18054686, 19331227, 20432095,
20439524, 24923633, 24923640, 25042509, 25662332, 25804326,
25804559, 26442829, 29239032, 29239036, 29298470, 29608382,
29679379, 29679495, 29998630, 31581407, 31616905, 31616963,
31776531, 32567919, 32585668, 32585697, 33061175}.

Let Λ0 = ΛB = {x ∈ Σ2| x[i,i+24] ∈ B, i ∈ Z}. Since
the 12 times iteration of the local function f̂110 is a map
f̂12
110 : S25 → S, and obviously, f̂12

110(q) = qi+6 for any
q = (qi−12, · · · , qi, · · · , qi+12) ∈ B. Thus, it follows that
f12
110(x) = σ6

L(x) for x ∈ Λ0. Furthermore, let

Λ =
11∪
i=0

f i
110(Λ0) (2)

The following propositions can be easily verified.
Proposition 1: Λ is closed f110-invariant set, and f12

110(x)
= σ6

L(x) for x ∈ Λ.

Proposition 2: Λ is a subshift of finite type of σL (SFT).
Let A is a determinative block system of Λ, then, Λ = ΛA,

where A is a 25-sequence set consisting of 435 elements.
Due to space limitations and for simplicity, the decimal code
set D(A) of A is placed in Appendix.

3.2 de Bruijn diagram
The invariant set Λ = ΛA in Propositions 1 and 2 can

be described by a finite directed graph, GA = {A, E},
where each vertex is labeled by a sequence in A, and E
is the set of edges connecting the vertices in A. The finite
directed graph GA is called the de Bruijn diagram of A (or
ΛA). Two vertices a = (a0, · · · , a24) and b = (b0, · · · , b24)
are connected by an edge (a0, · · · , a24) → (b0, · · · , b24) if
and only if (a1, · · · , a24) = (b0, · · · , b23). One can think
of each element of ΛA as a bi-infinite path on the diagram
GA. Whereas a de Bruijn diagram corresponds to a square
transition matrix A = (Aij)435×435 with Aij = 1 if and
only if there is an edge from vertex b(i) to vertex b(j), where
|A| = 435 is the number of elements in A, and i (or j) is the
code of the corresponding vertex in A, i, j = 1, 2, · · · , 435.
Thus, ΛA is precisely defined by the transition matrix A.
The de Bruijn diagram GA associated with A is shown in
Fig. 2, where the code of vertex represents the location of
corresponding element in A.

Remarkably, a 0− 1 square matrix A is irreducible if for
any i, j, there exists an positive integer n such that An

ij > 0;
aperiodic if there exists an n > 0, such that An

ij > 0 for all
i, j, where An

ij is the (i, j) entry of the power matrix An. If
ΛA is a SFT of (Σ2, σ), then σ is topologically transitive on
ΛA if and only if A is irreducible; σ is topologically mixing
if and only if A is aperiodic. Equivalently, A is irreducible
if and only if for every ordered pair of vertices b(i) and b(j)
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Fig. 2: The de Bruijn diagram GA associated with glider B̄.

there is a path in GA starting at b(i) and ending at b(j) [23,
24].

3.3 Chaoticity
In the subsection, the chaoticity of rule 110 on ΛA will

be revealed.

Proposition 3:
(1) σL is topologically transitive on Λ;
(2) f110 is topologically transitive on Λ.

Proof: (1) In fact, it can be verified that for every
ordered pair of vertices b(i) and b(j) in A there is a path
in the de Bruijn diagram GA = {A, E} starting at b(i) and
ending at b(j), thus, the transition matrix A = (Aij)435×435

corresponding to GA is irreducible, so σL is topologically
transitive on Λ [23, 24].
(2) Similar to [29], the topologically transitive of f110 on Λ
can be proved.

Proposition 4: The set of periodic points of f110,
P (f) = {y ∈ Λ| ∃ n > 0, fn(y) = y}, is dense in Λ.

Proof: For any x ∈ Λ and ϵ > 0, there exists
an positive integer M (> 12) such that

∑∞
i=M+1

1
2i <

ϵ/2, and for (a0, · · · , a2M ) = x[−M,M ] ≺ x ∈ Λ, it
follows that (a2M−24, · · · , a2M ), (a0, · · · , a24) ∈ A. Since
σ is topologically transitive on Λ, there exists a path from
(a2M−24, · · · , a2M ) to (a0, · · · , a24) in GA = {A, E}.
Let b̃ = (a2M−24, · · · , a2M , b0, · · · , bk0 , a0, · · · , a24) be



the sequence corresponding to this path. Then, its any 25-
subsequence belongs to A.

Now, construct a cyclic configuration y = c∗ =
(· · · , c, c, c, · · · ), where c = (a0, · · · , a2M , b0, · · · , bk0).
Obviously, y ∈ Λ and σm(y) = y, where m = |c| is the
length of c. Thus, f12m(y) = σ6m(y) = y and y[−M,M ] =
x[−M,M ], i. e., y is a periodic point of f110 and d(x, y) < ϵ.
Therefore, the set of periodic points P (f) is dense in Λ.

Proposition 5: The topological entropy of f110 is posi-
tive.

Proof: The topological entropy of f110|Λ satisfies
ent(f110) ≥ ent(f110|Λ) = 6

12ent(σL|Λ) = 1
2 log((A)) =

1
2 log(1.07466) ≈ 0.0360 > 0, where (A) is the spectral
radius of the transition matrix A corresponding to A.

It is well known that positive topological entropy implies
chaos in the sense of Li-Yorke [24], and topological transi-
tivity and density of periodic points imply chaos in the sense
of Devaney [30, 31]. Thus, one has the interesting result.

Theorem 1: f110 is chaotic in the sense of both Li-Yorke
and Devaney on Λ.

4. Conclusion
In this work, we uncover some dynamic properties of

glider B̄ of rule 110. That is, glider B̄ defines one subsystem,
on which it is topologically transitive and possesses posi-
tive topological entropy and the density of periodic points.
Hence, the rule is chaotic in the sense of both Li-Yorke and
Devaney on the subsystem. One important problem is how to
find the biggest subsystem associating with an existing glider
and how to find the relation between universal computation
and dynamics of CA, which are important topics for further
research in the near future.
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Appendix

The determinative block system A of Λ is a 25-
sequence set consisting of 435 elements. For a sequence



a = (a0, a1, · · · , a24) ∈ A, its decimal code is defined as

D(a) =
24∑
i=0

ai · 224−i. (3)

For simplicity, A is replaced by its decimal code set D(A).
D(A) =
{638502, 771295, 1152760, 1156646, 1277005, 1542590, 1827439, 1866829,

1986033, 2305521, 2309112, 2313293, 2520800, 2526459, 2539896, 2551290,

2553926, 2553996, 2554009, 2554010, 2554011, 2554015, 2554039, 2554081,

2554328, 2554864, 2554940, 2618104, 3008248, 3085180, 3333907, 3391369,

3403375, 3458271, 3654879, 3688088, 3733659, 3864731, 3972066, 4073208,

4611042, 4618225, 4626587, 5041601, 5052919, 5079793, 5102580, 5107852,

5107993, 5108019, 5108020, 5108022, 5108023, 5108031, 5108079, 5108162,

5108657, 5109729, 5109881, 5236209 6016497, 6021743, 6170360, 6230908,

6451081, 6667814, 6778377, 6782739, 6806751, 6868921, 6916542, 7083913,

7266209, 7308389, 7309518, 7309725, 7309731, 7309744, 7309755, 7309758,

7309759, 7309820, 7310201, 7310865, 7314830, 7323406, 7324617, 7376177,

7467319, 7729463, 7748344, 7790747, 7860535, 7944132, 8146417, 8244721,

8335241, 8845467, 9222084, 9236450, 9239451, 9253175, 10001378, 10083202,

10105838, 10159586, 10205160, 10215705, 10215987, 10216039, 10216040,

10216044, 10216046, 10216047, 10216063, 10216158, 10216324, 10217315,

10219459, 10219762, 10472418, 12032994, 12043487, 12340721, 12461816,

12679323, 12902163, 13066003, 13335629, 13556755, 13565478, 13613502,

13737843, 13833084, 14167827, 14422908, 14532419, 14577545, 14616779,

14619037, 14619451, 14619462, 14619488, 14619510, 14619516, 14619517,

14619518, 14619641, 14620403, 14621731, 14629661, 14646812, 14649235,

14655934, 14719970, 14752354, 14934639, 15136923, 15458927, 15496689,

15581495, 15596059, 15721071, 15808452, 15888265, 15957069, 16270939,

16289007, 16292315, 16292403, 16292613, 16292791, 16292833, 16292834,

16292835, 16292839, 16292847, 16292848, 16293835, 16299931, 16310554,

16373995, 16489442, 16511203, 16529656, 16530587, 16584177, 16656120,

16670483, 17096467, 17162863, 17353596, 17355539, 17690935, 17710630,

17770232, 17931772, 18037616, 18040445, 18047164, 18052861, 18054179,

18054214, 18054220, 18054221, 18054223, 18054235, 18054256, 18054380,

18054648, 18054686, 18086268, 18281340, 18444169, 18472900, 18478903,

18506351, 18621260, 18709581, 18813820, 19331227, 19788087, 19892670,

20002756, 20166404, 20211676, 20319172, 20410320, 20431410, 20431975,

20432078, 20432081, 20432088, 20432093, 20432095, 20432126, 20432316,

20432648, 20434631, 20438919, 20439524, 20651388, 20672589, 20707483,

20899576, 20944836, 21199949, 21396941, 21777905, 23008124, 23116877,

23310217, 23988670, 24065988, 24086974, 24105183, 24137201, 24345677,

24575245, 24681442, 24755750, 24912685, 24921719, 24923373, 24923417,

24923522, 24923611, 24923632, 24923633, 24923635, 24923639, 24923640,

24924133, 24927181, 24932493, 24964213, 25032817, 25042044, 25042509,

25069304, 25105276, 25325449, 25358647, 25454014, 25454985, 25632531,

25662332, 25743102, 25796024, 25797438, 25800798, 25803646, 25804305,

25804323, 25804326, 25804327, 25804333, 25804344, 25804406, 25804540,

25804559, 25820350, 25917886, 26087846, 26132006, 26184126, 26442829,

26671259, 26723551, 26993263, 27102910, 27113510, 27130957, 27227004,

27377190, 27475686, 27666168, 28281278, 28335654, 28432324, 28771551,

28829807, 28845816, 28950054, 29064838, 29155091, 29233558, 29238075,

29238902, 29238924, 29238977, 29239021, 29239032, 29239033, 29239035,

29239036, 29239282, 29240806, 29243462, 29259322, 29293624, 29298238,

29298470, 29311868, 29329854, 29439940, 29504223, 29504708, 29593481,

29608382, 29648767, 29675228, 29675935, 29677615, 29679039, 29679368,

29679377, 29679379, 29679382, 29679388, 29679419, 29679486, 29679495,

29687391, 29736159, 29821139, 29869279, 29998630, 30138991, 30273847,

30328671, 30465811, 30917855, 30993378, 31162991, 31192119, 31252243,

31426335, 31442143, 31529327, 31573956, 31581407, 31601599, 31614830,

31615183, 31616023, 31616735, 31616900, 31616904, 31616905, 31616907,

31616910, 31616925, 31616959, 31616963, 31620911, 31645295, 31687785,

31776531, 31846711, 31914139, 31941551, 32010121, 32403337, 32490383,

32541879, 32564194, 32567919, 32578015, 32584631, 32584807, 32585227,

32585583, 32585666, 32585668, 32585669, 32585671, 32585678, 32585695,

32585697, 32587671, 32599863, 32621108, 32700571, 32747991, 32782276,

32978884, 33022407, 33059313, 33061175, 33070050, 33127501, 33168354,

33312241, 33340966}.


